The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way...The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way to judge whether the subsea production control system is normal.However,subsea sensors degrade rapidly due to harsh working environments and long service time.This leads to frequent false alarm incidents.A combinatorial reasoning-based abnormal sensor recognition method for subsea production control system is proposed.A combinatorial algorithm is proposed to group sensors.The long short-term memory network(LSTM)is used to establish a single inference model.A counting-based judging method is proposed to identify abnormal sensors.Field data from an offshore platform in the South China Sea is used to demonstrate the effect of the proposed method.The results show that the proposed method can identify the abnormal sensors effectively.展开更多
In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp...In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
This article explores the topic of fault diagnosis and maintenance strategies for instrument automation control systems,analyzing them through specific cases.The aim of this research is to improve the stability and re...This article explores the topic of fault diagnosis and maintenance strategies for instrument automation control systems,analyzing them through specific cases.The aim of this research is to improve the stability and reliability of the system by conducting a thorough investigation of faults and maintenance in instrument automation control systems.By doing so,this research hopes to provide a strong guarantee for the smooth progress of industrial production.展开更多
Molten transport is an important link in the iron and steel enterprise production,involves many complex factors,artificial management is difficult.Therefore,puts forward a kind of molten iron transport wisdom control ...Molten transport is an important link in the iron and steel enterprise production,involves many complex factors,artificial management is difficult.Therefore,puts forward a kind of molten iron transport wisdom control system based on 5G technology,which mainly contains the intelligent identification tracking system,equipment status collection information acquisition system,locomotive vehicle terminal system,etc.Combined with the analysis of the actual application situation,the system could integrate all the processes and elements of molten iron produc-tion and transportation,realize the integration of operation and management,and also promote the improvement of the turnover efficiency of molten iron tank,reduce the demand for personnel,and reduce the labor cost.展开更多
Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a ...Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.展开更多
Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor...Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering.展开更多
This survey provides a brief overview on the control Lyapunov function(CLF)and control barrier function(CBF)for general nonlinear-affine control systems.The problem of control is formulated as an optimization problem ...This survey provides a brief overview on the control Lyapunov function(CLF)and control barrier function(CBF)for general nonlinear-affine control systems.The problem of control is formulated as an optimization problem where the optimal control policy is derived by solving a constrained quadratic programming(QP)problem.The CLF and CBF respectively characterize the stability objective and the safety objective for the nonlinear control systems.These objectives imply important properties including controllability,convergence,and robustness of control problems.Under this framework,optimal control corresponds to the minimal solution to a constrained QP problem.When uncertainties are explicitly considered,the setting of the CLF and CBF is proposed to study the input-to-state stability and input-to-state safety and to analyze the effect of disturbances.The recent theoretic progress and novel applications of CLF and CBF are systematically reviewed and discussed in this paper.Finally,we provide research directions that are significant for the advance of knowledge in this area.展开更多
The complex working conditions and nonlinear characteristics of the motor drive control system of industrial robots make it difficult to detect faults.In this paper,a deep learning-based observer,which combines the co...The complex working conditions and nonlinear characteristics of the motor drive control system of industrial robots make it difficult to detect faults.In this paper,a deep learning-based observer,which combines the convolutional neural network(CNN)and the long short-term memory network(LSTM),is employed to approximate the nonlinear driving control system.CNN layers are introduced to extract dynamic features of the data,whereas LSTM layers perform time-sequential prediction of the target system.In terms of application,normal samples are fed into the observer to build an offline prediction model for the target system.The trained CNN-LSTM-based observer is then deployed along with the target system to estimate the system outputs.Online fault detection can be realized by analyzing the residuals.Finally,an application of the proposed fault detection method to a brushless DC motor drive system is given to verify the effectiveness of the proposed scheme.Simulation results indicate the impressive fault detection capability of the presented method for driving control systems of industrial robots.展开更多
Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-...Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area.展开更多
Supervisory control and data acquisition(SCADA)systems are computer systems that gather and analyze real-time data,distributed control systems are specially designed automated control system that consists of geographi...Supervisory control and data acquisition(SCADA)systems are computer systems that gather and analyze real-time data,distributed control systems are specially designed automated control system that consists of geographically distributed control elements,and other smaller control systems such as programmable logic controllers are industrial solid-state computers that monitor inputs and outputs and make logic-based decisions.In recent years,there has been a lot of focus on the security of industrial control systems.Due to the advancement in information technologies,the risk of cyberattacks on industrial control system has been drastically increased.Because they are so inextricably tied to human life,any damage to them might have devastating consequences.To provide an efficient solution to such problems,this paper proposes a new approach to intrusion detection.First,the important features in the dataset are determined by the difference between the distribution of unlabeled and positive data which is deployed for the learning process.Then,a prior estimation of the class is proposed based on a support vector machine.Simulation results show that the proposed approach has better anomaly detection performance than existing algorithms.展开更多
Recently,Industrial Control Systems(ICSs)have been changing from a closed environment to an open environment because of the expansion of digital transformation,smart factories,and Industrial Internet of Things(IIoT).S...Recently,Industrial Control Systems(ICSs)have been changing from a closed environment to an open environment because of the expansion of digital transformation,smart factories,and Industrial Internet of Things(IIoT).Since security accidents that occur in ICSs can cause national confusion and human casualties,research on detecting abnormalities by using normal operation data learning is being actively conducted.The single technique proposed by existing studies does not detect abnormalities well or provide satisfactory results.In this paper,we propose a GRU-based Buzzer Ensemble for AbnormalDetection(GBE-AD)model for detecting anomalies in industrial control systems to ensure rapid response and process availability.The newly proposed ensemble model of the buzzer method resolves False Negatives(FNs)by complementing the limited range that can be detected in a single model because of the internal models composing GBE-AD.Because the internal models remain suppressed for False Positives(FPs),GBE-AD provides better generalization.In addition,we generated mean prediction error data in GBE-AD and inferred abnormal processes using soft and hard clustering.We confirmed that the detection model’s Time-series Aware Precision(TaP)suppressed FPs at 97.67%.The final performance was 94.04%in an experiment using anHIL-basedAugmented ICS(HAI)Security Dataset(ver.21.03)among public datasets.展开更多
Industrial control systems(ICSs)are widely used in various fields,and the information security problems of ICSs are increasingly serious.The existing evaluation methods fail to describe the uncertain evaluation inform...Industrial control systems(ICSs)are widely used in various fields,and the information security problems of ICSs are increasingly serious.The existing evaluation methods fail to describe the uncertain evaluation information and group evaluation information of experts.Thus,this paper introduces the probabilistic linguistic term sets(PLTSs)to model the evaluation information of experts.Meanwhile,we propose a probabilistic linguistic multi-criteria decision-making(PL-MCDM)method to solve the information security assessment problem of ICSs.Firstly,we propose a novel subscript equivalence distance measure of PLTSs to improve the existing methods.Secondly,we use the Best Worst Method(BWM)method and Criteria Importance Through Inter-criteria Correlation(CRITIC)method to obtain the subjective weights and objective weights,which are used to derive the combined weights.Thirdly,we use the subscript equivalence distance measure method and the combined weight method to improve the probabilistic linguistic Visekriterijumska Optimizacija I Kompromisno Resenje(PL-VIKOR)method.Finally,we apply the proposed method to solve the information security assessment problem of ICSs.When comparing with the existing methods such as the probabilistic linguistic Tomada deDecisão Iterativa Multicritério(PL-TODIM)method and probabilistic linguistic Technique for Order Preference by Similarity to Ideal Solution(PL-TOPSIS)method,the case example shows that the proposed method can provide more reasonable ranking results.By evaluating and ranking the information security level of different ICSs,managers can identify problems in time and guide their work better.展开更多
Cyberattacks targeting industrial control systems(ICS)are becoming more sophisticated and advanced than in the past.A programmable logic controller(PLC),a core component of ICS,controls and monitors sensors and actuat...Cyberattacks targeting industrial control systems(ICS)are becoming more sophisticated and advanced than in the past.A programmable logic controller(PLC),a core component of ICS,controls and monitors sensors and actuators in the field.However,PLC has memory attack threats such as program injection and manipulation,which has long been a major target for attackers,and it is important to detect these attacks for ICS security.To detect PLC memory attacks,a security system is required to acquire and monitor PLC memory directly.In addition,the performance impact of the security system on the PLC makes it difficult to apply to the ICS.To address these challenges,this paper proposes a system to detect PLC memory attacks by continuously acquiring and monitoring PLC memory.The proposed system detects PLC memory attacks by acquiring the program blocks and block information directly from the same layer as the PLC and then comparing them in bytes with previous data.Experiments with Siemens S7-300 and S7-400 PLC were conducted to evaluate the PLC memory detection performance and performance impact on PLC.The experimental results demonstrate that the proposed system detects all malicious organization block(OB)injection and data block(DB)manipulation,and the increment of PLC cycle time,the impact on PLC performance,was less than 1 ms.The proposed system detects PLC memory attacks with a simpler detection method than earlier studies.Furthermore,the proposed system can be applied to ICS with a small performance impact on PLC.展开更多
This paper proposes to adopt SCADA and PLC technology for the improvement of the performance of real time signaling&train control systems in metro railways.The main concern of this paper is to minimize the failure...This paper proposes to adopt SCADA and PLC technology for the improvement of the performance of real time signaling&train control systems in metro railways.The main concern of this paper is to minimize the failure in automated metro railways system operator and integrate the information coming from Operational Control Centre(OCC),traction SCADA system,traction power control,and power supply system.This work presents a simulated prototype of an automated metro train system operator that uses PLC and SCADA for the real time monitoring and control of the metro railway systems.Here,SCADA is used for the visualization of an automated process operation and then the whole opera-tion is regulated with the help of PLC.The PLC used in this process is OMRON(NX1P2-9024DT1)and OMRON’s Sysmac studio programming software is used for developing the ladder logic of PLC.The metro railways system has deployed infrastructure based on SCADA from the power supply system,and each station’s traction power control is connected to the OCC remotely which commands all of the stations and has the highest command priority.An alarm is triggered in the event of an emergency or system congestion.This proposed system overcomes the drawbacks of the current centralized automatic train control(CATC)system.This system provides prominent benefits like augmenting services which may enhance a network’s full load capacity and networkflexibility,which help in easy modification in the existing program at any time.展开更多
The superconducting rapid single flux quantum(RSFQ)integrated circuit is a promising solu-tion for overcoming speed and power bottlenecks in high-performance computing systems in the post-Moore era.This paper presents...The superconducting rapid single flux quantum(RSFQ)integrated circuit is a promising solu-tion for overcoming speed and power bottlenecks in high-performance computing systems in the post-Moore era.This paper presents an architecture designed to improve the speed and power limitations of high-performance computing systems using superconducting technology.Since superconducting microprocessors,which operate at cryogenic temperatures,require support from semiconductor cir-cuits,the proposed design utilizes the von Neumann architecture with a superconducting RSFQ mi-croprocessor,cryogenic semiconductor memory,a room temperature field programmable gate array(FPGA)controller,and a host computer for input/output.Additionally,the paper introduces two key circuit designs:a start/stop controllable superconducting clock generator and an asynchronous communication interface between the RSFQ and semiconductor chips used to implement the control system.Experimental results demonstrate that the proposed design is feasible and effective,provi-ding valuable insights for future superconducting computer systems.展开更多
This paper presents a theoretical and experimental study on controller design for the AMBs in a small-scale flywheel energy storage system,where the main goals are to achieve low energy consumption and improved rotord...This paper presents a theoretical and experimental study on controller design for the AMBs in a small-scale flywheel energy storage system,where the main goals are to achieve low energy consumption and improved rotordynamic stability.A H-infinity optimal control synthesis procedure is defined for the permanent-magnet-biased AMB-rotor system with 4 degrees of freedom.Through the choice of design weighting functions,notch filter characteristics are incorporated within the controller to reduce AMB current components caused by rotor vibration at the synchronous frequency and higher harmonics.Experimental tests are used to validate the controller design methodology and provide comparative results on performance and efficiency.The results show that the H-infinity controller is able to achieve stable rotor levitation and reduce AMB power consumption by more than 40%(from 4.80 to 2.64 Watts)compared with the conventional PD control method.Additionally,the H-infinity controller can prevent vibrational instability of the rotor nutation mode,which is prone to occur when operating with high rotational speeds.展开更多
We study afresh how the glucose control system anomalies impact the organicity of the glucose homeostasis and build up events of persistent hyperglycemia and diabetes mellitus. We have used critically the state of art...We study afresh how the glucose control system anomalies impact the organicity of the glucose homeostasis and build up events of persistent hyperglycemia and diabetes mellitus. We have used critically the state of art literature related to the subject, in order to cross, to compare, and to organize the relevant contents to create a logical and consistent support to the finds. We show that it is consistent to assume that persistent hyperglycemia and diabetes mellitus can have precursors not only in pancreas, but also in brain, mainly induced by noxious dysfunctions of hypothalamus sensor neurons circuits and external noxious elements, causing pancreas overload, and the consequent exhaustion—overburden.展开更多
A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in th...A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in the need for applications and methodologies that are capable of automatically analyzing these contents. These technologies can be applied in automatic contentanalysis and emergency response systems. Breaks in manual communication usually occur in emergencies leading to accidents and equipment damage. The audio signal does a good job by sending a signal underground, which warrants action from an emergency management team at the surface. This paper, therefore, seeks to design and simulate an audio signal alerting and automatic control system using Unity Pro XL to substitute manual communication of emergencies and manual control of equipment. Sound data were trained using the neural network technique of machine learning. The metrics used are Fast Fourier transform magnitude, zero crossing rate, root mean square, and percentage error. Sounds were detected with an error of approximately 17%;thus, the system can detect sounds with an accuracy of 83%. With more data training, the system can detect sounds with minimal or no error. The paper, therefore, has critical policy implications about communication, safety, and health for underground mine.展开更多
The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in ...The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in instances where emergency situations occur at traffic light intersections that are consistently congested with a high volume of vehicles. This implementation of a traffic light controller system is designed with the intention of addressing this problem. The purpose of the system was to facilitate the operation of a 3-way traffic control light and provide priority to emergency vehicles using a Radio Frequency Identification (RFID) sensor and Reduced Instruction Set Computing (RISC) Architecture Based Microcontroller. This research work involved designing a system to mitigate the occurrence of accidents commonly observed at traffic light intersections, where vehicles often need to maneuver in order to make way for emergency vehicles following a designated route. The research effectively achieved the analysis, simulation and implementation of wireless communication devices for traffic light control. The implemented prototype utilizes RFID transmission, operates in conjunction with the sequential mode of traffic lights to alter the traffic light sequence accordingly and reverts the traffic lights back to their normal sequence after the emergency vehicle has passed the traffic lights.展开更多
基金supported by the National Key Research and Development Program of China (No.2022YFC2806102)the National Natural Science Foundation of China (No.52171287,52325107)+3 种基金High-tech Ship Research Project of Ministry of Industry and Information Technology (No.2023GXB01-05-004-03,No.GXBZH2022-293)the Science Foundation for Distinguished Young Scholars of Shandong Province (No.ZR2022JQ25)the Taishan Scholars Project (No.tsqn201909063)the Fundamental Research Funds for the Central Universities (No.24CX10006A)。
文摘The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way to judge whether the subsea production control system is normal.However,subsea sensors degrade rapidly due to harsh working environments and long service time.This leads to frequent false alarm incidents.A combinatorial reasoning-based abnormal sensor recognition method for subsea production control system is proposed.A combinatorial algorithm is proposed to group sensors.The long short-term memory network(LSTM)is used to establish a single inference model.A counting-based judging method is proposed to identify abnormal sensors.Field data from an offshore platform in the South China Sea is used to demonstrate the effect of the proposed method.The results show that the proposed method can identify the abnormal sensors effectively.
基金supported by the National Natural Science Foundation of China(62273176)the Aeronautical Science Foundation of China(20200007018001)the China Scholarship Council(202306830096).
文摘In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
文摘This article explores the topic of fault diagnosis and maintenance strategies for instrument automation control systems,analyzing them through specific cases.The aim of this research is to improve the stability and reliability of the system by conducting a thorough investigation of faults and maintenance in instrument automation control systems.By doing so,this research hopes to provide a strong guarantee for the smooth progress of industrial production.
文摘Molten transport is an important link in the iron and steel enterprise production,involves many complex factors,artificial management is difficult.Therefore,puts forward a kind of molten iron transport wisdom control system based on 5G technology,which mainly contains the intelligent identification tracking system,equipment status collection information acquisition system,locomotive vehicle terminal system,etc.Combined with the analysis of the actual application situation,the system could integrate all the processes and elements of molten iron produc-tion and transportation,realize the integration of operation and management,and also promote the improvement of the turnover efficiency of molten iron tank,reduce the demand for personnel,and reduce the labor cost.
基金This research was founded by the Funds for Creative Research Groups of National Natural Science Foundation of China(Grant No.51921006)the National Natural Science Foundations of China(Grant No.51978224)+2 种基金the National Major Scientific Research Instrument Development Program of China(Grant No.51827811)the National Natural Science Foundation of China,(Grant No.52008141)the Shenzhen Technology Innovation Program(Grant Nos.JCYJ20170811160003571,JCYJ20180508152238111 and JCYJ20200109112803851).
文摘Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.
文摘Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering.
基金supported in part by the National Natural Science Foundation of China(U22B2046,62073079,62088101)in part by the General Joint Fund of the Equipment Advance Research Program of Ministry of Education(8091B022114)in part by NPRP(NPRP 9-466-1-103)from Qatar National Research Fund。
文摘This survey provides a brief overview on the control Lyapunov function(CLF)and control barrier function(CBF)for general nonlinear-affine control systems.The problem of control is formulated as an optimization problem where the optimal control policy is derived by solving a constrained quadratic programming(QP)problem.The CLF and CBF respectively characterize the stability objective and the safety objective for the nonlinear control systems.These objectives imply important properties including controllability,convergence,and robustness of control problems.Under this framework,optimal control corresponds to the minimal solution to a constrained QP problem.When uncertainties are explicitly considered,the setting of the CLF and CBF is proposed to study the input-to-state stability and input-to-state safety and to analyze the effect of disturbances.The recent theoretic progress and novel applications of CLF and CBF are systematically reviewed and discussed in this paper.Finally,we provide research directions that are significant for the advance of knowledge in this area.
基金supported in part by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant 21KJA470007。
文摘The complex working conditions and nonlinear characteristics of the motor drive control system of industrial robots make it difficult to detect faults.In this paper,a deep learning-based observer,which combines the convolutional neural network(CNN)and the long short-term memory network(LSTM),is employed to approximate the nonlinear driving control system.CNN layers are introduced to extract dynamic features of the data,whereas LSTM layers perform time-sequential prediction of the target system.In terms of application,normal samples are fed into the observer to build an offline prediction model for the target system.The trained CNN-LSTM-based observer is then deployed along with the target system to estimate the system outputs.Online fault detection can be realized by analyzing the residuals.Finally,an application of the proposed fault detection method to a brushless DC motor drive system is given to verify the effectiveness of the proposed scheme.Simulation results indicate the impressive fault detection capability of the presented method for driving control systems of industrial robots.
文摘Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area.
基金funded by the Research Deanship at the University of Ha’il-Saudi Arabia through Project Number RG-20146。
文摘Supervisory control and data acquisition(SCADA)systems are computer systems that gather and analyze real-time data,distributed control systems are specially designed automated control system that consists of geographically distributed control elements,and other smaller control systems such as programmable logic controllers are industrial solid-state computers that monitor inputs and outputs and make logic-based decisions.In recent years,there has been a lot of focus on the security of industrial control systems.Due to the advancement in information technologies,the risk of cyberattacks on industrial control system has been drastically increased.Because they are so inextricably tied to human life,any damage to them might have devastating consequences.To provide an efficient solution to such problems,this paper proposes a new approach to intrusion detection.First,the important features in the dataset are determined by the difference between the distribution of unlabeled and positive data which is deployed for the learning process.Then,a prior estimation of the class is proposed based on a support vector machine.Simulation results show that the proposed approach has better anomaly detection performance than existing algorithms.
基金supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by Korea government Ministry of Science,ICT(MSIT)(No.2019-0-01343,convergence security core talent training business).
文摘Recently,Industrial Control Systems(ICSs)have been changing from a closed environment to an open environment because of the expansion of digital transformation,smart factories,and Industrial Internet of Things(IIoT).Since security accidents that occur in ICSs can cause national confusion and human casualties,research on detecting abnormalities by using normal operation data learning is being actively conducted.The single technique proposed by existing studies does not detect abnormalities well or provide satisfactory results.In this paper,we propose a GRU-based Buzzer Ensemble for AbnormalDetection(GBE-AD)model for detecting anomalies in industrial control systems to ensure rapid response and process availability.The newly proposed ensemble model of the buzzer method resolves False Negatives(FNs)by complementing the limited range that can be detected in a single model because of the internal models composing GBE-AD.Because the internal models remain suppressed for False Positives(FPs),GBE-AD provides better generalization.In addition,we generated mean prediction error data in GBE-AD and inferred abnormal processes using soft and hard clustering.We confirmed that the detection model’s Time-series Aware Precision(TaP)suppressed FPs at 97.67%.The final performance was 94.04%in an experiment using anHIL-basedAugmented ICS(HAI)Security Dataset(ver.21.03)among public datasets.
文摘Industrial control systems(ICSs)are widely used in various fields,and the information security problems of ICSs are increasingly serious.The existing evaluation methods fail to describe the uncertain evaluation information and group evaluation information of experts.Thus,this paper introduces the probabilistic linguistic term sets(PLTSs)to model the evaluation information of experts.Meanwhile,we propose a probabilistic linguistic multi-criteria decision-making(PL-MCDM)method to solve the information security assessment problem of ICSs.Firstly,we propose a novel subscript equivalence distance measure of PLTSs to improve the existing methods.Secondly,we use the Best Worst Method(BWM)method and Criteria Importance Through Inter-criteria Correlation(CRITIC)method to obtain the subjective weights and objective weights,which are used to derive the combined weights.Thirdly,we use the subscript equivalence distance measure method and the combined weight method to improve the probabilistic linguistic Visekriterijumska Optimizacija I Kompromisno Resenje(PL-VIKOR)method.Finally,we apply the proposed method to solve the information security assessment problem of ICSs.When comparing with the existing methods such as the probabilistic linguistic Tomada deDecisão Iterativa Multicritério(PL-TODIM)method and probabilistic linguistic Technique for Order Preference by Similarity to Ideal Solution(PL-TOPSIS)method,the case example shows that the proposed method can provide more reasonable ranking results.By evaluating and ranking the information security level of different ICSs,managers can identify problems in time and guide their work better.
基金supported by the Korea WESTERN POWER(KOWEPO)(2022-Commissioned Research-11,Development of Cyberattack Detection Technology for New and Renewable Energy Control System Using AI(Artificial Intelligence),50%)the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2021-0-01806,Development of Security by Design and Security Management Technology in Smart Factory,40%)the Gachon University Research Fund of 2023(GCU-202110280001,10%).
文摘Cyberattacks targeting industrial control systems(ICS)are becoming more sophisticated and advanced than in the past.A programmable logic controller(PLC),a core component of ICS,controls and monitors sensors and actuators in the field.However,PLC has memory attack threats such as program injection and manipulation,which has long been a major target for attackers,and it is important to detect these attacks for ICS security.To detect PLC memory attacks,a security system is required to acquire and monitor PLC memory directly.In addition,the performance impact of the security system on the PLC makes it difficult to apply to the ICS.To address these challenges,this paper proposes a system to detect PLC memory attacks by continuously acquiring and monitoring PLC memory.The proposed system detects PLC memory attacks by acquiring the program blocks and block information directly from the same layer as the PLC and then comparing them in bytes with previous data.Experiments with Siemens S7-300 and S7-400 PLC were conducted to evaluate the PLC memory detection performance and performance impact on PLC.The experimental results demonstrate that the proposed system detects all malicious organization block(OB)injection and data block(DB)manipulation,and the increment of PLC cycle time,the impact on PLC performance,was less than 1 ms.The proposed system detects PLC memory attacks with a simpler detection method than earlier studies.Furthermore,the proposed system can be applied to ICS with a small performance impact on PLC.
文摘This paper proposes to adopt SCADA and PLC technology for the improvement of the performance of real time signaling&train control systems in metro railways.The main concern of this paper is to minimize the failure in automated metro railways system operator and integrate the information coming from Operational Control Centre(OCC),traction SCADA system,traction power control,and power supply system.This work presents a simulated prototype of an automated metro train system operator that uses PLC and SCADA for the real time monitoring and control of the metro railway systems.Here,SCADA is used for the visualization of an automated process operation and then the whole opera-tion is regulated with the help of PLC.The PLC used in this process is OMRON(NX1P2-9024DT1)and OMRON’s Sysmac studio programming software is used for developing the ladder logic of PLC.The metro railways system has deployed infrastructure based on SCADA from the power supply system,and each station’s traction power control is connected to the OCC remotely which commands all of the stations and has the highest command priority.An alarm is triggered in the event of an emergency or system congestion.This proposed system overcomes the drawbacks of the current centralized automatic train control(CATC)system.This system provides prominent benefits like augmenting services which may enhance a network’s full load capacity and networkflexibility,which help in easy modification in the existing program at any time.
基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA18000000)the National Natural Science Foundation of China(No.61732018,61872335).
文摘The superconducting rapid single flux quantum(RSFQ)integrated circuit is a promising solu-tion for overcoming speed and power bottlenecks in high-performance computing systems in the post-Moore era.This paper presents an architecture designed to improve the speed and power limitations of high-performance computing systems using superconducting technology.Since superconducting microprocessors,which operate at cryogenic temperatures,require support from semiconductor cir-cuits,the proposed design utilizes the von Neumann architecture with a superconducting RSFQ mi-croprocessor,cryogenic semiconductor memory,a room temperature field programmable gate array(FPGA)controller,and a host computer for input/output.Additionally,the paper introduces two key circuit designs:a start/stop controllable superconducting clock generator and an asynchronous communication interface between the RSFQ and semiconductor chips used to implement the control system.Experimental results demonstrate that the proposed design is feasible and effective,provi-ding valuable insights for future superconducting computer systems.
基金supported by Thailand Science Research and Innovation and the National Research Council of Thailand under Grant RGU6280014.
文摘This paper presents a theoretical and experimental study on controller design for the AMBs in a small-scale flywheel energy storage system,where the main goals are to achieve low energy consumption and improved rotordynamic stability.A H-infinity optimal control synthesis procedure is defined for the permanent-magnet-biased AMB-rotor system with 4 degrees of freedom.Through the choice of design weighting functions,notch filter characteristics are incorporated within the controller to reduce AMB current components caused by rotor vibration at the synchronous frequency and higher harmonics.Experimental tests are used to validate the controller design methodology and provide comparative results on performance and efficiency.The results show that the H-infinity controller is able to achieve stable rotor levitation and reduce AMB power consumption by more than 40%(from 4.80 to 2.64 Watts)compared with the conventional PD control method.Additionally,the H-infinity controller can prevent vibrational instability of the rotor nutation mode,which is prone to occur when operating with high rotational speeds.
文摘We study afresh how the glucose control system anomalies impact the organicity of the glucose homeostasis and build up events of persistent hyperglycemia and diabetes mellitus. We have used critically the state of art literature related to the subject, in order to cross, to compare, and to organize the relevant contents to create a logical and consistent support to the finds. We show that it is consistent to assume that persistent hyperglycemia and diabetes mellitus can have precursors not only in pancreas, but also in brain, mainly induced by noxious dysfunctions of hypothalamus sensor neurons circuits and external noxious elements, causing pancreas overload, and the consequent exhaustion—overburden.
文摘A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in the need for applications and methodologies that are capable of automatically analyzing these contents. These technologies can be applied in automatic contentanalysis and emergency response systems. Breaks in manual communication usually occur in emergencies leading to accidents and equipment damage. The audio signal does a good job by sending a signal underground, which warrants action from an emergency management team at the surface. This paper, therefore, seeks to design and simulate an audio signal alerting and automatic control system using Unity Pro XL to substitute manual communication of emergencies and manual control of equipment. Sound data were trained using the neural network technique of machine learning. The metrics used are Fast Fourier transform magnitude, zero crossing rate, root mean square, and percentage error. Sounds were detected with an error of approximately 17%;thus, the system can detect sounds with an accuracy of 83%. With more data training, the system can detect sounds with minimal or no error. The paper, therefore, has critical policy implications about communication, safety, and health for underground mine.
文摘The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in instances where emergency situations occur at traffic light intersections that are consistently congested with a high volume of vehicles. This implementation of a traffic light controller system is designed with the intention of addressing this problem. The purpose of the system was to facilitate the operation of a 3-way traffic control light and provide priority to emergency vehicles using a Radio Frequency Identification (RFID) sensor and Reduced Instruction Set Computing (RISC) Architecture Based Microcontroller. This research work involved designing a system to mitigate the occurrence of accidents commonly observed at traffic light intersections, where vehicles often need to maneuver in order to make way for emergency vehicles following a designated route. The research effectively achieved the analysis, simulation and implementation of wireless communication devices for traffic light control. The implemented prototype utilizes RFID transmission, operates in conjunction with the sequential mode of traffic lights to alter the traffic light sequence accordingly and reverts the traffic lights back to their normal sequence after the emergency vehicle has passed the traffic lights.