期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Design and Research of Form Controlled Planar Folding Mechanism based on 4D Printing Technology
1
作者 Wencai Zhang Zhenghao Ge Duanling Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期281-293,共13页
The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a comp... The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a complex structure and excessive kinematic pairs,which limits its potential applications due to the difficulty in controlling and actuating the mechanism.While smart materials have been integrated into certain mechanisms,such integration is generally considered a unique design for specific cases and lacks universality.Therefore,organically combining universal mechanism design with smart materials and 4D printing technology,innovating mechanism types,and systematically exploring the interplay between structural design and morphing control remains an open research area.In this work,a novel form-controlled planar folding mechanism is proposed,which seamlessly integrates the control and actuation system with the structural components and kinematic pairs based on the combination of universal mechanism design with smart materials and 4D printing technology,while achieving self-controlled dimensional ratio adjustment under a predetermined thermal excitation.The design characteristics of the mechanism are analyzed,and the required structural design parameters for the preprogrammed design are derived using a kinematic model.Using smart materials and 4D printing technology,folding programs based on material properties and control programs based on manufacturing parameters are encoded into the form-controlled rod to achieve the preprogrammed design of the mechanism.Finally,two sets of prototype mechanisms are printed to validate the feasibility of the design,the effectiveness of the morphing control programs,and the accuracy of the theoretical analysis.This mechanism not only promotes innovation in mechanism design methods but also shows exceptional promise in satellite calibration devices and spacecraft walking systems. 展开更多
关键词 Form-controlled mechanism Self-folding Smart materials 4D printing morphing control
下载PDF
Integrated method of guidance,control and morphing for hypersonic morphing vehicle in glide phase 被引量:24
2
作者 Cunyu BAO Peng WANG Guojian 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期535-553,共19页
The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained t... The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained to be explored.An Integrated of Guidance,Control and Morphing(IGCM)method for Hypersonic Morphing Vehicle(HMV)was developed in this paper.The IGCM method contributed to an effective solution of morphing characteristic to improve flight performance and reject the disturbance for guidance and control system caused by the morphing system for HMV in gliding phase.The IGCM models were established based on the motion models and aerodynamic models of the variable span vehicle.Then the IGCM method was designed by adaptive block dynamic surface back-stepping method with stability proof.The parallel controlled simulations’results showed the effectiveness in accomplishing the flight mission of IGCM method in glide phase with smaller terminal errors.The velocity loss of HMV was reduced by 32.8%which inferred less flight time and larger terminal flight velocity than invariable span vehicle.Under the condition of large deviations of aerodynamic parameters and atmospheric density,the robustness of IGCM method with variable span was verified. 展开更多
关键词 Adaptive dynamic surface Glide phase Hypersonic morphing vehicle Integrated guidance control and morphing method Variable span
原文传递
Gain self-scheduled H_∞ control for morphing aircraft in the wing transition process based on an LPV model 被引量:40
3
作者 Yue Ting Wang Lixin Ai Junqiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期909-917,共9页
This article investigates gain self-scheduled H 1 robust control system design for a tailless fold- ing-wing morphing aircraft in the wing shape varying process. During the wing morphing phase, the aircraft's dynamic... This article investigates gain self-scheduled H 1 robust control system design for a tailless fold- ing-wing morphing aircraft in the wing shape varying process. During the wing morphing phase, the aircraft's dynamic response will be governed by time-varying aerodynamic forces and moments. Nonlinear dynamic equations of the morphing aircraft are linearized by using Jacobian linearization approach, and a linear parameter varying (LPV) model of the morphing aircraft in wing folding is obtained. A multi-loop controller for the morphing aircraft is formulated to guarantee stability for the wing shape transition process. The proposed controller uses a set of inner-loop gains to provide stability using classical techniques, whereas a gain self-scheduled H 1 outer-loop controller is devised to guarantee a specific level of robust stability and performance for the time-varying dynamics. The closed-loop simulations show that speed and altitude vary slightly during the whole wing folding process, and they converge rapidly after the process ends. This proves that the gain self-scheduled H 1 robust controller can guarantee a satisfactory dynamic performance for the morphing aircraft during the whole wing shape transition process. Finally, the flight control system's robustness for the wing folding process is verified according to uncertainties of the aerodynamic parameters in the nonlinear model. 展开更多
关键词 Gain self-scheduled H 1 robust control Linear parameter varying morphing aircraft Wing transition
原文传递
Non-fragile switched H_∞ control for morphing aircraft with asynchronous switching 被引量:7
4
作者 Haoyu CHENG Chaoyang DONG +2 位作者 Weilai JIANG Qing WANG Yanze HOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1127-1139,共13页
This paper deals with the problem of non-fragile linear parameter-varying(LPV) H_∞ control for morphing aircraft with asynchronous switching.The switched LPV model of morphing aircraft is established by Jacobian li... This paper deals with the problem of non-fragile linear parameter-varying(LPV) H_∞ control for morphing aircraft with asynchronous switching.The switched LPV model of morphing aircraft is established by Jacobian linearization approach according to the nonlinear model.The data missing is taken into account in the link from sensors to controllers and the link from controllers to actuators,which satisfies Bernoulli distribution.The non-fragile switched LPV controllers are constructed with consideration of the uncertainties of controllers and asynchronous switching phenomenon.The parameter-dependent Lyapunov functional method and mode-dependent average dwell time(MDADT) method are combined to guarantee the stability and prescribed performance of the system.The sufficient conditions on the solvability of the problem are derived in the form of linear matrix inequalities(LMI).In order to achieve higher efficiency of the designing process,an algorithm is applied to divide the whole set into subsets automatically.Simulation results are provided to verify the effectiveness and superiority of the method in the paper. 展开更多
关键词 Asynchronous switching Data missing morphing aircraft Non-fragile H_∞ control Switched linear parameter varying system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部