A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan....A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.展开更多
Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections an...Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections and geologic disposal of nuclear waste.Such activities are expected to rise in the future making it necessary to assess their short-and long-term safety.Here,a new machine learning(ML)approach to model pore pressure and fault displacements in response to high-pressure fluid injection cycles is developed.The focus is on fault behavior near the injection borehole.To capture the temporal dependencies in the data,long short-term memory(LSTM)networks are utilized.To prevent error accumulation within the forecast window,four critical measures to train a robust LSTM model for predicting fault response are highlighted:(i)setting an appropriate value of LSTM lag,(ii)calibrating the LSTM cell dimension,(iii)learning rate reduction during weight optimization,and(iv)not adopting an independent injection cycle as a validation set.Several numerical experiments were conducted,which demonstrated that the ML model can capture peaks in pressure and associated fault displacement that accompany an increase in fluid injection.The model also captured the decay in pressure and displacement during the injection shut-in period.Further,the ability of an ML model to highlight key changes in fault hydromechanical activation processes was investigated,which shows that ML can be used to monitor risk of fault activation and leakage during high pressure fluid injections.展开更多
A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively ...A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively used and still have considerable potential. In recent years, methods based on deep neural networks have made significant breakthroughs, and fault diagnosis methods for industrial processes based on deep learning have attracted considerable research attention. Therefore, we propose a fusion deeplearning algorithm based on a fully convolutional neural network(FCN) to extract features and build models to correctly diagnose all types of faults. We use long short-term memory(LSTM) units to expand our proposed FCN so that our proposed deep learning model can better extract the time-domain features of chemical process data. We also introduce the attention mechanism into the model, aimed at highlighting the importance of features, which is significant for the fault diagnosis of chemical processes with many features. When applied to the benchmark Tennessee Eastman process, our proposed model exhibits impressive performance, demonstrating the effectiveness of the attention-based LSTM FCN in chemical process fault diagnosis.展开更多
There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an...There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering.展开更多
Holter usually monitors electrocardiogram(ECG)signals for more than 24 hours to capture short-lived cardiac abnormalities.In view of the large amount of Holter data and the fact that the normal part accounts for the m...Holter usually monitors electrocardiogram(ECG)signals for more than 24 hours to capture short-lived cardiac abnormalities.In view of the large amount of Holter data and the fact that the normal part accounts for the majority,it is reasonable to design an algorithm that can automatically eliminate normal data segments as much as possible without missing any abnormal data segments,and then take the left segments to the doctors or the computer programs for further diagnosis.In this paper,we propose a preliminary abnormal segment screening method for Holter data.Based on long short-term memory(LSTM)networks,the prediction model is established and trained with the normal data of a monitored object.Then,on the basis of kernel density estimation,we learn the distribution law of prediction errors after applying the trained LSTM model to the regular data.Based on these,the preliminary abnormal ECG segment screening analysis is carried out without R wave detection.Experiments on the MIT-BIH arrhythmia database show that,under the condition of ensuring that no abnormal point is missed,53.89% of normal segments can be effectively obviated.This work can greatly reduce the workload of subsequent further processing.展开更多
In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation...In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation pattern between logging and seismic data.A mapping relationship model between high-frequency logging data and low-frequency seismic data is established via nonlinear mapping.The seismic waveform is infinitely approximated using the logging curve in the low-frequency band to obtain a nonlinear mapping model of this scale,which then stepwise approach the logging curve in the high-frequency band.Finally,a seismic-inversion method of nonlinear mapping multilevel well–seismic matching based on the Bi-LSTM network is developed.The characteristic of this method is that by applying the multilevel well–seismic matching process,the seismic data are stepwise matched to the scale range that is consistent with the logging curve.Further,the matching operator at each level can be stably obtained to effectively overcome the problems that occur in the well–seismic matching process,such as the inconsistency in the scale of two types of data,accuracy in extracting the seismic wavelet of the well-side seismic traces,and multiplicity of solutions.Model test and practical application demonstrate that this method improves the vertical resolution of inversion results,and at the same time,the boundary and the lateral characteristics of the sand body are well maintained to improve the accuracy of thin-layer sand body prediction and achieve an improved practical application effect.展开更多
Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulati...Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods.展开更多
Speech enhancement is the task of taking a noisy speech input and pro-ducing an enhanced speech output.In recent years,the need for speech enhance-ment has been increased due to challenges that occurred in various app...Speech enhancement is the task of taking a noisy speech input and pro-ducing an enhanced speech output.In recent years,the need for speech enhance-ment has been increased due to challenges that occurred in various applications such as hearing aids,Automatic Speech Recognition(ASR),and mobile speech communication systems.Most of the Speech Enhancement research work has been carried out for English,Chinese,and other European languages.Only a few research works involve speech enhancement in Indian regional Languages.In this paper,we propose a two-fold architecture to perform speech enhancement for Tamil speech signal based on convolutional recurrent neural network(CRN)that addresses the speech enhancement in a real-time single channel or track of sound created by the speaker.In thefirst stage mask based long short-term mem-ory(LSTM)is used for noise suppression along with loss function and in the sec-ond stage,Convolutional Encoder-Decoder(CED)is used for speech restoration.The proposed model is evaluated on various speaker and noisy environments like Babble noise,car noise,and white Gaussian noise.The proposed CRN model improves speech quality by 0.1 points when compared with the LSTM base model and also CRN requires fewer parameters for training.The performance of the pro-posed model is outstanding even in low Signal to Noise Ratio(SNR).展开更多
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force...A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.展开更多
To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with...To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting.展开更多
An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models...An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides.展开更多
As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical...As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases.Therefore,the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases.In this paper,we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network(CNN)and Encoder-Decoder model.The model uses Long Short-Term Memory(LSTM)to consider the influence of time series features on classification results.Simultaneously,it is trained and tested by the MIT-BIH arrhythmia database.Besides,Generative Adversarial Networks(GAN)is adopted as a method of data equalization for solving data imbalance problem.The simulation results show that for the inter-patient arrhythmia classification,the hybrid model combining CNN and Encoder-Decoder model has the best classification accuracy,of which the accuracy can reach 94.05%.Especially,it has a better advantage for the classification effect of supraventricular ectopic beats(class S)and fusion beats(class F).展开更多
To meet the ever-increasing traffic demand and enhance the coverage of cellular networks,network densification is one of the crucial paradigms of 5G and beyond mobile networks,which can improve system capacity by depl...To meet the ever-increasing traffic demand and enhance the coverage of cellular networks,network densification is one of the crucial paradigms of 5G and beyond mobile networks,which can improve system capacity by deploying a large number of Access Points(APs)in the service area.However,since the energy consumption of APs generally accounts for a substantial part of the communication system,how to deal with the consequent energy issue is a challenging task for a mobile network with densely deployed APs.In this paper,we propose an intelligent AP switching on/off scheme to reduce the system energy consumption with the prerequisite of guaranteeing the quality of service,where the signaling overhead is also taken into consideration to ensure the stability of the network.First,based on historical traffic data,a long short-term memory method is introduced to predict the future traffic distribution,by which we can roughly determine when the AP switching operation should be triggered;second,we present an efficient three-step AP selection strategy to determine which of the APs would be switched on or off;third,an AP switching scheme with a threshold is proposed to adjust the switching frequency so as to improve the stability of the system.Experiment results indicate that our proposed traffic forecasting method performs well in practical scenarios,where the normalized root mean square error is within 10%.Furthermore,the achieved energy-saving is more than 28% on average with a reasonable outage probability and switching frequency for an area served by 40 APs in a commercial mobile network.展开更多
In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-do...In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing.To provide covariates for reliability assessment,a kernel principal component analysis is used to reduce the dimensionality of the features.A Weibull distribution proportional hazard model(WPHM)is used for the reliability assessment of rolling bearing,and a beluga whale optimization(BWO)algorithm is combined with maximum likelihood estimation(MLE)to improve the estimation accuracy of the model parameters of the WPHM,which provides the data basis for predicting reliability.Considering the possible gradient explosion by training the rolling bearing lifetime data and the difficulties in selecting the key network parameters,an optimized LSTM network called the improved whale optimization algorithm-based long short-term memory(IWOA-LSTM)network is proposed.As IWOA better jumps out of the local optimization,the fitting and prediction accuracies of the network are correspondingly improved.The experimental results show that compared with the whale optimization algorithm-based long short-term memory(WOA-LSTM)network,the reliability prediction and RUL prediction accuracies of the rolling bearing are improved by the proposed IWOA-LSTM network.展开更多
Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning netwo...Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning network for hand gesture recognition.The network integrates several well-proved modules together to learn both short-term and long-term features from video inputs and meanwhile avoid intensive computation.To learn short-term features,each video input is segmented into a fixed number of frame groups.A frame is randomly selected from each group and represented as an RGB image as well as an optical flow snapshot.These two entities are fused and fed into a convolutional neural network(Conv Net)for feature extraction.The Conv Nets for all groups share parameters.To learn longterm features,outputs from all Conv Nets are fed into a long short-term memory(LSTM)network,by which a final classification result is predicted.The new model has been tested with two popular hand gesture datasets,namely the Jester dataset and Nvidia dataset.Comparing with other models,our model produced very competitive results.The robustness of the new model has also been proved with an augmented dataset with enhanced diversity of hand gestures.展开更多
A tremendous amount of vendor invoices is generated in the corporate sector.To automate the manual data entry in payable documents,highly accurate Optical Character Recognition(OCR)is required.This paper proposes an e...A tremendous amount of vendor invoices is generated in the corporate sector.To automate the manual data entry in payable documents,highly accurate Optical Character Recognition(OCR)is required.This paper proposes an end-to-end OCR system that does both localization and recognition and serves as a single unit to automate payable document processing such as cheques and cash disbursement.For text localization,the maximally stable extremal region is used,which extracts a word or digit chunk from an invoice.This chunk is later passed to the deep learning model,which performs text recognition.The deep learning model utilizes both convolution neural networks and long short-term memory(LSTM).The convolution layer is used for extracting features,which are fed to the LSTM.The model integrates feature extraction,modeling sequence,and transcription into a unified network.It handles the sequences of unconstrained lengths,independent of the character segmentation or horizontal scale normalization.Furthermore,it applies to both the lexicon-free and lexicon-based text recognition,and finally,it produces a comparatively smaller model,which can be implemented in practical applications.The overall superior performance in the experimental evaluation demonstrates the usefulness of the proposed model.The model is thus generic and can be used for other similar recognition scenarios.展开更多
Geochemical survey data analysis is recognized as an implemented and feasible way for lithological mapping to assist mineral exploration.With respect to available approaches,recent methodological advances have focused...Geochemical survey data analysis is recognized as an implemented and feasible way for lithological mapping to assist mineral exploration.With respect to available approaches,recent methodological advances have focused on deep learning algorithms which provide access to learn and extract information directly from geochemical survey data through multi-level networks and outputting end-to-end classification.Accordingly,this study developed a lithological mapping framework with the joint application of a convolutional neural network(CNN)and a long short-term memory(LSTM).The CNN-LSTM model is dominant in correlation extraction from CNN layers and coupling interaction learning from LSTM layers.This hybrid approach was demonstrated by mapping leucogranites in the Himalayan orogen based on stream sediment geochemical survey data,where the targeted leucogranite was expected to be potential resources of rare metals such as Li,Be,and W mineralization.Three comparative case studies were carried out from both visual and quantitative perspectives to illustrate the superiority of the proposed model.A guided spatial distribution map of leucogranites in the Himalayan orogen,divided into high-,moderate-,and low-potential areas,was delineated by the success rate curve,which further improves the efficiency for identifying unmapped leucogranites through geological mapping.In light of these results,this study provides an alternative solution for lithologic mapping using geochemical survey data at a regional scale and reduces the risk for decision making associated with mineral exploration.展开更多
The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process par...The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines.展开更多
Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.Th...Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively.展开更多
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on...To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.展开更多
基金National Key Research and Development Program of China (Grant No. 2022YFE0102700)National Natural Science Foundation of China (Grant No. 52102420)+2 种基金research project “Safe Da Batt” (03EMF0409A) funded by the German Federal Ministry of Digital and Transport (BMDV)China Postdoctoral Science Foundation (Grant No. 2023T160085)Sichuan Science and Technology Program (Grant No. 2024NSFSC0938)。
文摘A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.
基金supported by the US Department of Energy (DOE),the Office of Nuclear Energy,Spent Fuel and Waste Science and Technology Campaign,under Contract Number DE-AC02-05CH11231the National Energy Technology Laboratory under the award number FP00013650 at Lawrence Berkeley National Laboratory.
文摘Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections and geologic disposal of nuclear waste.Such activities are expected to rise in the future making it necessary to assess their short-and long-term safety.Here,a new machine learning(ML)approach to model pore pressure and fault displacements in response to high-pressure fluid injection cycles is developed.The focus is on fault behavior near the injection borehole.To capture the temporal dependencies in the data,long short-term memory(LSTM)networks are utilized.To prevent error accumulation within the forecast window,four critical measures to train a robust LSTM model for predicting fault response are highlighted:(i)setting an appropriate value of LSTM lag,(ii)calibrating the LSTM cell dimension,(iii)learning rate reduction during weight optimization,and(iv)not adopting an independent injection cycle as a validation set.Several numerical experiments were conducted,which demonstrated that the ML model can capture peaks in pressure and associated fault displacement that accompany an increase in fluid injection.The model also captured the decay in pressure and displacement during the injection shut-in period.Further,the ability of an ML model to highlight key changes in fault hydromechanical activation processes was investigated,which shows that ML can be used to monitor risk of fault activation and leakage during high pressure fluid injections.
文摘A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively used and still have considerable potential. In recent years, methods based on deep neural networks have made significant breakthroughs, and fault diagnosis methods for industrial processes based on deep learning have attracted considerable research attention. Therefore, we propose a fusion deeplearning algorithm based on a fully convolutional neural network(FCN) to extract features and build models to correctly diagnose all types of faults. We use long short-term memory(LSTM) units to expand our proposed FCN so that our proposed deep learning model can better extract the time-domain features of chemical process data. We also introduce the attention mechanism into the model, aimed at highlighting the importance of features, which is significant for the fault diagnosis of chemical processes with many features. When applied to the benchmark Tennessee Eastman process, our proposed model exhibits impressive performance, demonstrating the effectiveness of the attention-based LSTM FCN in chemical process fault diagnosis.
文摘There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering.
文摘Holter usually monitors electrocardiogram(ECG)signals for more than 24 hours to capture short-lived cardiac abnormalities.In view of the large amount of Holter data and the fact that the normal part accounts for the majority,it is reasonable to design an algorithm that can automatically eliminate normal data segments as much as possible without missing any abnormal data segments,and then take the left segments to the doctors or the computer programs for further diagnosis.In this paper,we propose a preliminary abnormal segment screening method for Holter data.Based on long short-term memory(LSTM)networks,the prediction model is established and trained with the normal data of a monitored object.Then,on the basis of kernel density estimation,we learn the distribution law of prediction errors after applying the trained LSTM model to the regular data.Based on these,the preliminary abnormal ECG segment screening analysis is carried out without R wave detection.Experiments on the MIT-BIH arrhythmia database show that,under the condition of ensuring that no abnormal point is missed,53.89% of normal segments can be effectively obviated.This work can greatly reduce the workload of subsequent further processing.
基金supported by the National Major Science and Technology Special Project(No.2016ZX05026-002).
文摘In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation pattern between logging and seismic data.A mapping relationship model between high-frequency logging data and low-frequency seismic data is established via nonlinear mapping.The seismic waveform is infinitely approximated using the logging curve in the low-frequency band to obtain a nonlinear mapping model of this scale,which then stepwise approach the logging curve in the high-frequency band.Finally,a seismic-inversion method of nonlinear mapping multilevel well–seismic matching based on the Bi-LSTM network is developed.The characteristic of this method is that by applying the multilevel well–seismic matching process,the seismic data are stepwise matched to the scale range that is consistent with the logging curve.Further,the matching operator at each level can be stably obtained to effectively overcome the problems that occur in the well–seismic matching process,such as the inconsistency in the scale of two types of data,accuracy in extracting the seismic wavelet of the well-side seismic traces,and multiplicity of solutions.Model test and practical application demonstrate that this method improves the vertical resolution of inversion results,and at the same time,the boundary and the lateral characteristics of the sand body are well maintained to improve the accuracy of thin-layer sand body prediction and achieve an improved practical application effect.
基金funded by NARI Group’s Independent Project of China(Granted No.524609230125)the foundation of NARI-TECH Nanjing Control System Ltd.of China(Granted No.0914202403120020).
文摘Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods.
文摘Speech enhancement is the task of taking a noisy speech input and pro-ducing an enhanced speech output.In recent years,the need for speech enhance-ment has been increased due to challenges that occurred in various applications such as hearing aids,Automatic Speech Recognition(ASR),and mobile speech communication systems.Most of the Speech Enhancement research work has been carried out for English,Chinese,and other European languages.Only a few research works involve speech enhancement in Indian regional Languages.In this paper,we propose a two-fold architecture to perform speech enhancement for Tamil speech signal based on convolutional recurrent neural network(CRN)that addresses the speech enhancement in a real-time single channel or track of sound created by the speaker.In thefirst stage mask based long short-term mem-ory(LSTM)is used for noise suppression along with loss function and in the sec-ond stage,Convolutional Encoder-Decoder(CED)is used for speech restoration.The proposed model is evaluated on various speaker and noisy environments like Babble noise,car noise,and white Gaussian noise.The proposed CRN model improves speech quality by 0.1 points when compared with the LSTM base model and also CRN requires fewer parameters for training.The performance of the pro-posed model is outstanding even in low Signal to Noise Ratio(SNR).
基金supported by the Ministry of Trade,Industry & Energy(MOTIE,Korea) under Industrial Technology Innovation Program (No.10063424,'development of distant speech recognition and multi-task dialog processing technologies for in-door conversational robots')
文摘A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.
基金The National Key R&D Program of China under contract No.2016YFC1402103
文摘To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting.
基金supported by the Natural Science Foundation of Shaanxi Province under Grant 2019JQ206in part by the Science and Technology Department of Shaanxi Province under Grant 2020CGXNG-009in part by the Education Department of Shaanxi Province under Grant 17JK0346。
文摘An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides.
基金Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-19-006A3).
文摘As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases.Therefore,the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases.In this paper,we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network(CNN)and Encoder-Decoder model.The model uses Long Short-Term Memory(LSTM)to consider the influence of time series features on classification results.Simultaneously,it is trained and tested by the MIT-BIH arrhythmia database.Besides,Generative Adversarial Networks(GAN)is adopted as a method of data equalization for solving data imbalance problem.The simulation results show that for the inter-patient arrhythmia classification,the hybrid model combining CNN and Encoder-Decoder model has the best classification accuracy,of which the accuracy can reach 94.05%.Especially,it has a better advantage for the classification effect of supraventricular ectopic beats(class S)and fusion beats(class F).
基金partially supported by the National Natural Science Foundation of China under Grants 61801208,61931023,and U1936202.
文摘To meet the ever-increasing traffic demand and enhance the coverage of cellular networks,network densification is one of the crucial paradigms of 5G and beyond mobile networks,which can improve system capacity by deploying a large number of Access Points(APs)in the service area.However,since the energy consumption of APs generally accounts for a substantial part of the communication system,how to deal with the consequent energy issue is a challenging task for a mobile network with densely deployed APs.In this paper,we propose an intelligent AP switching on/off scheme to reduce the system energy consumption with the prerequisite of guaranteeing the quality of service,where the signaling overhead is also taken into consideration to ensure the stability of the network.First,based on historical traffic data,a long short-term memory method is introduced to predict the future traffic distribution,by which we can roughly determine when the AP switching operation should be triggered;second,we present an efficient three-step AP selection strategy to determine which of the APs would be switched on or off;third,an AP switching scheme with a threshold is proposed to adjust the switching frequency so as to improve the stability of the system.Experiment results indicate that our proposed traffic forecasting method performs well in practical scenarios,where the normalized root mean square error is within 10%.Furthermore,the achieved energy-saving is more than 28% on average with a reasonable outage probability and switching frequency for an area served by 40 APs in a commercial mobile network.
基金supported by the Department of Education of Liaoning Province under Grant JDL2020020the Transportation Science and Technology Project of Liaoning Province under Grant 202243.
文摘In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing.To provide covariates for reliability assessment,a kernel principal component analysis is used to reduce the dimensionality of the features.A Weibull distribution proportional hazard model(WPHM)is used for the reliability assessment of rolling bearing,and a beluga whale optimization(BWO)algorithm is combined with maximum likelihood estimation(MLE)to improve the estimation accuracy of the model parameters of the WPHM,which provides the data basis for predicting reliability.Considering the possible gradient explosion by training the rolling bearing lifetime data and the difficulties in selecting the key network parameters,an optimized LSTM network called the improved whale optimization algorithm-based long short-term memory(IWOA-LSTM)network is proposed.As IWOA better jumps out of the local optimization,the fitting and prediction accuracies of the network are correspondingly improved.The experimental results show that compared with the whale optimization algorithm-based long short-term memory(WOA-LSTM)network,the reliability prediction and RUL prediction accuracies of the rolling bearing are improved by the proposed IWOA-LSTM network.
文摘Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning network for hand gesture recognition.The network integrates several well-proved modules together to learn both short-term and long-term features from video inputs and meanwhile avoid intensive computation.To learn short-term features,each video input is segmented into a fixed number of frame groups.A frame is randomly selected from each group and represented as an RGB image as well as an optical flow snapshot.These two entities are fused and fed into a convolutional neural network(Conv Net)for feature extraction.The Conv Nets for all groups share parameters.To learn longterm features,outputs from all Conv Nets are fed into a long short-term memory(LSTM)network,by which a final classification result is predicted.The new model has been tested with two popular hand gesture datasets,namely the Jester dataset and Nvidia dataset.Comparing with other models,our model produced very competitive results.The robustness of the new model has also been proved with an augmented dataset with enhanced diversity of hand gestures.
基金Researchers would like to thank the Deanship of Scientific Research,Qassim University,for funding publication of this project.
文摘A tremendous amount of vendor invoices is generated in the corporate sector.To automate the manual data entry in payable documents,highly accurate Optical Character Recognition(OCR)is required.This paper proposes an end-to-end OCR system that does both localization and recognition and serves as a single unit to automate payable document processing such as cheques and cash disbursement.For text localization,the maximally stable extremal region is used,which extracts a word or digit chunk from an invoice.This chunk is later passed to the deep learning model,which performs text recognition.The deep learning model utilizes both convolution neural networks and long short-term memory(LSTM).The convolution layer is used for extracting features,which are fed to the LSTM.The model integrates feature extraction,modeling sequence,and transcription into a unified network.It handles the sequences of unconstrained lengths,independent of the character segmentation or horizontal scale normalization.Furthermore,it applies to both the lexicon-free and lexicon-based text recognition,and finally,it produces a comparatively smaller model,which can be implemented in practical applications.The overall superior performance in the experimental evaluation demonstrates the usefulness of the proposed model.The model is thus generic and can be used for other similar recognition scenarios.
基金supported by the National Natural Science Foundation of China (Nos.41972303 and 42102332)the Natural Science Foundation of Hubei Province (China) (Nos.2023AFA001 and 2023AFD232).
文摘Geochemical survey data analysis is recognized as an implemented and feasible way for lithological mapping to assist mineral exploration.With respect to available approaches,recent methodological advances have focused on deep learning algorithms which provide access to learn and extract information directly from geochemical survey data through multi-level networks and outputting end-to-end classification.Accordingly,this study developed a lithological mapping framework with the joint application of a convolutional neural network(CNN)and a long short-term memory(LSTM).The CNN-LSTM model is dominant in correlation extraction from CNN layers and coupling interaction learning from LSTM layers.This hybrid approach was demonstrated by mapping leucogranites in the Himalayan orogen based on stream sediment geochemical survey data,where the targeted leucogranite was expected to be potential resources of rare metals such as Li,Be,and W mineralization.Three comparative case studies were carried out from both visual and quantitative perspectives to illustrate the superiority of the proposed model.A guided spatial distribution map of leucogranites in the Himalayan orogen,divided into high-,moderate-,and low-potential areas,was delineated by the success rate curve,which further improves the efficiency for identifying unmapped leucogranites through geological mapping.In light of these results,this study provides an alternative solution for lithologic mapping using geochemical survey data at a regional scale and reduces the risk for decision making associated with mineral exploration.
基金funded by Fujian Science and Technology Key Project(No.2016H6022,2018J01099,2017H0037)
文摘The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines.
基金the Gansu University of Political Science and Law Key Research Funding Project in 2018(GZF2018XZDLW20)Gansu Provincial Science and Technology Plan Project(Technology Innovation Guidance Plan)(20CX9ZA072).
文摘Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively.
基金supported by the Natural Science Basic Research Prog ram of Shaanxi(2022JQ-593)。
文摘To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.