期刊文献+
共找到147篇文章
< 1 2 8 >
每页显示 20 50 100
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
1
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 Deep Learning convolutional neural networks (cnn) Seismic Fault Identification U-Net 3D Model Geological Exploration
下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network
2
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) Particle swarm optimization(PSO) convolutional neural network(cnn)
下载PDF
Detection of Omicron Caused Pneumonia from Radiology Images Using Convolution Neural Network(CNN)
3
作者 Arfat Ahmad Khan Malik Muhammad Ali Shahid +4 位作者 Rab Nawaz Bashir Salman Iqbal Arshad Shehzad Ahmad Shahid Javeria Maqbool Chitapong Wechtaisong 《Computers, Materials & Continua》 SCIE EI 2023年第2期3743-3761,共19页
COVID-19 disease caused by the SARS-CoV-2 virus has created social and economic disruption across theworld.The ability of the COVID-19 virus to quickly mutate and transfer has created serious concerns across the world... COVID-19 disease caused by the SARS-CoV-2 virus has created social and economic disruption across theworld.The ability of the COVID-19 virus to quickly mutate and transfer has created serious concerns across the world.It is essential to detectCOVID-19 infection caused by different variants to take preventive measures accordingly.The existing method of detection of infections caused by COVID-19 and its variants is costly and time-consuming.The impacts of theCOVID-19 pandemic in developing countries are very drastic due to the unavailability of medical facilities and infrastructure to handle the pandemic.Pneumonia is the major symptom of COVID-19 infection.The radiology of the lungs in varies in the case of bacterial pneumonia as compared to COVID-19-caused pneumonia.The pattern of pneumonia in lungs in radiology images can also be used to identify the cause associated with pneumonia.In this paper,we propose the methodology of identifying the cause(either due to COVID-19 or other types of infections)of pneumonia from radiology images.Furthermore,because different variants of COVID-19 lead to different patterns of pneumonia,the proposed methodology identifies pneumonia,the COVID-19 caused pneumonia,and Omicron caused pneumonia from the radiology images.To fulfill the above-mentioned tasks,we have used three Convolution Neural Networks(CNNs)at each stage of the proposed methodology.The results unveil that the proposed step-by-step solution enhances the accuracy of pneumonia detection along with finding its cause,despite having a limited dataset. 展开更多
关键词 COVID-19 PNEUMONIA radiology images omicron convolution neural network(cnn) microscopy
下载PDF
A method of convolutional neural network based on frequency segmentation for monitoring the state of wind turbine blades
4
作者 Weijun Zhu Yunan Wu +3 位作者 Zhenye Sun Wenzhong Shen Guangxing Guo Jianwei Lin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第6期465-480,共16页
Wind turbine blades are prone to failure due to high tip speed,rain,dust and so on.A surface condition detecting approach based on wind turbine blade aerodynamic noise is proposed.On the experimental measurement data,... Wind turbine blades are prone to failure due to high tip speed,rain,dust and so on.A surface condition detecting approach based on wind turbine blade aerodynamic noise is proposed.On the experimental measurement data,variational mode decomposition filtering and Mel spectrogram drawing are conducted first.The Mel spectrogram is divided into two halves based on frequency characteristics and then sent into the convolutional neural network.Gaussian white noise is superimposed on the original signal and the output results are assessed based on score coefficients,considering the complexity of the real environment.The surfaces of Wind turbine blades are classified into four types:standard,attachments,polishing,and serrated trailing edge.The proposed method is evaluated and the detection accuracy in complicated background conditions is found to be 99.59%.In addition to support the differentiation of trained models,utilizing proper score coefficients also permit the screening of unknown types. 展开更多
关键词 Wind turbine aerodynamic noise Surface condition detection Mel spectrogram Image segmentation Convolution neural network(cnn)
下载PDF
Deep convolutional neural network for meteorology target detection in airborne weather radar images
5
作者 YU Chaopeng XIONG Wei +1 位作者 LI Xiaoqing DONG Lei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1147-1157,共11页
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de... Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes. 展开更多
关键词 meteorology target detection ground clutter sup-pression weather radar images convolutional neural network(cnn)
下载PDF
Hyper-Tuned Convolutional Neural Networks for Authorship Verification in Digital Forensic Investigations
6
作者 Asif Rahim Yanru Zhong +2 位作者 Tariq Ahmad Sadique Ahmad Mohammed A.ElAffendi 《Computers, Materials & Continua》 SCIE EI 2023年第8期1947-1976,共30页
Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)h... Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)have shown promise in solving this problem,but their performance highly depends on the choice of hyperparameters.In this paper,we explore the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification.We conduct experiments using a Hyper Tuned CNN model with three popular optimization algorithms:Adaptive Moment Estimation(ADAM),StochasticGradientDescent(SGD),andRoot Mean Squared Propagation(RMSPROP).The model is trained and tested on a dataset of text samples collected from various authors,and the performance is evaluated using accuracy,precision,recall,and F1 score.We compare the performance of the three optimization algorithms and demonstrate the effectiveness of hyperparameter tuning in improving the accuracy of the CNN model.Our results show that the Hyper Tuned CNN model with ADAM Optimizer achieves the highest accuracy of up to 90%.Furthermore,we demonstrate that hyperparameter tuning can help achieve significant performance improvements,even using a relatively simple model architecture like CNNs.Our findings suggest that the choice of the optimization algorithm is a crucial factor in the performance of CNNs for authorship verification and that hyperparameter tuning can be an effective way to optimize this choice.Overall,this paper demonstrates the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification in digital forensic investigations.Our findings have important implications for developing accurate and reliable authorship verification systems,which are crucial for various applications in digital forensics,such as identifying the author of anonymous threatening messages or detecting cases of plagiarism. 展开更多
关键词 convolutional neural network(cnn) hyper-tuning authorship verification digital forensics
下载PDF
Hyperspectral Image Sharpening Based on Deep Convolutional Neural Network and Spatial-Spectral Spread Transform Models
7
作者 陆小辰 刘晓慧 +2 位作者 杨德政 赵萍 阳云龙 《Journal of Donghua University(English Edition)》 CAS 2023年第1期88-95,共8页
In order to improve the spatial resolution of hyperspectral(HS)image and minimize the spectral distortion,an HS and multispectral(MS)image fusion approach based on convolutional neural network(CNN)is proposed.The prop... In order to improve the spatial resolution of hyperspectral(HS)image and minimize the spectral distortion,an HS and multispectral(MS)image fusion approach based on convolutional neural network(CNN)is proposed.The proposed approach incorporates the linear spectral mixture model and spatial-spectral spread transform model into the learning phase of network,aiming to fully exploit the spatial-spectral information of HS and MS images,and improve the spectral fidelity of fusion images.Experiments on two real remote sensing data under different resolutions demonstrate that compared with some state-of-the-art HS and MS image fusion methods,the proposed approach achieves superior spectral fidelities and lower fusion errors. 展开更多
关键词 convolutional neural network(cnn) hyperspectral image image fusion multispectral image unmixing method
下载PDF
Convolutional Neural Network-Based Deep Q-Network (CNN-DQN) Resource Management in Cloud Radio Access Network
8
作者 Amjad Iqbal Mau-Luen Tham Yoong Choon Chang 《China Communications》 SCIE CSCD 2022年第10期129-142,共14页
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi... The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach. 展开更多
关键词 energy efficiency(EE) markov decision process(MDP) convolutional neural network(cnn) cloud RAN deep Q-network(DQN)
下载PDF
Early SkinDiseaseIdentification Using Deep Neural Network 被引量:1
9
作者 Vinay Gautam Naresh Kumar Trivedi +4 位作者 Abhineet Anand Rajeev Tiwari Atef Zaguia Deepika Koundal Sachin Jain 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2259-2275,共17页
Skin lesions detection and classification is a prominent issue and difficult even for extremely skilled dermatologists and pathologists.Skin disease is the most common disorder triggered by fungus,viruses,bacteria,all... Skin lesions detection and classification is a prominent issue and difficult even for extremely skilled dermatologists and pathologists.Skin disease is the most common disorder triggered by fungus,viruses,bacteria,allergies,etc.Skin diseases are most dangerous and may be the cause of serious damage.Therefore,it requires to diagnose it at an earlier stage,but the diagnosis therapy itself is complex and needs advanced laser and photonic therapy.This advance therapy involvesfinancial burden and some other ill effects.Therefore,it must use artificial intelligence techniques to detect and diagnose it accurately at an earlier stage.Several techniques have been proposed to detect skin disease at an earlier stage but fail to get accuracy.Therefore,the primary goal of this paper is to classify,detect and provide accurate information about skin diseases.This paper deals with the same issue by proposing a high-performance Convolution neural network(CNN)to classify and detect skin disease at an earlier stage.The complete meth-odology is explained in different folds:firstly,the skin diseases images are pre-processed with processing techniques,and secondly,the important feature of the skin images are extracted.Thirdly,the pre-processed images are analyzed at different stages using a Deep Convolution Neural Network(DCNN).The approach proposed in this paper is simple,fast,and shows accurate results up to 98%and used to detect six different disease types. 展开更多
关键词 Convolution neural network(cnn) skin disease deep learning(DL) image processing artificial intelligence(AI)
下载PDF
Investigation on the Chinese Text Sentiment Analysis Based on Convolutional Neural Networks in Deep Learning 被引量:7
10
作者 Feng Xu Xuefen Zhang +1 位作者 Zhanhong Xin Alan Yang 《Computers, Materials & Continua》 SCIE EI 2019年第3期697-709,共13页
Nowadays,the amount of wed data is increasing at a rapid speed,which presents a serious challenge to the web monitoring.Text sentiment analysis,an important research topic in the area of natural language processing,is... Nowadays,the amount of wed data is increasing at a rapid speed,which presents a serious challenge to the web monitoring.Text sentiment analysis,an important research topic in the area of natural language processing,is a crucial task in the web monitoring area.The accuracy of traditional text sentiment analysis methods might be degraded in dealing with mass data.Deep learning is a hot research topic of the artificial intelligence in the recent years.By now,several research groups have studied the sentiment analysis of English texts using deep learning methods.In contrary,relatively few works have so far considered the Chinese text sentiment analysis toward this direction.In this paper,a method for analyzing the Chinese text sentiment is proposed based on the convolutional neural network(CNN)in deep learning in order to improve the analysis accuracy.The feature values of the CNN after the training process are nonuniformly distributed.In order to overcome this problem,a method for normalizing the feature values is proposed.Moreover,the dimensions of the text features are optimized through simulations.Finally,a method for updating the learning rate in the training process of the CNN is presented in order to achieve better performances.Experiment results on the typical datasets indicate that the accuracy of the proposed method can be improved compared with that of the traditional supervised machine learning methods,e.g.,the support vector machine method. 展开更多
关键词 convolutional neural network(cnn) deep learning learning rate NORMALIZATION sentiment analysis.
下载PDF
Fine-Grained Sleep Apnea Detection Method from Multichannel Ballistocardiogram Using Convolution Neural Network
11
作者 黄永锋 黄琦洪 +2 位作者 孙晨汐 杨树臣 张智明 《Journal of Donghua University(English Edition)》 CAS 2023年第2期185-192,共8页
Sleep apnea is a common health condition that can affect numerous aspects of life and may cause a lot of health problems especially in the middle-aged and elderly population.Polysomnography(PSG),as the gold standard,i... Sleep apnea is a common health condition that can affect numerous aspects of life and may cause a lot of health problems especially in the middle-aged and elderly population.Polysomnography(PSG),as the gold standard,is an expensive and inconvenient way to diagnose sleep apnea.However,ballistocardiogram can be collected by devices embedded in the surrounding environment,enabling inperceptible sleep apnea detection.Moreover,to obtain the fine-grained apnea fragments,a multistage sleep apnea detection model has been proposed.This model firstly uses an improved convolution neural network(CNN)model to coarsely identify apnea events and then a U-Net based model is applied to finely segment apnea fragments.In the experiment,sleep data of 11 patients with apnea for about 70 h have been collected,including BCG data derived from 18 piezoelectric polyvinylidene fluoride(PVDF)sensors embedded in the mattress and PSG data collected synchronously.The results show the accuracy of the classification model as good as 95.7%with 0.818 dice coefficient of the segmentation model,which indicates that the proposed model can almost match the performance of PSG in detecting apnea. 展开更多
关键词 sleep apnea BALLISTOCARDIOGRAM convolution neural network(cnn) deep learning
下载PDF
An Improved Convolutional Neural Network Based Indoor Localization by Using Jenks Natural Breaks Algorithm 被引量:2
12
作者 Chengjie Hou Yaqin Xie Zhizhong Zhang 《China Communications》 SCIE CSCD 2022年第4期291-301,共11页
With the rapid growth of the demand for indoor location-based services(LBS), Wi-Fi received signal strength(RSS) fingerprints database has attracted significant attention because it is easy to obtain. The fingerprints... With the rapid growth of the demand for indoor location-based services(LBS), Wi-Fi received signal strength(RSS) fingerprints database has attracted significant attention because it is easy to obtain. The fingerprints algorithm based on convolution neural network(CNN) is often used to improve indoor localization accuracy. However, the number of reference points used for position estimation has significant effects on the positioning accuracy. Meanwhile, it is always selected arbitraily without any guiding standards. As a result, a novel location estimation method based on Jenks natural breaks algorithm(JNBA), which can adaptively choose more reasonable reference points, is proposed in this paper. The output of CNN is processed by JNBA, which can select the number of reference points according to different environments. Then, the location is estimated by weighted K-nearest neighbors(WKNN). Experimental results show that the proposed method has higher positioning accuracy without sacrificing more time cost than the existing indoor localization methods based on CNN. 展开更多
关键词 indoor localization convolution neural network(cnn) Wi-Fi fingerprints Jenks natural breaks
下载PDF
Position Encoding Based Convolutional Neural Networks for Machine Remaining Useful Life Prediction 被引量:1
13
作者 Ruibing Jin Min Wu +3 位作者 Keyu Wu Kaizhou Gao Zhenghua Chen Xiaoli Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第8期1427-1439,共13页
Accurate remaining useful life(RUL)prediction is important in industrial systems.It prevents machines from working under failure conditions,and ensures that the industrial system works reliably and efficiently.Recentl... Accurate remaining useful life(RUL)prediction is important in industrial systems.It prevents machines from working under failure conditions,and ensures that the industrial system works reliably and efficiently.Recently,many deep learning based methods have been proposed to predict RUL.Among these methods,recurrent neural network(RNN)based approaches show a strong capability of capturing sequential information.This allows RNN based methods to perform better than convolutional neural network(CNN)based approaches on the RUL prediction task.In this paper,we question this common paradigm and argue that existing CNN based approaches are not designed according to the classic principles of CNN,which reduces their performances.Additionally,the capacity of capturing sequential information is highly affected by the receptive field of CNN,which is neglected by existing CNN based methods.To solve these problems,we propose a series of new CNNs,which show competitive results to RNN based methods.Compared with RNN,CNN processes the input signals in parallel so that the temporal sequence is not easily determined.To alleviate this issue,a position encoding scheme is developed to enhance the sequential information encoded by a CNN.Hence,our proposed position encoding based CNN called PE-Net is further improved and even performs better than RNN based methods.Extensive experiments are conducted on the C-MAPSS dataset,where our PE-Net shows state-of-the-art performance. 展开更多
关键词 convolutional neural network(cnn) deep learning position encoding remaining useful life prediction
下载PDF
Determination of quantum toric error correction code threshold using convolutional neural network decoders 被引量:1
14
作者 王浩文 薛韵佳 +2 位作者 马玉林 华南 马鸿洋 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期136-142,共7页
Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum err... Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise. 展开更多
关键词 quantum error correction toric code convolutional neural network(cnn)decoder
原文传递
Encoding candlesticks as images for pattern classification using convolutional neural networks 被引量:1
15
作者 Jun-Hao Chen Yun-Cheng Tsai 《Financial Innovation》 2020年第1期470-488,共19页
Candlestick charts display the high,low,opening,and closing prices in a specific period.Candlestick patterns emerge because human actions and reactions are patterned and continuously replicate.These patterns capture i... Candlestick charts display the high,low,opening,and closing prices in a specific period.Candlestick patterns emerge because human actions and reactions are patterned and continuously replicate.These patterns capture information on the candles.According to Thomas Bulkowski’s Encyclopedia of Candlestick Charts,there are 103 candlestick patterns.Traders use these patterns to determine when to enter and exit.Candlestick pattern classification approaches take the hard work out of visually identifying these patterns.To highlight its capabilities,we propose a two-steps approach to recognize candlestick patterns automatically.The first step uses the Gramian Angular Field(GAF)to encode the time series as different types of images.The second step uses the Convolutional Neural Network(CNN)with the GAF images to learn eight critical kinds of candlestick patterns.In this paper,we call the approach GAF-CNN.In the experiments,our approach can identify the eight types of candlestick patterns with 90.7%average accuracy automatically in real-world data,outperforming the LSTM model. 展开更多
关键词 convolutional neural networks(cnn) Gramian Angular Field(GAF) CANDLESTICK Patterns Classification Time-Series Financial Vision
下载PDF
Defect Detection Algorithm of Patterned Fabrics Based on Convolutional Neural Network 被引量:1
16
作者 徐洋 费利斌 +1 位作者 余智祺 盛晓伟 《Journal of Donghua University(English Edition)》 CAS 2021年第1期36-42,共7页
The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly... The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly affected by background patterns and are difficult to effectively extract flaw features.Therefore,a convolutional neural network(CNN)with automatic feature extraction is proposed.On the basis of the two-stage detection model Faster R-CNN,Resnet-50 is used as the backbone network,and the problem of flaws with extreme aspect ratio is solved by improving the initialization algorithm of the prior frame aspect ratio,and the improved multi-scale model is designed to improve detection of small defects.The cascade R-CNN is introduced to improve the accuracy of defect detection,and the online hard example mining(OHEM)algorithm is used to strengthen the learning of hard samples to reduce the interference of complex backgrounds on the defect detection of patterned fabrics,and construct the focal loss as a loss function to reduce the impact of sample imbalance.In order to verify the effectiveness of the improved algorithm,a defect detection comparison experiment was set up.The experimental results show that the accuracy of the defect detection algorithm of patterned fabrics in this paper can reach 95.7%,and it can accurately locate the defect location and meet the actual needs of the factory. 展开更多
关键词 patterned fabrics defect detection convolutional neural network(cnn) multi-scale model cascade network
下载PDF
Face Recognition across Time Lapse Using Convolutional Neural Networks 被引量:3
17
作者 Hachim El Khiyari Harry Wechsler 《Journal of Information Security》 2016年第3期141-151,共11页
Time lapse, characteristic of aging, is a complex process that affects the reliability and security of biometric face recognition systems. This paper reports the novel use and effectiveness of deep learning, in genera... Time lapse, characteristic of aging, is a complex process that affects the reliability and security of biometric face recognition systems. This paper reports the novel use and effectiveness of deep learning, in general, and convolutional neural networks (CNN), in particular, for automatic rather than hand-crafted feature extraction for robust face recognition across time lapse. A CNN architecture using the VGG-Face deep (neural network) learning is found to produce highly discriminative and interoperable features that are robust to aging variations even across a mix of biometric datasets. The features extracted show high inter-class and low intra-class variability leading to low generalization errors on aging datasets using ensembles of subspace discriminant classifiers. The classification results for the all-encompassing authentication methods proposed on the challenging FG-NET and MORPH datasets are competitive with state-of-the-art methods including commercial face recognition engines and are richer in functionality and interoperability than existing methods as it handles mixed biometric datasets, e.g., FG-NET and MORPH. 展开更多
关键词 Aging AUTHENTICATION BIOMETRICS convolutional neural networks (cnn) Deep Learning Ensemble Methods Face Recognition INTEROPERABILITY Security
下载PDF
Track correlation algorithm based on CNN-LSTM for swarm targets
18
作者 CHEN Jinyang WANG Xuhua CHEN Xian 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期417-429,共13页
The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms... The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets. 展开更多
关键词 track correlation correlation accuracy rate swarm target convolutional neural network(cnn) long short-term memory(LSTM)neural network
下载PDF
A New Childhood Pneumonia Diagnosis Method Based on Fine-Grained Convolutional Neural Network
19
作者 Yang Zhang Liru Qiu +2 位作者 Yongkai Zhu Long Wen Xiaoping Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第12期873-894,共22页
Pneumonia is part of the main diseases causing the death of children.It is generally diagnosed through chest Xray images.With the development of Deep Learning(DL),the diagnosis of pneumonia based on DL has received ex... Pneumonia is part of the main diseases causing the death of children.It is generally diagnosed through chest Xray images.With the development of Deep Learning(DL),the diagnosis of pneumonia based on DL has received extensive attention.However,due to the small difference between pneumonia and normal images,the performance of DL methods could be improved.This research proposes a new fine-grained Convolutional Neural Network(CNN)for children’s pneumonia diagnosis(FG-CPD).Firstly,the fine-grainedCNNclassificationwhich can handle the slight difference in images is investigated.To obtain the raw images from the real-world chest X-ray data,the YOLOv4 algorithm is trained to detect and position the chest part in the raw images.Secondly,a novel attention network is proposed,named SGNet,which integrates the spatial information and channel information of the images to locate the discriminative parts in the chest image for expanding the difference between pneumonia and normal images.Thirdly,the automatic data augmentation method is adopted to increase the diversity of the images and avoid the overfitting of FG-CPD.The FG-CPD has been tested on the public Chest X-ray 2017 dataset,and the results show that it has achieved great effect.Then,the FG-CPD is tested on the real chest X-ray images from children aged 3–12 years ago from Tongji Hospital.The results show that FG-CPD has achieved up to 96.91%accuracy,which can validate the potential of the FG-CPD. 展开更多
关键词 Childhood pneumonia diagnosis fine-grained classification YOLOv4 attention network convolutional neural network(cnn)
下载PDF
Object Recognition Algorithm Based on an Improved Convolutional Neural Network
20
作者 Zheyi Fan Yu Song Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期139-145,共7页
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted... In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition. 展开更多
关键词 object recognition selective search algorithm improved convolutional neural network(cnn)
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部