期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于Coordinate Attention和空洞卷积的异物识别 被引量:1
1
作者 王春霖 吴春雷 +1 位作者 李灿伟 朱明飞 《计算机系统应用》 2024年第3期178-186,共9页
在我国工厂的工业化生产中,带式运输机占有重要的地位,但是在其运输物料的过程中,常有木板、金属管、大型金属片等混入物料中,从而对带式运输机的传送带造成损毁,引起巨大的经济损失.为了检测出传送带上的不规则异物,设计了一种新的异... 在我国工厂的工业化生产中,带式运输机占有重要的地位,但是在其运输物料的过程中,常有木板、金属管、大型金属片等混入物料中,从而对带式运输机的传送带造成损毁,引起巨大的经济损失.为了检测出传送带上的不规则异物,设计了一种新的异物检测方法.针对传统异物检测方法中存在的对于图像特征提取能力不足以及网络感受野相对较小的问题,我们提出了一种基于coordinate attention和空洞卷积的单阶段异物识别方法.首先,网络利用coordinate attention机制,使网络更加关注图像的空间信息,并对图像中的重要特征进行了增强,增强了网络的性能;其次,在网络提取多尺度特征的部分,将原网络的静态卷积变为空洞卷积,有效减少了常规卷积造成的信息损失;除此之外,我们还使用了新的损失函数,进一步提高了网络的性能.实验结果证明,我们提出的网络能有效识别出传送带上的异物,较好地完成异物检测任务. 展开更多
关键词 coordinate attention 异物检测 空洞卷积 损失函数 目标识别
下载PDF
Visual Object Tracking via Cascaded RPN Fusion and Coordinate Attention
2
作者 Jianming Zhang Kai Wang +1 位作者 Yaoqi He Lidan Kuang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期909-927,共19页
Recently,Siamese-based trackers have achieved excellent performance in object tracking.However,the high speed and deformation of objects in the movement process make tracking difficult.Therefore,we have incorporated c... Recently,Siamese-based trackers have achieved excellent performance in object tracking.However,the high speed and deformation of objects in the movement process make tracking difficult.Therefore,we have incorporated cascaded region-proposal-network(RPN)fusion and coordinate attention into Siamese trackers.The proposed network framework consists of three parts:a feature-extraction sub-network,coordinate attention block,and cascaded RPN block.We exploit the coordinate attention block,which can embed location information into channel attention,to establish long-term spatial location dependence while maintaining channel associations.Thus,the features of different layers are enhanced by the coordinate attention block.We then send these features separately into the cascaded RPN for classification and regression.According to the two classification and regression results,the final position of the target is obtained.To verify the effectiveness of the proposed method,we conducted comprehensive experiments on the OTB100,VOT2016,UAV123,and GOT-10k datasets.Compared with other state-of-the-art trackers,the proposed tracker achieved good performance and can run at real-time speed. 展开更多
关键词 Object tracking deep learning coordinate attention cascaded RPN
下载PDF
COVAD: Content-oriented video anomaly detection using a self attention-based deep learning model
3
作者 Wenhao SHAO Praboda RAJAPAKSHA +3 位作者 Yanyan WEI Dun LI Noel CRESPI Zhigang LUO 《Virtual Reality & Intelligent Hardware》 2023年第1期24-41,共18页
Background Video anomaly detection has always been a hot topic and has attracted increasing attention.Many of the existing methods for video anomaly detection depend on processing the entire video rather than consider... Background Video anomaly detection has always been a hot topic and has attracted increasing attention.Many of the existing methods for video anomaly detection depend on processing the entire video rather than considering only the significant context. Method This paper proposes a novel video anomaly detection method called COVAD that mainly focuses on the region of interest in the video instead of the entire video. Our proposed COVAD method is based on an autoencoded convolutional neural network and a coordinated attention mechanism,which can effectively capture meaningful objects in the video and dependencies among different objects. Relying on the existing memory-guided video frame prediction network, our algorithm can significantly predict the future motion and appearance of objects in a video more effectively. Result The proposed algorithm obtained better experimental results on multiple datasets and outperformed the baseline models considered in our analysis. Simultaneously, we provide an improved visual test that can provide pixel-level anomaly explanations. 展开更多
关键词 Video surveillance Video anomaly detection Machine learning Deep learning Neural network coordinate attention
下载PDF
基于改进YOLOv5s的输电线路螺栓缺销检测方法
4
作者 赵文清 贾梦颖 +1 位作者 翟永杰 赵振兵 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第3期92-100,共9页
针对无人机输电线路巡检图像中螺栓缺销检测精度较低、漏检较多的问题,提出了一种基于改进YOLOv5s的输电线路螺栓缺销检测方法。在Backbone部分嵌入Coordinate Attention注意力模块;在Neck部分原有的“FPN+PAN”结构的基础上,新增一条... 针对无人机输电线路巡检图像中螺栓缺销检测精度较低、漏检较多的问题,提出了一种基于改进YOLOv5s的输电线路螺栓缺销检测方法。在Backbone部分嵌入Coordinate Attention注意力模块;在Neck部分原有的“FPN+PAN”结构的基础上,新增一条“自顶向下”的特征信息传递路径,跨越临近的同尺度特征层,与较浅层网络以加权融合的方式进行特征融合;将Head部分设置为解耦检测头,将对螺栓检测的分类任务与定位任务分开进行。改进后的YOLOv5s算法增强了对螺栓特征信息的学习能力。使用本方法在螺栓缺销数据集上实验,精确率提升了2.3%,召回率提升了3.4%,平均精度提升了3.1%,检测速度达到了41.1帧/秒,表明改进后的方法能提升输电线路螺栓缺销的检测能力,在智能巡检中具有一定的应用价值。 展开更多
关键词 巡检图像 故障检测 螺栓缺销 YOLOv5s coordinate attention 特征融合 解耦检测头
下载PDF
改进注意力机制嵌入PR-Net模型的水稻病害识别仿真
5
作者 路阳 刘鹏飞 +3 位作者 许思源 刘启旺 顾福谦 王鹏 《系统仿真学报》 CAS CSCD 北大核心 2024年第6期1322-1333,共12页
针对现有的CNN模型在水稻叶部病害的识别中准确率较低的问题,提出了一种结合并行结构和残差结构的混合卷积神经网络模型PRC-Net(parallel residual with coordinate attention network)。引入并行结构,提高卷积的感受野;结合残差结构,... 针对现有的CNN模型在水稻叶部病害的识别中准确率较低的问题,提出了一种结合并行结构和残差结构的混合卷积神经网络模型PRC-Net(parallel residual with coordinate attention network)。引入并行结构,提高卷积的感受野;结合残差结构,使特征信息完整的连续传递;在骨干模型PR-Net中嵌入改进的空间注意力机制,增强对不同尺度病斑特征信息的凝聚程度;为进一步提升病害识别的准确率,并减少模型的训练时间和推理时间,通过改变加权方式对模型结构进行优化。仿真结果表明:与InceptionResNetV2等分类模型相比,PRC-Net具有更少的训练参数、更短的训练时间和更高的识别精度,性能优于其他作物病害识别模型。 展开更多
关键词 水稻叶部病害 PRC-Net(parallel residual with coordinate attention network) 卷积神经网络 注意力机制 图像识别
原文传递
Multi-distortion suppression for neutron radiographic images based on generative adversarial network
6
作者 Cheng-Bo Meng Wang-Wei Zhu +4 位作者 Zhen Zhang Zi-Tong Wang Chen-Yi Zhao Shuang Qiao Tian Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期176-188,共13页
Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace,military,and nuclear industries.However,because of the physical limitations of neutron sources and collimators,the result... Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace,military,and nuclear industries.However,because of the physical limitations of neutron sources and collimators,the resulting neutron radiographic images inevitably exhibit multiple distortions,including noise,geometric unsharpness,and white spots.Furthermore,these distortions are particularly significant in compact neutron radiography systems with low neutron fluxes.Therefore,in this study,we devised a multi-distortion suppression network that employs a modified generative adversarial network to improve the quality of degraded neutron radiographic images.Real neutron radiographic image datasets with various types and levels of distortion were built for the first time as multi-distortion suppression datasets.Thereafter,the coordinate attention mechanism was incorporated into the backbone network to augment the capability of the proposed network to learn the abstract relationship between ideally clear and degraded images.Extensive experiments were performed;the results show that the proposed method can effectively suppress multiple distortions in real neutron radiographic images and achieve state-of-theart perceptual visual quality,thus demonstrating its application potential in neutron radiography. 展开更多
关键词 Neutron radiography Multi-distortion suppression Generative adversarial network coordinate attention mechanism
下载PDF
Enhancing Tea Leaf Disease Identification with Lightweight MobileNetV2
7
作者 Zhilin Li Yuxin Li +5 位作者 Chunyu Yan Peng Yan Xiutong Li Mei Yu Tingchi Wen Benliang Xie 《Computers, Materials & Continua》 SCIE EI 2024年第7期679-694,共16页
Diseases in tea trees can result in significant losses in both the quality and quantity of tea production.Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations.However,existi... Diseases in tea trees can result in significant losses in both the quality and quantity of tea production.Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations.However,existingmethods face challenges such as a high number of parameters and low recognition accuracy,which hinders their application in tea plantation monitoring equipment.This paper presents a lightweight I-MobileNetV2 model for identifying diseases in tea leaves,to address these challenges.The proposed method first embeds a Coordinate Attention(CA)module into the originalMobileNetV2 network,enabling the model to locate disease regions accurately.Secondly,a Multi-branch Parallel Convolution(MPC)module is employed to extract disease features across multiple scales,improving themodel’s adaptability to different disease scales.Finally,the AutoML for Model Compression(AMC)is used to compress themodel and reduce computational complexity.Experimental results indicate that our proposed algorithm attains an average accuracy of 96.12%on our self-built tea leaf disease dataset,surpassing the original MobileNetV2 by 1.91%.Furthermore,the number of model parameters have been reduced by 40%,making itmore suitable for practical application in tea plantation environments. 展开更多
关键词 Disease identification coordinate attention mechanism multi-scale feature extraction model pruning
下载PDF
基于改进YOLOv5s的飞机装配环节多余物检测研究
8
作者 陈峰 《中国新技术新产品》 2024年第2期29-31,共3页
飞机装配过程中对多余物的控制有非常严格的要求,传统方法是人工巡检或定时检查,本文提出一种基于改进YOLOv5s的面向多余物检测的目标检测方法。首先,本文提出一种轻量化模块,即DGConv模块,用于替换原有的卷积模块,能够有效减少模型参... 飞机装配过程中对多余物的控制有非常严格的要求,传统方法是人工巡检或定时检查,本文提出一种基于改进YOLOv5s的面向多余物检测的目标检测方法。首先,本文提出一种轻量化模块,即DGConv模块,用于替换原有的卷积模块,能够有效减少模型参数。其次,在特征融合网络中使用双向特征金字塔网络结构BiFPN,以提升特征的融合度,同时增加坐标注意力机制CA,在不增加参数量的情况下提升网络的关注范围。最后,使用SIOU作为回归框损失。试验结果表明,本文方法的效果满足要求。 展开更多
关键词 DGConv 多余物检测 YOLOv5s BiFPN coordinate attention SIOU
下载PDF
雾天条件下改进YOLOv4的目标检测 被引量:1
9
作者 刘书刚 张林坤 +1 位作者 杜昊东 王洪涛 《系统仿真学报》 CAS CSCD 北大核心 2023年第8期1681-1691,共11页
针对雾霾天气下现有的目标检测方法存在检测精度低的问题,提出了一种基于DeblurGANv2与YOLOv4的去雾目标检测方法。在YOLOv4的预处理模块中加入生成对抗网络中的图像增强算法DeblurGANv2,对有雾的图像进行去雾预处理,保留图像高质量的... 针对雾霾天气下现有的目标检测方法存在检测精度低的问题,提出了一种基于DeblurGANv2与YOLOv4的去雾目标检测方法。在YOLOv4的预处理模块中加入生成对抗网络中的图像增强算法DeblurGANv2,对有雾的图像进行去雾预处理,保留图像高质量的纹理和色彩信息。用轻量级神经网络ShuffleNet V2替代YOLOv4中用于主干特征提取的CSPDarkNet53网络,提高模型目标检测速度。在YOLOv4的特征融合模块中加入注意力机制,增强对小目标的识别效果。实验结果表明:该方法能够减少色差较大和雾残留的问题,在RESIDE数据集中mAP值达到了86.56%,在实际去雾目标测试中取得较好的效果。 展开更多
关键词 生成对抗网络 DeblurGANv2 coordinate attention ShuffleNet V2 去雾目标检测
原文传递
基于YOLOv5的改进小目标检测算法研究 被引量:6
10
作者 陈富荣 肖明明 《现代信息科技》 2023年第3期55-60,65,共7页
文章针对小目标检测存在的可利用特征少、定位精度要求高、数据集小目标占比少、样本不均衡和小目标对象聚集等问题,提出将coordinate attention注意力嵌入YOLOv5模型。Coordinate attention注意力机制通过获取位置感知和方向感知的信息... 文章针对小目标检测存在的可利用特征少、定位精度要求高、数据集小目标占比少、样本不均衡和小目标对象聚集等问题,提出将coordinate attention注意力嵌入YOLOv5模型。Coordinate attention注意力机制通过获取位置感知和方向感知的信息,能使YOLOv5模型更准确地识别和定位感兴趣的目标。YOLOv5改进模型采用木虱和VisDrone2019数据集开展实验验证,实验结果表明嵌入coordinate attention能有效提高YOLOv5的算法性能。 展开更多
关键词 目标检测 YOLOv5 coordinate attention 注意力机制
下载PDF
基于改进YOLOv5s的火灾烟雾检测算法研究 被引量:4
11
作者 蔡静 张讚 +2 位作者 冉光金 李震 李良荣 《智能计算机与应用》 2023年第5期75-81,共7页
为了解决火灾烟雾检测算法中存在的错检、漏检以及实时性差等问题,提出了一种基于YOLOv5s的火灾烟雾检测模型。首先,使用Ghost Convolution模块代替原YOLOv5s网络结构中的常规卷积模块,在保持相同性能的基础上,降低检测模型的计算成本... 为了解决火灾烟雾检测算法中存在的错检、漏检以及实时性差等问题,提出了一种基于YOLOv5s的火灾烟雾检测模型。首先,使用Ghost Convolution模块代替原YOLOv5s网络结构中的常规卷积模块,在保持相同性能的基础上,降低检测模型的计算成本、减少模型参数;其次,在原YOLOv5s模型骨干网络中加入Vision Transformer结构,减少对卷积神经网络的依赖性,同时提高获取全局和局部特征的能力;最后,引入Coordinate Attention注意力机制,有效地提取特征信息,进一步提高检测的准确率。实验结果表明,所提出的火灾烟雾检测模型参数减少17%,准确率提高0.73%,检测速度提升22.5%,可以满足实际场景下的火灾烟雾检测。 展开更多
关键词 火灾烟雾检测 YOLOv5s Vision Transformer coordinate attention
下载PDF
A New Method for Image Tamper Detection Based on an Improved U-Net
12
作者 Jie Zhang Jianxun Zhang +2 位作者 Bowen Li Jie Cao Yifan Guo 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2883-2895,共13页
With the improvement of image editing technology,the threshold of image tampering technology decreases,which leads to a decrease in the authenticity of image content.This has also driven research on image forgery dete... With the improvement of image editing technology,the threshold of image tampering technology decreases,which leads to a decrease in the authenticity of image content.This has also driven research on image forgery detection techniques.In this paper,a U-Net with multiple sensory field feature extraction(MSCU-Net)for image forgery detection is proposed.The proposed MSCU-Net is an end-to-end image essential attribute segmentation network that can perform image forgery detection without any pre-processing or post-processing.MSCU-Net replaces the single-scale convolution module in the original network with an improved multiple perceptual field convolution module so that the decoder can synthesize the features of different perceptual fields use residual propagation and residual feedback to recall the input feature information and consolidate the input feature information to make the difference in image attributes between the untampered and tampered regions more obvious,and introduce the channel coordinate confusion attention mechanism(CCCA)in skip-connection to further improve the segmentation accuracy of the network.In this paper,extensive experiments are conducted on various mainstream datasets,and the results verify the effectiveness of the proposed method,which outperforms the state-of-the-art image forgery detection methods. 展开更多
关键词 Forgery detection multiple receptive fields cyclic residuals U-Net channel coordinate confusion attention
下载PDF
基于改进Deeplab v3+的服装图像分割网络 被引量:3
13
作者 胡新荣 龚闯 +3 位作者 张自力 朱强 彭涛 何儒汉 《计算机工程》 CAS CSCD 北大核心 2022年第7期284-291,共8页
在服装图像分割领域,现有算法存在服装边缘分割粗糙、分割精度差和服装深层语义特征提取不够充分等问题。将Coordinate Attention机制和语义特征增强模块(SFEM)嵌入到语义分割性能较好的Deeplab v3+网络,设计一种用于服装图像分割领域的... 在服装图像分割领域,现有算法存在服装边缘分割粗糙、分割精度差和服装深层语义特征提取不够充分等问题。将Coordinate Attention机制和语义特征增强模块(SFEM)嵌入到语义分割性能较好的Deeplab v3+网络,设计一种用于服装图像分割领域的CA_SFEM_Deeplab v3+网络。为了加强服装图像有效特征的学习,在Deeplab v3+网络的主干网络resnet101中嵌入Coordinate Attention机制,并将经过带空洞卷积池化金字塔网络的特征图输入到语义特征增强模块中进行特征增强处理,从而提高分割的准确率。实验结果表明,CA_SFEM_Deeplab v3+网络在DeepFashion2数据集上的平均交并比与平均像素准确率分别为0.557、0.671,相较于Deeplab v3+网络分别提高2.1%、2.3%,其所得分割服装轮廓更为精细,具有较好的分割性能。 展开更多
关键词 服装图像 语义分割 Deeplab v3+网络 coordinate attention机制 语义特征增强模块
下载PDF
TP-MobNet: A Two-pass Mobile Network for Low-complexity Classification of Acoustic Scene
14
作者 Soonshin Seo Junseok Oh +3 位作者 Eunsoo Cho Hosung Park Gyujin Kim Ji-Hwan Kim 《Computers, Materials & Continua》 SCIE EI 2022年第11期3291-3303,共13页
Acoustic scene classification(ASC)is a method of recognizing and classifying environments that employ acoustic signals.Various ASC approaches based on deep learning have been developed,with convolutional neural networ... Acoustic scene classification(ASC)is a method of recognizing and classifying environments that employ acoustic signals.Various ASC approaches based on deep learning have been developed,with convolutional neural networks(CNNs)proving to be the most reliable and commonly utilized in ASC systems due to their suitability for constructing lightweight models.When using ASC systems in the real world,model complexity and device robustness are essential considerations.In this paper,we propose a two-pass mobile network for low-complexity classification of the acoustic scene,named TP-MobNet.With inverse residuals and linear bottlenecks,TPMobNet is based on MobileNetV2,and following mobile blocks,coordinate attention and two-pass fusion approaches are utilized.The log-range dependencies and precise position information in feature maps can be trained via coordinate attention.By capturing more diverse feature resolutions at the network’s end sides,two-pass fusions can also train generalization.Also,the model size is reduced by applying weight quantization to the trained model.By adding weight quantization to the trained model,the model size is also lowered.The TAU Urban Acoustic Scenes 2020 Mobile development set was used for all of the experiments.It has been confirmed that the proposed model,with a model size of 219.6 kB,achieves an accuracy of 73.94%. 展开更多
关键词 Acoustic scene classification LOW-COMPLEXITY device robustness two-pass mobile network coordinate attention weight quantization
下载PDF
基于卷积神经网络与注意力机制的高光谱图像分类
15
作者 高玉鹏 闫伟红 潘新 《光电子.激光》 CAS CSCD 北大核心 2024年第5期483-489,共7页
由于浅层卷积神经网络(convolutional neural network,CNN)模型感受野的限制,无法捕获远距离特征,在高光谱图像(hyperspectral image,HSI)分类问题中无法充分利用图像空间-光谱信息,很难获得较高精度的分类结果。针对上述问题,本文提出... 由于浅层卷积神经网络(convolutional neural network,CNN)模型感受野的限制,无法捕获远距离特征,在高光谱图像(hyperspectral image,HSI)分类问题中无法充分利用图像空间-光谱信息,很难获得较高精度的分类结果。针对上述问题,本文提出了一种基于卷积神经网络与注意力机制的模型(model based on convolutional neural network and attention mechanism,CNNAM),该模型利用CA(coordinate attention)对图像通道数据进行位置编码,并利用以自注意力机制为核心架构的Transformer模块对其进行远距离特征提取以解决CNN感受野的限制问题。CNNAM在Indian Pines和Salinas两个数据集上得到的总体分类精度分别为97.63%和99.34%,对比于其他模型,本文提出的模型表现出更好的分类性能。另外,本文以是否结合CA为参考进行了消融实验,并证明了CA在CNNAM中发挥重要作用。实验证明将传统CNN与注意力机制相结合可以在HSI分类问题中获得更高的分类精度。 展开更多
关键词 高光谱图像分类(HSI) 卷积神经网络(CNN) coordinate attention TRANSFORMER
原文传递
基于改进YOLOv5的带钢表面缺陷检测 被引量:2
16
作者 赵祥涛 刘银华 《自动化与仪器仪表》 2023年第10期6-9,共4页
针对目前热轧带钢表面缺陷检测算法精度不高,检测速度慢的问题,提出了一种基于改进YOLOv5算法的网络模型。首先,引入Coordinate Attention提高模型特征提取能力;其次,对Neck结构进行改进,提出CA-BiFPN网络结构减少信息特征流失,实现多... 针对目前热轧带钢表面缺陷检测算法精度不高,检测速度慢的问题,提出了一种基于改进YOLOv5算法的网络模型。首先,引入Coordinate Attention提高模型特征提取能力;其次,对Neck结构进行改进,提出CA-BiFPN网络结构减少信息特征流失,实现多尺度信息表征;最后,使用EIOU Loss作为边框回归损失函数,提高定位精度,加快检测速度。实验结果表明,在NEU-DET数据集上相较于原YOLOv5算法平均精度均值(mAP)提高4.3%,召回率提高5.5%,精度提高2.2%,检测速度为111.1 fps,实现了识别精度与检测速度的良好均衡,具有一定的应用价值。 展开更多
关键词 表面缺陷检测 coordinate attention 特征融合 损失函数
原文传递
基于CA-EfficientNetV2的蘑菇图像分类算法研究 被引量:6
17
作者 孟莉莎 杨贤昭 刘惠康 《激光与光电子学进展》 CSCD 北大核心 2022年第24期48-55,共8页
针对传统的蘑菇特征提取方法分类效率低且效果差的问题,提出了一种轻量型的蘑菇图像分类模型。由于实验所用数据集较小,所提分类模型在基于Imagenet数据集的迁移学习中初始化EfficientNetV2模型并修改全连接层。同时为了减少网络中参数... 针对传统的蘑菇特征提取方法分类效率低且效果差的问题,提出了一种轻量型的蘑菇图像分类模型。由于实验所用数据集较小,所提分类模型在基于Imagenet数据集的迁移学习中初始化EfficientNetV2模型并修改全连接层。同时为了减少网络中参数影响,对原EfficientNetV2模型进行精简,去除了网络中重复的模块。最后用特征提取效果更好的coordinate attention(CA)注意力机制替代原来MBConv模块中的squeeze-and-excitation机制,得到了新的CA-EfficientNetV2。实验结果表明:所提EfficientNetV2与经典ResNet50模型和RegNet相比分类准确率分别提高了10个百分点和2个百分点左右,并得到较高的泛化性能;相较于原始EfficientNetV2,分类准确率提高了3个百分点。即CA-EfficientNetV2在蘑菇分类问题上具有更高的准确率,具有较高的分类性能。 展开更多
关键词 图像处理 轻量型 EfficientNetV2 coordinate attention 泛化性能 分类性能
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部