The corn husks were usually discarded as useless materials,after alkali treatment from which the corn husk fiber was obtained. The corn husk fiber included half degumming corn husk bundle fiber and corn husk single fi...The corn husks were usually discarded as useless materials,after alkali treatment from which the corn husk fiber was obtained. The corn husk fiber included half degumming corn husk bundle fiber and corn husk single fiber. This study found that corn husk single fiber was a kind of cellulose fiber,and was obtained with the fully alkali treatment technique,the process of which was NaOH concentration 0.15 g/mL,temperature at 80℃,and reaction time about 2.5 h. The morphologies of corn husk single fibers presented nature convolutions along with the fiber axis. They were closed at both ends,and they had a pentagram cavity and oval-shaped crosssection. They were flat shape,the fineness of the fibers was close to cotton fiber,and the mechanical properties of the fibers were similar to hemp fiber. So the corn husk fibers could be predicted that they could be used in textile industry because their properties were very close to cotton fiber or flax fiber.展开更多
In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy ef...In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.展开更多
对采用不同脱胶工艺得到的玉米苞叶纤维进行纤维形态结构、热学性能和力学性能研究.结果表明:脱胶后的纤维表面不平整,内部有孔洞,采用"预处理+煮练"工艺处理后的纤维结构较紧密;脱胶可以提高纤维的耐热性,直接煮练后纤维大...对采用不同脱胶工艺得到的玉米苞叶纤维进行纤维形态结构、热学性能和力学性能研究.结果表明:脱胶后的纤维表面不平整,内部有孔洞,采用"预处理+煮练"工艺处理后的纤维结构较紧密;脱胶可以提高纤维的耐热性,直接煮练后纤维大分子裂解开始温度为230℃,"预处理+煮练"后纤维大分子裂解开始温度为260℃;脱胶后纤维呈本白色;直接煮练后纤维平均长度为12.1 cm,线密度为12.06 tex,断裂强度为9.04 c N/tex,断裂伸长率为15.93%;"预处理+煮练"后纤维平均长度为9.3 cm,线密度为11.18 tex,断裂强度为6.68 c N/tex,断裂伸长率为14.16%,纤维柔软,有一定的可纺性.展开更多
基金Science and Technology Project of Fujian Province,China(No.2015H0030)Fujian Provincial Universities Projects,China(No.JK2014042)
文摘The corn husks were usually discarded as useless materials,after alkali treatment from which the corn husk fiber was obtained. The corn husk fiber included half degumming corn husk bundle fiber and corn husk single fiber. This study found that corn husk single fiber was a kind of cellulose fiber,and was obtained with the fully alkali treatment technique,the process of which was NaOH concentration 0.15 g/mL,temperature at 80℃,and reaction time about 2.5 h. The morphologies of corn husk single fibers presented nature convolutions along with the fiber axis. They were closed at both ends,and they had a pentagram cavity and oval-shaped crosssection. They were flat shape,the fineness of the fibers was close to cotton fiber,and the mechanical properties of the fibers were similar to hemp fiber. So the corn husk fibers could be predicted that they could be used in textile industry because their properties were very close to cotton fiber or flax fiber.
文摘In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.
文摘对采用不同脱胶工艺得到的玉米苞叶纤维进行纤维形态结构、热学性能和力学性能研究.结果表明:脱胶后的纤维表面不平整,内部有孔洞,采用"预处理+煮练"工艺处理后的纤维结构较紧密;脱胶可以提高纤维的耐热性,直接煮练后纤维大分子裂解开始温度为230℃,"预处理+煮练"后纤维大分子裂解开始温度为260℃;脱胶后纤维呈本白色;直接煮练后纤维平均长度为12.1 cm,线密度为12.06 tex,断裂强度为9.04 c N/tex,断裂伸长率为15.93%;"预处理+煮练"后纤维平均长度为9.3 cm,线密度为11.18 tex,断裂强度为6.68 c N/tex,断裂伸长率为14.16%,纤维柔软,有一定的可纺性.