期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Finite element corotational formulation for geometric nonlinear analysis of thin shells with large rotation and small strain 被引量:2
1
作者 YANG JinSong XIA PinQi 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第11期3142-3152,共11页
Based on the consistent symrnetrizable equilibrated (CSE) corotational formulation, a linear triangular flat thin shell element with 3 nodes and 18~ of freedom, constructed by combination of the optimal membrane ele... Based on the consistent symrnetrizable equilibrated (CSE) corotational formulation, a linear triangular flat thin shell element with 3 nodes and 18~ of freedom, constructed by combination of the optimal membrane element and discrete Kirchhoff trian- gle (DKT) bending plate element, was extended to the geometric nonlinear analysis of thin shells with large rotation and small strain. Through derivation of the consistent tangent stiffness matrix and internal force vector, the corotational nonlinear finite element equations were established. The nonlinear equations were solved by using the Newton-Raphson iteration algorithm combined with an automatic load controlled technology. Three typical case studies, i.e., the slit annular thin plate, top opened hemispherical shell and cylindrical shell, validated the accuracy of the formulation established in this paper. 展开更多
关键词 thin shell geometric nonlinearity corotational formulation finite element
原文传递
Energy conserving and decaying algorithms for corotational finite element nonlinear dynamic responses of thin shells 被引量:2
2
作者 YANG JinSong XIA PinQi 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第12期3311-3321,共11页
On the basis of the finite element corotational formulation for geometric nonlinear static analysis of thin shells with large rota- tion and small strain established before and from the generalized-a time integration ... On the basis of the finite element corotational formulation for geometric nonlinear static analysis of thin shells with large rota- tion and small strain established before and from the generalized-a time integration algorithm, the energy conserving and de- caying algorithms for corotational formulation nonlinear dynamic response analysis of thin shells are established in this paper. Responses are solved by means of a predictor-corrector procedure. In the case of ignoring the structural damping, the conserv- ing or decaying total energy of structure and the controllable numerical damping for high frequency responses can ensure the numerical stability of the algorithm. The inertial parts are linearly interpolated directly in the fixed global coordinate system by using the element nodal displacement in the global coordinate system for obtaining the constant mass matrix, while the elastic parts adopt the corotational formulation. Hence, the whole formulation obtained in this paper is element independent. Through three typical numerical examples, the performances of the algorithm in this paper were compared with those of the classical Newmak and HHT-a algorithms to indicate that the algorithm in this paper could accurately solve nonlinear dynamic respons- es of thin shells with large displacements and large rotations. 展开更多
关键词 thin shell nonlinear dynamics corotational formulation finite elements energy conserving and decaying algorithms
原文传递
Geometric nonlinear analysis of large rotation behavior of a curved SWCNT
3
作者 Prasad Dharap Satish Nagarajaiah Zhiling Li 《International Journal of Smart and Nano Materials》 SCIE EI 2022年第2期218-231,共14页
Nanotubes form clusters and are found in curved bundles in nano-tube films and nanocomposites.Separation phenomenon is sus-pected to occur in these curved bundles.In this study,the deformation of a single-wall carbon ... Nanotubes form clusters and are found in curved bundles in nano-tube films and nanocomposites.Separation phenomenon is sus-pected to occur in these curved bundles.In this study,the deformation of a single-wall carbon nanotube(SWCNT)interacting with curved bundle nanotubes is analyzed.It is assumed that the bundle is rigid and only van der Waals force acts between the nanotube and the bundle of nanotubes.A new method of model-ing geometric nonlinear behavior of the nanotube due to finite rotation and the corresponding van der Waals force is developed using co-rotational finite element method(CFEM)formulation,combined with small deformation beam theory,with the inclusion of axial force.Current developed CFEM method overcomes the limitation of linear Finite Element Method(FEM)formulation regarding large rotations and deformations of carbon nanotubes.This study provides a numerical tool to identify the critical curvature influence on the interaction of carbon nanotubes due to van der Waals forces and can provide more insight into studying irregula-rities in the electronic transport properties of adsorbed nanotubes in nanocomposites. 展开更多
关键词 Key-words:single walled carbon nanotubes corotational finite element formulation structural health monitoring NANOCOMPOSITES jumpphenomenon critical curvature
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部