Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods e...Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods embedded with TiO_(2)and polyaniline(PANI)nanoparticles are synthesized via heterogeneous precipitation and in-situ polymerization.The obtained PANI-TiO_(2)-ATP one-di-mensional(1D)nanostructures can intertwine into three-dimensional(3D)conductive network,which favors energy dissipation.The min-imum reflection loss(RL_(min))of the PANI-TiO_(2)-ATP coating(20wt%)reaches-49.36 dB at 9.53 GHz,and the effective absorption band-width(EAB)can reach 6.53 GHz with a thickness of 2.1 mm.The excellent MA properties are attributed to interfacial polarization,mul-tiple loss mechanisms,and good impedance matching induced by the synergistic effect of PANI-TiO_(2)nanoparticle shells and ATP nanor-ods.In addition,salt spray and Tafel polarization curve tests reveal that the PANI-TiO_(2)-ATP coating shows outstanding corrosion resist-ance performance.This study provides a low-cost and high-efficiency strategy for constructing 1D nanonetwork composites for MA and corrosion resistance applications using natural porous ATP nanorods as carriers.展开更多
In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder...In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.展开更多
The effects of tungsten inert gas arc-assisted friction stir welding(TIG-FSW)on the microstructure,tensile properties and corrosion resistance of AA6016 and AA2519 alloys lap joints were investigated by means of optic...The effects of tungsten inert gas arc-assisted friction stir welding(TIG-FSW)on the microstructure,tensile properties and corrosion resistance of AA6016 and AA2519 alloys lap joints were investigated by means of optical microscope,scanning electron microscope,tensile test at room temperature,corrosion immersion tests and electrochemical measurements.The results show that the introduction of TIG arc during FSW process results in a more uniform microstructure of the joint with no tunnel hole defects.Furthermore,it enhances tensile strength and elongation of the joint with increased rates of 11.5%and 50.0%,respectively;meanwhile,the corrosion current density and largest corrosion depth are decreased with reduction rates of 78.2%and 45.7%,respectively.TIG-FSW can promote flow,contact and diffusion of materials,thus improving microstructure of the joint.Additionally,it reduces the size and number of secondary phase particles.Consequently,these factors contribute to the higher tensile properties and corrosion resistance of the joints.展开更多
The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found th...The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found that the charge transfer resistance of Ti−3Cu alloy was 4.89×10^(5)Ω∙cm^(2),which was doubled the data obtained by CP-Ti alloy.The antibacterial rates of Ti−3Cu alloy against S.mutans and P.gingivalis were 45.0%and 54.5%.And the antibacterial rates increased with the prolongation of cultivation time,reaching up to 62.8%and 68.6%,respectively.The in-situ nano Ti_(2)Cu precipitates were homogeneously distributed in the matrix of the Ti−3Cu alloy,which was the key reason of increasing the corrosion resistance.Additionally,the microscale electric fields between theα-Ti matrix and the Ti_(2)Cu was responsible for the enhancement of the antibacterial properties.展开更多
In this study,laser-assisted plasma electrolytic oxidation(Laser/PEO)coating was prepared on AZ31B magnesium alloy for corrosion protection,due to insufficient corrosion protection caused by the inherent defects,crack...In this study,laser-assisted plasma electrolytic oxidation(Laser/PEO)coating was prepared on AZ31B magnesium alloy for corrosion protection,due to insufficient corrosion protection caused by the inherent defects,cracks and poor quality of PEO coatings.The plasma discharge evolution,morphological characteristics,elemental composition during coating growth were characterized by high-speed camera,SEM,EDX,XRD and XPS,respectively.Meanwhile,Mott Schottky(M-S)curves,potentiodynamic polarization(PDP)curves and electrochemical impedance spectroscopy(EIS)tests characterized the oxygen vacancy defects and corrosion resistance of the coatings.The results demonstrated that laser-assisted irradiation not only induced plasma discharge on the anode surface,but also limited the plasma discharge size in the post-processing stage,which significantly increased the proportion of corrosion-resistant phase Mg_(2)SiO_(4)(the proportion of Mg_(2)SiO_(4)increased from 23.70%to 39.22%),thickness and density in the coating,and obviously reduced the oxygen vacancy defects and microcracks in the coating.As a result,the corrosion resistance of the Laser/PEO coating(9.29(±0.76)×10^(-7)A·cm^(-2))was further enhanced in comparation with the PEO coating(3.06(±0.19)×10^(-6) A·cm^(-2)).展开更多
Under the laser directed energy deposition(LDED)process,the rapid melting and solidification usually lead to the emergence of pores and coarse columnar dendrites,which in turn compromise the properties of the deposite...Under the laser directed energy deposition(LDED)process,the rapid melting and solidification usually lead to the emergence of pores and coarse columnar dendrites,which in turn compromise the properties of the deposited alloys.This study introduced in-situ ultrasonic rolling(UR)as an innovative method to enhance the corrosion resistance of LDED specimens,and the microstructural characteristics and their correlation with corrosion resistance were deeply investigated.The findings reveal that the LDED-UR specimen exhibits a reduction in both the fraction and size of pores.Under the influence of severe plastic deformation generated by LDED-UR process,fully equiaxed grains appear with a reduced average size of 28.61μm(compared to63.98μm for the LDED specimen with columnar grains).The electrochemical corrosion resistance of the LDED-UR specimen is significantly enhanced compared to the LDED specimen.This enhanced corrosion resistance can be attributed to the low fraction of small-sized pores,the fine and uniformly distributed Cr-enriched ferrite phase,and the formation of a compact and thick passive film due to dense grain boundaries.The insight of the correlation between microstructure and corrosion behavior opens up a new pathway to enhance the corrosion resistance of LDED specimens.展开更多
Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion res...The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion resistance of Q235 carbon steel.Scanning electron microscopy results indicated that the CeO_(2) grains were rod-like and ellipsoidal in shape,and the distribution pattern of BTA was analyzed by energy dispersive spectroscope.The dynamic potential polarization curve proved the excellent corrosion resistance of the composite epoxy resin with CeO_(2) and BTA co-addition,and electrochemical impedance spectroscopy test analysis indicated the significantly enhanced long-term corrosion protection performance of the composite coating.And the optimal protective performance was provided by the coating containing 0.3%(mass)CeO_(2) and 20%(mass)BTA,which was attributed to the barrier performance of CeO_(2) particles and the chemical barrier effect of BTA.The formation of corrosion products was analyzed using X-ray diffraction.In addition,the corrosion resistance mechanism of the coating was also discussed in detail.展开更多
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples...Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.展开更多
In order to prolong the service time and enhance the biocompatibility of magnesium(Mg)alloys used for cardiovascular scaffolds,the composite coatings of Schiff base(corrosion inhibitor)and sulfonated hyaluronic acid(S...In order to prolong the service time and enhance the biocompatibility of magnesium(Mg)alloys used for cardiovascular scaffolds,the composite coatings of Schiff base(corrosion inhibitor)and sulfonated hyaluronic acid(S-HA)nanoparticles(NP@S-HA)with different sulfur content(10.02 wt%and 11.55wt%)were prepared on ZE21B alloy by means of electrostatic spraying with spraying time of 0.5 min,1.0 min and 1.5 min in this paper.Through a series of representations including corrosion experiments and biological characterization,the composite coatings with a sulfur content of 11.55wt%and a spray time of 1.0 min were finally picked due to its better comprehensive performances,which provides a new possibility for the surface modification of degradable Mg alloy cardiovascular scaffolds.展开更多
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte...The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.展开更多
There is an increasing interest in biodegradable materials,such as magnesium,for orthopaedic implants.This is driven by their potential to address challenges like stress shielding and the need for secondary removal su...There is an increasing interest in biodegradable materials,such as magnesium,for orthopaedic implants.This is driven by their potential to address challenges like stress shielding and the need for secondary removal surgery.In this study,biodegradable magnesium alloys were produced using the Vacuum Induction Casting technique.The impact of micro-alloying Zn and Ca in Mg-xZn-0.2Ca(x=0.1,0.2,0.3,and 0.4 wt%)alloys on corrosion resistance,cytocompatibility,and early-stage inflammatory response was investigated.XRD and SEM-EDS analysis confirmed the presence of Ca_(2)Mg_(6)Zn_(3)secondary phases in all alloys.The Mg-0.3Zn-0.2Ca alloy exhibited the lowest corrosion rate and an elastic modulus of 36.8 GPa,resembling that of natural bone.Electrochemical measurements indicated a correlation between grain size and secondary phase volume fraction in explaining corrosion behaviour.In vitro degradation in simulated body fluid(SBF)for 21 days showed hydroxyapatite formation on alloy surfaces,aligning with electrochemical studies.In vitro cytotoxicity tests demonstrated the cytocompatibility of all alloys,with Mg-0.3Zn-0.2Ca having the highest cell viability over a 6-day cell culture.Investigation into the inflammatory response with RAW-Blue macrophages revealed the anti-inflammatory properties of Mg-0.3Zn-0.2Ca alloys.Micro-alloying with 0.3 wt%Zn and 0.2 wt%Ca enhanced mechanical properties,corrosion resistance,cytocompatibility,and immunomodulatory properties.This positions the Mg-0.3Zn-0.2Ca alloy as a promising biodegradable implant for bone fixation applications.展开更多
TiZrTaNb-based high-entropy alloys(HEAs)are research frontier of biomedical materials due to their high hardness,good yield strength,excellent wear resistance and corrosion resistance.Sn,as an essential trace element ...TiZrTaNb-based high-entropy alloys(HEAs)are research frontier of biomedical materials due to their high hardness,good yield strength,excellent wear resistance and corrosion resistance.Sn,as an essential trace element in the human body that plays a significant role in physiological process.It has stable chemical properties and a low elastic modulus.In this study,a new material,TiZrTaNbSn HEAs,was proposed as a potential biomedical alloy.The Ti_(35)Zr_(25)Ta_(15)Nb_(15)Sn_(10)biomedical high-entropy alloys(BHEAs)were successfully prepared through an arc melting furnace and then remelted using a German high-temperature and high-pressure apparatus under GPa-level(4 GPa and 7 GPa).The precipitation behavior of the needle-like HCP-Zr_(5)Sn_(3)phase that precipitates discontinuously at the grain boundary was successfully controlled.The phase constitution,microstructure,and corrosion resistance of the alloy were studied.The results show that the needle-like HCP-Zr_(5)Sn_(3)phase is eliminated and the(Zr,Sn)-rich nano-precipitated phase is precipitated in the microstructure under high pressure,which leads to the narrowing of grain boundaries and consequently improves the corrosion resistance of the alloy.In addition,the formation mechanisms of(Zr,Sn)-rich nanoprecipitates in BHEAs were discussed.More Zr and Sn dissolve in the matrix due to the effect of high pressure,during the cooling process,they precipitate to form a(Zr,Sn)-rich nano-precipitated phase.展开更多
The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investiga...The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets.展开更多
To enhance the long-term corrosion resistance of the plasma electrolytic oxidation(PEO)coating on the magnesium(Mg)alloy,an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating.I...To enhance the long-term corrosion resistance of the plasma electrolytic oxidation(PEO)coating on the magnesium(Mg)alloy,an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating.In this study,the corrosion performance of PEO-coated AM50 Mg was significantly improved by loading sodium lauryl sulfonate(SDS)and sodium dodecyl benzene sulf-onate into Ba(NO_(3))_(2) post-sealing solutions.Scanning electron microscopy,X-ray photoelectron spectroscopy,X-ray diffraction,Fourier transform infrared spectrometer,and ultraviolet-visible analyses showed that the inhibitors enhanced the incorporation of BaO_(2) into PEO coatings.Electrochemical impedance showed that post-sealing in Ba(NO_(3))_(2)/SDS treatment enhanced corrosion resistance by three orders of magnitude.The total impedance value remained at 926Ω·cm^(2)after immersing in a 0.5wt%NaCl solution for 768 h.A salt spray test for 40 days did not show any obvious region of corrosion,proving excellent post-sealing by Ba(NO_(3))_(2)/SDS treatment.The corrosion resistance of the coating was enhanced through the synergistic effect of BaO2 pore sealing and SDS adsorption.展开更多
A series of AlCoCrFe_(1−x)NiMo_(x)high-entropy alloys(HEAs)were fabricated and characterized by XRD,SEM,EDS mapping,compression test,hardness and electrochemistry measurements.The research results indicate that after ...A series of AlCoCrFe_(1−x)NiMo_(x)high-entropy alloys(HEAs)were fabricated and characterized by XRD,SEM,EDS mapping,compression test,hardness and electrochemistry measurements.The research results indicate that after Mo completely replaces Fe,the compressive strength of the alloys can reach 3181 MPa because the addition of Mo can formσphase beneficial to the grain refinement,thereby improving the strength of the alloys.However,the addition of Mo has a detrimental effect on corrosion resistance as a result of formation of galvanic cell between the substrate andσphases.Although most of AlCoCrFe_(1−x)NiMo_(x)have lower corrosion current densities than pristine alloy,a partial Mo substitution(x=0.25)widens the passivation region of HEAs.The inconsistency of mechanical properties with corrosion resistance is ascribed to different roles of Mo in phase formation and protection of passive film.展开更多
This comprehensive review examines the structural,mechanical,electronic,and thermodynamic properties of Mg-Li-Al alloys,focusing on their corrosion resistance and mechanical performance enhancement.Utilizing first-pri...This comprehensive review examines the structural,mechanical,electronic,and thermodynamic properties of Mg-Li-Al alloys,focusing on their corrosion resistance and mechanical performance enhancement.Utilizing first-principles calculations based on Density Functional Theory(DFT)and the quasi-harmonic approximation(QHA),the combined properties of the Mg-Li-Al phase are explored,revealing superior incompressibility,shear resistance,and stiffness compared to individual elements.The review highlights the brittleness of the alloy,supported by B/G ratios,Cauchy pressures,and Poisson’s ratios.Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics,while Mulliken population analysis emphasizes significant electron transfer within the alloy.This paper also studied thermodynamic properties,including Debye temperature,heat capacity,enthalpy,free energy,and entropy,which are precisely examined,highlighting the Mg-Li-Al phase sensitive to thermal conductivity and thermal performance potential.Phonon density of states(PHDOS)confirms dynamic stability,while anisotropic sound velocities reveal elastic anisotropies.This comprehensive review not only consolidates the current understanding of the Mg-Li-Al alloy’s properties but also proposes innovative strategies for enhancing corrosion resistance.Among these strategies is the introduction of a corrosion barrier akin to the Mg-Li-Al network,which holds promise for advancing both the applications and performance of these alloys.This review serves as a crucial foundation for future research aimed at optimizing alloy design and processing methods.展开更多
Magnesium alloys,known for their exceptional lightweight properties,have presented challenges in various applications due to their limited corrosion resistance.In this study,the corrosion resistance of Mg_(97)Zn_(1)Y_...Magnesium alloys,known for their exceptional lightweight properties,have presented challenges in various applications due to their limited corrosion resistance.In this study,the corrosion resistance of Mg_(97)Zn_(1)Y_(2)magnesium alloys was enhanced by incorporating Zr elements into the Mg_(97)Zn_(1)Y_(2)matrix,which is distinguished by long periodic stacking ordered(LPSO)phases.Results show that Mg_(97)Zn_(1)Y_(2)-xwt.%Zr(x=0,0.1,0.3,0.6)alloys containing Zr exhibit reduced hydrogen evolution rates and decreased corrosion levels compared with that without Zr,when immersed in a 3.5wt.%NaCl solution.Addition of 0.3wt.%Zr results in the most significant improvement,with a corrosion rate as low as 2.261 mL·cm^(-2),representing an 86%reduction from 16.438 mL·cm^(-2)of the base alloy.Furthermore,alloys with Zr additions demonstrate a more positive corrosion potential and lower corrosion current density than does the matrix alloy(64.92μA·cm^(-2)).The lowest corrosion current density,21.61μA·cm^(-2),occurs with the addition of 0.3wt.%Zr.The introduction of Zr induces a change in the microstructure of the LPSO phases,increasing the charge transfer resistance within the alloy and thus effectively improving its corrosion resistance.展开更多
With the growing demand for weight reduction,the application of joint lightweight structural materials is increasing.Magnesium alloys feature low density,high specific strength and good formability,offering significan...With the growing demand for weight reduction,the application of joint lightweight structural materials is increasing.Magnesium alloys feature low density,high specific strength and good formability,offering significant advantages for fuel efficiency and load capacity.Combined with Ti,a dissimilar Ti/Mg composite material provides great flexibility combining the properties of each material.However,because of the great differences in chemical and electrochemical properties between Mg and Ti,it is imperative to address the galvanic corrosion problem of such dissimilar Ti/Mg components.This work presents an investigation of the PEO processing of sintered Ti/Mg0.6Ca couples,aiming to improve the corrosion resistance of such dissimilar alloy combinations using a phosphate-aluminate electrolyte.The results show that uniform and continuous coatings can be formed on the dissimilar Ti/Mg0.6Ca couple.The coating mainly contains MgO and MgAl_(2)O_(4)on the Mg0.6Ca side,and Al_(2)TiO_(5)is the dominant phase on the Ti side.The work also took advantage of synchrotron X-ray computed tomography(CT)scanning to achieve 3D reconstruction of the coating morphology,which can be a fast method to assess the porosity and compactness of the coating and further predict the coating corrosion resistance.The coating effectively improved the corrosion resistance of the dissimilar Ti/Mg0.6Ca couple.展开更多
In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were system...In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate.展开更多
基金support from the National Key Research and Development Program of China(No.2021YFB3701503)the Key Research and Development Program of Ningbo,China(No.2023Z107)+1 种基金the Jiangsu Key R&D program,China(No.BE2019072)the special project of Gansu regional science and technology cooperation,China(No.20JR10 QA579).
文摘Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods embedded with TiO_(2)and polyaniline(PANI)nanoparticles are synthesized via heterogeneous precipitation and in-situ polymerization.The obtained PANI-TiO_(2)-ATP one-di-mensional(1D)nanostructures can intertwine into three-dimensional(3D)conductive network,which favors energy dissipation.The min-imum reflection loss(RL_(min))of the PANI-TiO_(2)-ATP coating(20wt%)reaches-49.36 dB at 9.53 GHz,and the effective absorption band-width(EAB)can reach 6.53 GHz with a thickness of 2.1 mm.The excellent MA properties are attributed to interfacial polarization,mul-tiple loss mechanisms,and good impedance matching induced by the synergistic effect of PANI-TiO_(2)nanoparticle shells and ATP nanor-ods.In addition,salt spray and Tafel polarization curve tests reveal that the PANI-TiO_(2)-ATP coating shows outstanding corrosion resist-ance performance.This study provides a low-cost and high-efficiency strategy for constructing 1D nanonetwork composites for MA and corrosion resistance applications using natural porous ATP nanorods as carriers.
文摘In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.
文摘The effects of tungsten inert gas arc-assisted friction stir welding(TIG-FSW)on the microstructure,tensile properties and corrosion resistance of AA6016 and AA2519 alloys lap joints were investigated by means of optical microscope,scanning electron microscope,tensile test at room temperature,corrosion immersion tests and electrochemical measurements.The results show that the introduction of TIG arc during FSW process results in a more uniform microstructure of the joint with no tunnel hole defects.Furthermore,it enhances tensile strength and elongation of the joint with increased rates of 11.5%and 50.0%,respectively;meanwhile,the corrosion current density and largest corrosion depth are decreased with reduction rates of 78.2%and 45.7%,respectively.TIG-FSW can promote flow,contact and diffusion of materials,thus improving microstructure of the joint.Additionally,it reduces the size and number of secondary phase particles.Consequently,these factors contribute to the higher tensile properties and corrosion resistance of the joints.
基金financially supported by the National Natural Science Foundation of China(No.51404302)the Natural Science Foundation of Hunan Province,China(Nos.2020JJ4732,2022JJ30897)the Natural Science Foundation of Changsha City,China(No.kq2202430).
文摘The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found that the charge transfer resistance of Ti−3Cu alloy was 4.89×10^(5)Ω∙cm^(2),which was doubled the data obtained by CP-Ti alloy.The antibacterial rates of Ti−3Cu alloy against S.mutans and P.gingivalis were 45.0%and 54.5%.And the antibacterial rates increased with the prolongation of cultivation time,reaching up to 62.8%and 68.6%,respectively.The in-situ nano Ti_(2)Cu precipitates were homogeneously distributed in the matrix of the Ti−3Cu alloy,which was the key reason of increasing the corrosion resistance.Additionally,the microscale electric fields between theα-Ti matrix and the Ti_(2)Cu was responsible for the enhancement of the antibacterial properties.
基金The National Natural Science Foundation of China(U2130122,U22A20199,and 51975533)Natural Science Foundation of Zhejiang Province(LGJ22E050002)+1 种基金Equipment pre-research joint fund project of the Ministry of Education(8091B022215)China Postdoctoral Science Foundation(2023M733147)funded this research.
文摘In this study,laser-assisted plasma electrolytic oxidation(Laser/PEO)coating was prepared on AZ31B magnesium alloy for corrosion protection,due to insufficient corrosion protection caused by the inherent defects,cracks and poor quality of PEO coatings.The plasma discharge evolution,morphological characteristics,elemental composition during coating growth were characterized by high-speed camera,SEM,EDX,XRD and XPS,respectively.Meanwhile,Mott Schottky(M-S)curves,potentiodynamic polarization(PDP)curves and electrochemical impedance spectroscopy(EIS)tests characterized the oxygen vacancy defects and corrosion resistance of the coatings.The results demonstrated that laser-assisted irradiation not only induced plasma discharge on the anode surface,but also limited the plasma discharge size in the post-processing stage,which significantly increased the proportion of corrosion-resistant phase Mg_(2)SiO_(4)(the proportion of Mg_(2)SiO_(4)increased from 23.70%to 39.22%),thickness and density in the coating,and obviously reduced the oxygen vacancy defects and microcracks in the coating.As a result,the corrosion resistance of the Laser/PEO coating(9.29(±0.76)×10^(-7)A·cm^(-2))was further enhanced in comparation with the PEO coating(3.06(±0.19)×10^(-6) A·cm^(-2)).
基金financial supports from the National Natural Science Foundation of China (No.52305440)the Natural Science Foundation of Changsha City (Nos.kq2208272,kq2208274)+1 种基金the Tribology Science Fund of the State Key Laboratory of Tribology in Advanced Equipment (SKLTKF22B09)the National Key Research and Development Program of China (2022YFB3706902)。
文摘Under the laser directed energy deposition(LDED)process,the rapid melting and solidification usually lead to the emergence of pores and coarse columnar dendrites,which in turn compromise the properties of the deposited alloys.This study introduced in-situ ultrasonic rolling(UR)as an innovative method to enhance the corrosion resistance of LDED specimens,and the microstructural characteristics and their correlation with corrosion resistance were deeply investigated.The findings reveal that the LDED-UR specimen exhibits a reduction in both the fraction and size of pores.Under the influence of severe plastic deformation generated by LDED-UR process,fully equiaxed grains appear with a reduced average size of 28.61μm(compared to63.98μm for the LDED specimen with columnar grains).The electrochemical corrosion resistance of the LDED-UR specimen is significantly enhanced compared to the LDED specimen.This enhanced corrosion resistance can be attributed to the low fraction of small-sized pores,the fine and uniformly distributed Cr-enriched ferrite phase,and the formation of a compact and thick passive film due to dense grain boundaries.The insight of the correlation between microstructure and corrosion behavior opens up a new pathway to enhance the corrosion resistance of LDED specimens.
文摘Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
基金financially supported by the National Natural Science Foundation of China(22178242)the Shanxi Provincial Key Research and Development Project(202102040201009).
文摘The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion resistance of Q235 carbon steel.Scanning electron microscopy results indicated that the CeO_(2) grains were rod-like and ellipsoidal in shape,and the distribution pattern of BTA was analyzed by energy dispersive spectroscope.The dynamic potential polarization curve proved the excellent corrosion resistance of the composite epoxy resin with CeO_(2) and BTA co-addition,and electrochemical impedance spectroscopy test analysis indicated the significantly enhanced long-term corrosion protection performance of the composite coating.And the optimal protective performance was provided by the coating containing 0.3%(mass)CeO_(2) and 20%(mass)BTA,which was attributed to the barrier performance of CeO_(2) particles and the chemical barrier effect of BTA.The formation of corrosion products was analyzed using X-ray diffraction.In addition,the corrosion resistance mechanism of the coating was also discussed in detail.
基金funded by the National Key Research and Development Program of China (2018YFE0104200)National Natural Science Foundation of China (51875310, 52175274, 82172065)Tsinghua Precision Medicine Foundation
文摘Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.
基金Joint Fund of the National Natural Science Foundation of China(U2004164)Key Scientific and Technological Research Projects in Henan Province(grant number 232102311155 and 232102230106)+1 种基金Zhengzhou University College Student Innovation and Entrepreneurship Training Program(13210022)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(grant number 21KJB430013)。
文摘In order to prolong the service time and enhance the biocompatibility of magnesium(Mg)alloys used for cardiovascular scaffolds,the composite coatings of Schiff base(corrosion inhibitor)and sulfonated hyaluronic acid(S-HA)nanoparticles(NP@S-HA)with different sulfur content(10.02 wt%and 11.55wt%)were prepared on ZE21B alloy by means of electrostatic spraying with spraying time of 0.5 min,1.0 min and 1.5 min in this paper.Through a series of representations including corrosion experiments and biological characterization,the composite coatings with a sulfur content of 11.55wt%and a spray time of 1.0 min were finally picked due to its better comprehensive performances,which provides a new possibility for the surface modification of degradable Mg alloy cardiovascular scaffolds.
基金Project(202302AB080024)supported by the Department of Science and Technology of Yunnan Province,China。
文摘The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.
基金funded by European Union’s Horizon 2020 Research and Innovation program and‘Magnesium based Nano Composites for Orthopedic Applications’MAGNACOM,project under the aegis of Programme for Early-Stage Researchers(PEARL,I-Site ULNE under the Marie Sklodowska-Curie grant agreement)supported by University of Lille(France)and Hauts-de-France region.
文摘There is an increasing interest in biodegradable materials,such as magnesium,for orthopaedic implants.This is driven by their potential to address challenges like stress shielding and the need for secondary removal surgery.In this study,biodegradable magnesium alloys were produced using the Vacuum Induction Casting technique.The impact of micro-alloying Zn and Ca in Mg-xZn-0.2Ca(x=0.1,0.2,0.3,and 0.4 wt%)alloys on corrosion resistance,cytocompatibility,and early-stage inflammatory response was investigated.XRD and SEM-EDS analysis confirmed the presence of Ca_(2)Mg_(6)Zn_(3)secondary phases in all alloys.The Mg-0.3Zn-0.2Ca alloy exhibited the lowest corrosion rate and an elastic modulus of 36.8 GPa,resembling that of natural bone.Electrochemical measurements indicated a correlation between grain size and secondary phase volume fraction in explaining corrosion behaviour.In vitro degradation in simulated body fluid(SBF)for 21 days showed hydroxyapatite formation on alloy surfaces,aligning with electrochemical studies.In vitro cytotoxicity tests demonstrated the cytocompatibility of all alloys,with Mg-0.3Zn-0.2Ca having the highest cell viability over a 6-day cell culture.Investigation into the inflammatory response with RAW-Blue macrophages revealed the anti-inflammatory properties of Mg-0.3Zn-0.2Ca alloys.Micro-alloying with 0.3 wt%Zn and 0.2 wt%Ca enhanced mechanical properties,corrosion resistance,cytocompatibility,and immunomodulatory properties.This positions the Mg-0.3Zn-0.2Ca alloy as a promising biodegradable implant for bone fixation applications.
基金supported by the Natural Science Foundation of Zhejiang Province(No.LZY23E050001)the National Natural Science Foundation of China(Nos.52271106,52171120,52001262).
文摘TiZrTaNb-based high-entropy alloys(HEAs)are research frontier of biomedical materials due to their high hardness,good yield strength,excellent wear resistance and corrosion resistance.Sn,as an essential trace element in the human body that plays a significant role in physiological process.It has stable chemical properties and a low elastic modulus.In this study,a new material,TiZrTaNbSn HEAs,was proposed as a potential biomedical alloy.The Ti_(35)Zr_(25)Ta_(15)Nb_(15)Sn_(10)biomedical high-entropy alloys(BHEAs)were successfully prepared through an arc melting furnace and then remelted using a German high-temperature and high-pressure apparatus under GPa-level(4 GPa and 7 GPa).The precipitation behavior of the needle-like HCP-Zr_(5)Sn_(3)phase that precipitates discontinuously at the grain boundary was successfully controlled.The phase constitution,microstructure,and corrosion resistance of the alloy were studied.The results show that the needle-like HCP-Zr_(5)Sn_(3)phase is eliminated and the(Zr,Sn)-rich nano-precipitated phase is precipitated in the microstructure under high pressure,which leads to the narrowing of grain boundaries and consequently improves the corrosion resistance of the alloy.In addition,the formation mechanisms of(Zr,Sn)-rich nanoprecipitates in BHEAs were discussed.More Zr and Sn dissolve in the matrix due to the effect of high pressure,during the cooling process,they precipitate to form a(Zr,Sn)-rich nano-precipitated phase.
基金funded by Ningbo Key R&D Plan and“Unveiling and Leading”(Grant No.2023Z093)Ningbo Science and Technology Innovation 2025 Major Special Project(Grant No.2022Z106)Hezhou City Central Leading Local Science and Technology Development Special Fund Project(Grant No.HK ZY2022002).
文摘The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets.
基金financial support by the National Natural Science Foundation of China(No.52071067)Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program,China(No.RC231178)+1 种基金Natural Science Foundation of Liaoning Province,China(No.2022-YGJC-16)the Fundamental Research Funds for the Central Universities,China(No.N2302019).
文摘To enhance the long-term corrosion resistance of the plasma electrolytic oxidation(PEO)coating on the magnesium(Mg)alloy,an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating.In this study,the corrosion performance of PEO-coated AM50 Mg was significantly improved by loading sodium lauryl sulfonate(SDS)and sodium dodecyl benzene sulf-onate into Ba(NO_(3))_(2) post-sealing solutions.Scanning electron microscopy,X-ray photoelectron spectroscopy,X-ray diffraction,Fourier transform infrared spectrometer,and ultraviolet-visible analyses showed that the inhibitors enhanced the incorporation of BaO_(2) into PEO coatings.Electrochemical impedance showed that post-sealing in Ba(NO_(3))_(2)/SDS treatment enhanced corrosion resistance by three orders of magnitude.The total impedance value remained at 926Ω·cm^(2)after immersing in a 0.5wt%NaCl solution for 768 h.A salt spray test for 40 days did not show any obvious region of corrosion,proving excellent post-sealing by Ba(NO_(3))_(2)/SDS treatment.The corrosion resistance of the coating was enhanced through the synergistic effect of BaO2 pore sealing and SDS adsorption.
基金supported by Suqian Sci&Tech Program Foundation,China(No.K202130)the National Natural Science Foundation of China(No.52071176)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘A series of AlCoCrFe_(1−x)NiMo_(x)high-entropy alloys(HEAs)were fabricated and characterized by XRD,SEM,EDS mapping,compression test,hardness and electrochemistry measurements.The research results indicate that after Mo completely replaces Fe,the compressive strength of the alloys can reach 3181 MPa because the addition of Mo can formσphase beneficial to the grain refinement,thereby improving the strength of the alloys.However,the addition of Mo has a detrimental effect on corrosion resistance as a result of formation of galvanic cell between the substrate andσphases.Although most of AlCoCrFe_(1−x)NiMo_(x)have lower corrosion current densities than pristine alloy,a partial Mo substitution(x=0.25)widens the passivation region of HEAs.The inconsistency of mechanical properties with corrosion resistance is ascribed to different roles of Mo in phase formation and protection of passive film.
文摘This comprehensive review examines the structural,mechanical,electronic,and thermodynamic properties of Mg-Li-Al alloys,focusing on their corrosion resistance and mechanical performance enhancement.Utilizing first-principles calculations based on Density Functional Theory(DFT)and the quasi-harmonic approximation(QHA),the combined properties of the Mg-Li-Al phase are explored,revealing superior incompressibility,shear resistance,and stiffness compared to individual elements.The review highlights the brittleness of the alloy,supported by B/G ratios,Cauchy pressures,and Poisson’s ratios.Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics,while Mulliken population analysis emphasizes significant electron transfer within the alloy.This paper also studied thermodynamic properties,including Debye temperature,heat capacity,enthalpy,free energy,and entropy,which are precisely examined,highlighting the Mg-Li-Al phase sensitive to thermal conductivity and thermal performance potential.Phonon density of states(PHDOS)confirms dynamic stability,while anisotropic sound velocities reveal elastic anisotropies.This comprehensive review not only consolidates the current understanding of the Mg-Li-Al alloy’s properties but also proposes innovative strategies for enhancing corrosion resistance.Among these strategies is the introduction of a corrosion barrier akin to the Mg-Li-Al network,which holds promise for advancing both the applications and performance of these alloys.This review serves as a crucial foundation for future research aimed at optimizing alloy design and processing methods.
基金financially supported by the National Natural Science Foundation of China(51665012)the Jiangxi Province Science Foundation for Outstanding Scholarship(20171BCB23061).
文摘Magnesium alloys,known for their exceptional lightweight properties,have presented challenges in various applications due to their limited corrosion resistance.In this study,the corrosion resistance of Mg_(97)Zn_(1)Y_(2)magnesium alloys was enhanced by incorporating Zr elements into the Mg_(97)Zn_(1)Y_(2)matrix,which is distinguished by long periodic stacking ordered(LPSO)phases.Results show that Mg_(97)Zn_(1)Y_(2)-xwt.%Zr(x=0,0.1,0.3,0.6)alloys containing Zr exhibit reduced hydrogen evolution rates and decreased corrosion levels compared with that without Zr,when immersed in a 3.5wt.%NaCl solution.Addition of 0.3wt.%Zr results in the most significant improvement,with a corrosion rate as low as 2.261 mL·cm^(-2),representing an 86%reduction from 16.438 mL·cm^(-2)of the base alloy.Furthermore,alloys with Zr additions demonstrate a more positive corrosion potential and lower corrosion current density than does the matrix alloy(64.92μA·cm^(-2)).The lowest corrosion current density,21.61μA·cm^(-2),occurs with the addition of 0.3wt.%Zr.The introduction of Zr induces a change in the microstructure of the LPSO phases,increasing the charge transfer resistance within the alloy and thus effectively improving its corrosion resistance.
基金We also thank DESY(Hamburg,Germany)for granting beamtime to the proposal I-20221296 and support of the PETRAⅢP05 end-station.
文摘With the growing demand for weight reduction,the application of joint lightweight structural materials is increasing.Magnesium alloys feature low density,high specific strength and good formability,offering significant advantages for fuel efficiency and load capacity.Combined with Ti,a dissimilar Ti/Mg composite material provides great flexibility combining the properties of each material.However,because of the great differences in chemical and electrochemical properties between Mg and Ti,it is imperative to address the galvanic corrosion problem of such dissimilar Ti/Mg components.This work presents an investigation of the PEO processing of sintered Ti/Mg0.6Ca couples,aiming to improve the corrosion resistance of such dissimilar alloy combinations using a phosphate-aluminate electrolyte.The results show that uniform and continuous coatings can be formed on the dissimilar Ti/Mg0.6Ca couple.The coating mainly contains MgO and MgAl_(2)O_(4)on the Mg0.6Ca side,and Al_(2)TiO_(5)is the dominant phase on the Ti side.The work also took advantage of synchrotron X-ray computed tomography(CT)scanning to achieve 3D reconstruction of the coating morphology,which can be a fast method to assess the porosity and compactness of the coating and further predict the coating corrosion resistance.The coating effectively improved the corrosion resistance of the dissimilar Ti/Mg0.6Ca couple.
基金China Scholarship Council for the award of fellowship and funding(No.202006370022).
文摘In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate.