期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
POLYNOMIALLY BOUNDED COSINE FUNCTIONS
1
作者 Dingbang Cang Xiaoqiu Song Chen Cang 《Analysis in Theory and Applications》 2012年第1期13-18,共6页
We characterize polynomial growth of cosine functions in terms of the resolvent of its generator and give a necessary and sufficient condition for a cosine function with an infinitesimal generator which is polynomiall... We characterize polynomial growth of cosine functions in terms of the resolvent of its generator and give a necessary and sufficient condition for a cosine function with an infinitesimal generator which is polynomially bounded. 展开更多
关键词 cosine functions resolvent polynomially bounded
下载PDF
二阶抽象微分方程的多项式有界解的极大子空间 被引量:1
2
作者 王梅英 江惠坤 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期11-16,共6页
受文de Laubenfels(1997,Isreal Journal of Mathematics,98:189—207)的启发,引进空间形(A,k)和H(A,ω),它们分别是使得该二阶抽象Cauchy问题有在[0,∞)一致连续且O((1+t)^k)有界和O(e^ωt)有界的弱解的x∈X的... 受文de Laubenfels(1997,Isreal Journal of Mathematics,98:189—207)的启发,引进空间形(A,k)和H(A,ω),它们分别是使得该二阶抽象Cauchy问题有在[0,∞)一致连续且O((1+t)^k)有界和O(e^ωt)有界的弱解的x∈X的全体.讨论Banach空间X上二阶抽象Cauchy问题的具有多项式有界解或指数有界解的极大子空间问题.由Wang and Wang(1996,Functional Analysis in China.Kluwer,333—350)知,该Cauchy问题适定的充要条件是该Cauchy问题中的X上闭算子A生成一个强连续Cosine算子函数.处理该Cauchy问题不适定的情况,证明或指出了如下结论:·W(A,k)和H(A,ω)均为Banach空间,且W(A,k)和H(A,∞)均连续嵌入X; ·部分算子AIW(A,k)生成一个多项式有界的余弦算子函数使‖C(t)‖W(A,k)≤2(1+t)^k;·部分算子AIW(A,ω)生成一个指数有界的余弦算子函数{C(t)}t∈R+,‖C(t)‖H(W,ω)≤2e^ωt;·W(A,k)和H(A,ω)分别是极大的.即若有Banach空间Y连续嵌入X,且使AIY生成一个O((1+t)^k)有界的余弦算子函数,那么Y连续嵌入W(A,k);而若使AIY生成一个O(e^ωt)有界的余弦算子函数,那么Y连续嵌入H(A,ω). 展开更多
关键词 二阶抽象微分方程 多项式有界解 余弦算子函数
下载PDF
Subspaces for weak mild solutions of the second order abstract differential equation
3
作者 王梅英 《Journal of Southeast University(English Edition)》 EI CAS 2007年第2期313-316,共4页
The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, wher... The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, where A is a closed operator on Banach space X. The case that the problem is ill-posed is treated, and two subspaces Y(A, k) and H(A, ω) are introduced. Y(A, k) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v( t, x) such that ess sup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞. H(A, ω) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v(t,x)such that ess sup{e^-ωl|d/(dt)〈v(t,x),x^*)|:t≥0,x^*∈X^*,‖x^*‖≤1}〈+∞. The following conclusions are proved that Y(A, k) and H(A, ω) are Banach spaces, and both are continuously embedded in X; the restriction operator A | Y(A,k) generates a once-integrated cosine operator family { C(t) }t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,arbitary t≥0; the restriction operator A |H(A,ω) generates a once- integrated cosine operator family {C(t)}t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,arbitary t≥0. 展开更多
关键词 second order abstract differential equation polynomially bounded solution cosine operator function
下载PDF
一个余弦多项式的上界估计
4
作者 尹枥 《滨州学院学报》 2012年第6期106-108,共3页
通过不完全贝塔函数的引入,把一个余弦多项式和不完全贝塔函数结合起来,从而给出了此余弦多项式的上界估计.
关键词 余弦多项式 不完全贝塔函数 上界
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部