期刊文献+
共找到27,605篇文章
< 1 2 250 >
每页显示 20 50 100
The BEL1-like transcription factor GhBLH5-A05 participates in cotton response to drought stress
1
作者 Jing-Bo Zhang Yao Wang +4 位作者 Shi-Peng Zhang Fan Cheng Yong Zheng Yang Li Xue-Bao Li 《The Crop Journal》 SCIE CSCD 2024年第1期177-187,共11页
Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regu... Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05. 展开更多
关键词 cotton(Gossypium hirsutum) BEL1-like transcription factor Drought stress Transcriptional regulation Drought tolerance
下载PDF
Surface Morphology and Thermo-Electrical Energy Analysis of Polyaniline (PANI) Incorporated Cotton Fabric
2
作者 Md.Shohan Parvez Md.Mustafizur Rahman +1 位作者 Mahendran Samykano Mohammad Yeakub Ali 《Energy Engineering》 EI 2024年第1期1-12,共12页
With the exponential development in wearable electronics,a significant paradigm shift is observed from rigid electronics to flexible wearable devices.Polyaniline(PANI)is considered as a dominant material in this secto... With the exponential development in wearable electronics,a significant paradigm shift is observed from rigid electronics to flexible wearable devices.Polyaniline(PANI)is considered as a dominant material in this sector,as it is endowed with the optical properties of both metal and semiconductors.However,its widespread application got delineated because of its irregular rigid form,level of conductivity,and precise choice of solvents.Incorporating PANI in textile materials can generate promising functionality for wearable applications.This research work employed a straightforward in-situ chemical oxidative polymerization to synthesize PANI on Cotton fabric surfaces with varying dopant(HCl)concentrations.Pre-treatment using NaOH is implemented to improve the conductivity of the fabric surface by increasing the monomer absorption.This research explores the morphological and structural analysis employing SEM,FTIR and EDX.The surface resistivity was measured using a digital multimeter,and thermal stability is measured using TGA.Upon successful polymerization,a homogenous coating layer is observed.It is revealed that the simple pre-treatment technique significantly reduces the surface resistivity of Cotton fabric to 1.27 kΩ/cm with increasing acid concentration and thermal stability.The electro-thermal energy can also reach up to 38.2°C within 50 s with a deployed voltage of 15 V.The modified fabric is anticipated to be used in thermal regulation,supercapacitor,sensor,UV shielding,antimicrobial and other prospective functional applications. 展开更多
关键词 POLYANILINE cotton in-situ polymerization SEM TGA heating fabric
下载PDF
Assembly and phylogenomic analysis of cotton mitochondrial genomes provide insights into the history of cotton evolution
3
作者 Yanlei Feng Yukang Wang +10 位作者 Hejun Lu Jun Li Delara Akhter Fang Liu Ting Zhao Xingxing Shen Xiaobo Li James Whelan Tianzhen Zhang Jianping Hu Ronghui Pan 《The Crop Journal》 SCIE CSCD 2023年第6期1782-1792,共11页
Cotton is a major crop that provides the most important renewable textile fibers in the world.Studies of the taxonomy and evolution of cotton species have received wide attentions,not only due to cotton’s economic va... Cotton is a major crop that provides the most important renewable textile fibers in the world.Studies of the taxonomy and evolution of cotton species have received wide attentions,not only due to cotton’s economic value but also due to the fact that Gossypium is an ideal model system to study the origin,evolution,and cultivation of polyploid species.Previous studies suggested the involvement of mitochondrial genome editing sites and copy number as well as mitochondrial functions in cotton fiber elongation.Whereas,with only a few mitogenomes assembled in the cotton genus Gossypium,our knowledge about their roles in cotton evolution and speciation is still scarce.To close this gap,here we assembled 20 mitogenomes from 15 cotton species spanning all the cotton clades(A–G,K,and AD genomes)and 5 cotton relatives using short and long sequencing reads.Systematic analyses uncovered a high level of mitochondrial gene sequence conservation,abundant sequence repeats and many insertions of foreign sequences,as well as extensive structural variations in cotton mitogenomes.The sequence repeats and foreign sequences caused significant mitogenome size inflation in Gossypium and its close relative Kokia in general,while there is no significant difference between the lint and fuzz cotton mitogenomes in terms of gene content,RNA editing,and gene expression level.Interestingly,we further revealed the specific presence and expression of two novel mitochondrial open reading frames(ORFs)in lint-fiber cotton species.Finally,these structural features and novel ORFs help us gain valuable insights into the history of cotton evolution and polyploidization and the origin of species producing long lint fibers from a mitogenomic perspective. 展开更多
关键词 cotton evolution cotton phylogeny Lint fiber cotton Mitochondrial genome Mitochondrial genes
下载PDF
Spatial Pattern of Cotton Yield Variability and Its Response to Climate Change in Cotton Belt of Pakistan
4
作者 YU Shan DU Wala +4 位作者 ZHANG Xiang HONG Ying LIU Yang HONG Mei CHEN Siyu 《Chinese Geographical Science》 SCIE CSCD 2023年第2期351-362,共12页
Cotton is a revenue source for cotton-producing countries;as the second-largest crop in Pakistan,it significantly contributes to its economy.Over the past few decades,cotton productivity has become unstable in Pakista... Cotton is a revenue source for cotton-producing countries;as the second-largest crop in Pakistan,it significantly contributes to its economy.Over the past few decades,cotton productivity has become unstable in Pakistan,and climate change is one of the main factors that impact cotton yield.Due to climate change,it becomes very important to understand the change trend and its impact on cotton yield at the regional level.Here,we investigate the relationship of standardized cotton yield variability with the variability of climate factors using a 15-yr moving window.The piecewise regression was fitted to obtain the trend-shifting point of climate factors.The results show that precipitation has experienced an overall decreasing trend of–0.64 mm/yr during the study period,with opposing trends of–1.39 mm/yr and 1.52 mm/yr before and after the trend-shifting point,respectively.We found that cotton yield variability increased at a rate of 0.17%/yr,and this trend was highly correlated with the variability of climate factors.The multiple regression analysis explains that climate variability is a dominant factor and controlled 81%of the cotton production in the study area from 1990 to 2019,while it controlled 73%of the production from 1990 to 2002 and 84%from 2002 to 2019.These findings reveal that climate factors affact the distinct spatial pattern of changes in cotton yield variability at the tehsil level. 展开更多
关键词 cotton crop yield variability climate impact on cotton yield regression analysis 15-yr moving window Pakistan
下载PDF
Flavanone and flavonoid hydroxylase genes regulate fiber color formation in naturally colored cotton
5
作者 Hongli Zheng Bailin Duan +6 位作者 Bo Yuan Zhengbin Chen Dongliang Yu Liping Ke Wenlong Zhou Haifeng Liu Yuqiang Sun 《The Crop Journal》 SCIE CSCD 2023年第3期766-773,共8页
Using naturally colored cotton(NCC)can eliminate dyeing,printing and industrial processing,and reduce sewage discharge and energy consumption.Proanthocyanidins(PAs),the primary coloration components in brown fibers,ar... Using naturally colored cotton(NCC)can eliminate dyeing,printing and industrial processing,and reduce sewage discharge and energy consumption.Proanthocyanidins(PAs),the primary coloration components in brown fibers,are polyphenols formed by oligomers or polymers of flavan-3-ol units derived from anthocyanidins.Three essential structural genes for flavanone and flavonoid hydroxylation encoding flavanone-3-hydroxylase(F3H),flavonoid 3’-hydroxylase(F3’H)and flavonoid 3’5’-hydroxylase(F3’5’H)are initially committed in the flavonoid biosynthesis pathway to produce common precursors.The three genes were all expressed predominantly in developing fibers of NCCs,and their expression patterns varied temporally and spatially among NCC varieties.In GhF3Hi,GhF3’Hi and GhF3’5’Hi silenced lines of NCC varieties XC20 and ZX1,the expression level of the three genes decreased in developing cotton fiber,negatively correlated with anthocyanidin content and fiber color depth.Fiber color depth and type in RNAi lines changed with endogenous gene silencing efficiency and expression pattern,the three hydroxylase genes functioned in fiber color formation.GhF3H showed functional differentiation among NCC varieties and GhF3’H acted in the accumulation of anthocyanin in fiber.Compared with GhF3’H,GhF3’5’H was expressed more highly in brown fiber with a longer duration of expression and caused lighter color of fibers in GhF3’5’H silenced lines.These three genes regulating fiber color depth and type could be used to improve these traits by genetic manipulation. 展开更多
关键词 Naturally colored cotton Brown cotton fiber Fiber color Anthocyanidin Flavanone/flavanoid hydroxylase
下载PDF
Are yarn quality prediction tools useful in the breeding of high yielding and better fibre quality cotton(Gossypium hirsutum L.)?
6
作者 LIU Shiming GORDON Stuart STILLER Warwick 《Journal of Cotton Research》 CAS 2023年第4期227-239,共13页
Results The population had large variations for lint yield,fibre properties,predicted yarn properties,and composite fibre quality values.Lint yield with all fibre quality traits was not correlated.When the selection w... Results The population had large variations for lint yield,fibre properties,predicted yarn properties,and composite fibre quality values.Lint yield with all fibre quality traits was not correlated.When the selection was conducted first to keep those with improved fibre quality,and followed for high yields,a large proportion in the resultant populations was the same between selections based on Cottonspec predicted yarn quality and HVI-measured fibre properties.They both exceeded the selection based on FQI and Background The approach of directly testing yarn quality to define fibre quality breeding objectives and progress the selection is attractive but difficult when considering the need for time and labour.The question remains whether yarn prediction tools from textile research can serve as an alternative.In this study,using a dataset from three seasons of field testing recombinant inbred line population,Cottonspec,a software developed by the Commonwealth Scientific and Industrial Research Organisation(CSIRO)for predicting ring spun yarn quality from fibre properties measured by High Volume Instrument(HVI),was used to select improved fibre quality and lint yield in the population.The population was derived from an advanced generation inter-crossing of four CSIRO conventional commercial varieties.The Cottonspec program was able to provide an integrated index of the fibre qualities affecting yarn properties.That was compared with selection based on HVI-measured fibre properties,and two composite fibre quality variables,namely,fibre quality index(FQI),and premium and discount(PD)points.The latter represents the net points of fibre length,strength,and micronaire based on the Premiums and Discounts Schedule used in the market while modified by the inclusion of elongation.PD points.Conclusions The population contained elite segregants with improved yield and fibre properties,and Cottonspec predicted yarn quality is useful to effectively capture these elites.There is a need to further develop yarn quality prediction tools through collaborative efforts with textile mills,to draw better connectedness between fibre and yarn quality.This connection will support the entire cotton value chain research and evolution. 展开更多
关键词 Yield Fibre properties Fibre quality index Predictive yarn quality cotton marketing cotton breeding
下载PDF
Growth, yield and fiber quality characteristics of Bt and non-Bt cotton cultivars in response to boron nutrition
7
作者 MEHRAN Muhammad ASHRAF Muhammad +4 位作者 SHAHZAD Sher Muhammad SHAKIR Muhammad Siddique AZHAR Muhammad Tehseen AHMAD Fiaz ALVI Alamgir 《Journal of Cotton Research》 CAS 2023年第1期1-12,共12页
Background Boron(B)deficiency is an important factor for poor seed cotton yield and fiber quality.However,it is often missing in the plant nutrition program,particularly in developing countries.The current study inves... Background Boron(B)deficiency is an important factor for poor seed cotton yield and fiber quality.However,it is often missing in the plant nutrition program,particularly in developing countries.The current study investigated B’s effect on growth,yield,and fiber quality of Bt(CIM-663)and non-Bt(Cyto-124)cotton cultivars.The experimental plan consisted of twelve treatments:Control(CK);B at 1 mg·kg^(−1) soil application(SB1);2 mg·kg^(−1) B(SB2);3 mg·kg^(−1) B(SB3);0.2%B foliar spray(FB1);0.4%B foliar spray(FB2);1 mg·kg^(−1) B+0.2%B foliar spray(SB1+FB1);1 mg·kg^(−1) B+0.4%B foliar spray(SB1+FB2);2 mg·kg^(−1) B+0.2%B foliar spray(SB2+FB1);2 mg·kg^(−1) B+0.4%B foliar spray(SB2+FB2);3 mg·kg^(−1) B+0.2%B foliar spray(SB3+FB1);3 mg·kg^(−1) B+0.4%B foliar spray(SB3+FB2).Each treat-ment has three replications,one pot having two plants per replication.Results B nutrition at all levels and methods of application significantly(P≤0.05)affected the growth,physiological,yield,and fiber quality characteristics of both cotton cultivars.However,SB2 either alone or in combination with foliar spray showed superiority over others,particularly in the non-Bt cultivar which responded better to B nutrition.Maxi-mum improvement in monopodial branches(345%),sympodial branches(143%),chlorophyll-a(177%),chlorophyll-b(194%),photosynthesis(169%),and ginning out turn(579%)in the non-Bt cultivar was found with SB2 compared with CK.In Bt cultivar,although no consistent trend was found but integrated use of SB3 with foliar spray performed relatively better for improving cotton growth compared with other treatments.Fiber quality characteristics in both cultivars were improved markedly but variably with different B treatments.Conclusion B nutrition with SB2 either alone or in combination with foliar spray was found optimum for improving cotton’s growth and yield characteristics. 展开更多
关键词 BORON cotton Fiber length Fiber strength GOT Micronaire value Seed cotton yield
下载PDF
Root distribution and influencing factors of dry-sowing and wet-growing cotton plants under different water conditions
8
作者 DING Yu ZHANG Jianghui +4 位作者 BAI Yungang LIU Hongbo ZHENG Ming ZHAO Jinghua XIAO Jun 《排灌机械工程学报》 CSCD 北大核心 2023年第10期1073-1080,共8页
To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequenci... To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequencies(high frequency and low frequency)and one double film cover winter irrigation control treatment(CK:2250 m^(3)/hm^(2))were set up to analyze the spatial distribution patterns of soil water and salt environment and root density in dry sown and wet emerged cotton fields under diffe-rent moisture control conditions.The results show that the soil water content and water infiltration range gradually become larger with the increase of seedling water quantity,and the larger the seedling water quantity,the higher the soil water content.With the same seedling water quantity,the soil water content of the high-frequency(HF)treatment becomes obviously larger.The soil conductivity of each treatment tends to decrease gradually with the increase of seedling water and drip frequency,among which the distribution of soil conductivity of S6 treatment is closest to that of CK.With the increase in soil depth,the soil conductivity tends to increase first and then decrease.Compared with the low-frequency(LF)treatment,the high-frequency treatment shows a significantly deeper soil salt accumulation layer.The root length density(RLD)of cotton gradually increases with the amount of seedling water and the frequency of dripping.The soil layer of root distribution gradually deepens with the amount of seedling water in the vertical direction,and the RLD value in the horizontal direction is significantly greater in the mulched area than that in the bare area between films.This research can serve as a solid scientific foundation for the use of dry sowing and wet emergence techniques in cotton fields in southern Xinjiang. 展开更多
关键词 cotton double film mulching dry sowing and wet germination moisture regulation water and salt distribution root distribution cotton double film mulching dry sowing and wet germination moisture regulation water and salt distribution root distribution
下载PDF
Study of Cotton Seeds as a Processing Material
9
作者 Akhmedxodjayev Khamit Tursunovich Tadjibayev Muhammad Ahmadjanovich +2 位作者 Sharipov Khayrullo No’monjanovich Juramirza Abdiramatovich Kayumov Abduraximov Komiljon Karimovich 《Engineering(科研)》 2023年第11期782-791,共10页
The purpose of this research is to improve the qualitative and quantitative indicators of fiber, lint and seeds by improving the technology of preparing cotton seeds for processing. The state of the seeds after the gi... The purpose of this research is to improve the qualitative and quantitative indicators of fiber, lint and seeds by improving the technology of preparing cotton seeds for processing. The state of the seeds after the gin was studied and their division into fractions according to the degree of pubescence was recommended, the probabilities of the seeds emerging from the gin with varying degrees of pubescence were investigated, the geometric sizes and shapes of cotton seeds were studied. It has been established that when seeds come out of gin, they have different pubescence. The conditional movement of seeds without separation from the surface has been determined;found a formula describing the movement of seeds without detaching from the surface;the movement of seeds in a micro-flight is determined;the sizes of the cells of the mesh surface were determined as a function of d_c, α and on the speed of seed movement. The aim of the research work is to increase the yield of cotton fiber by improving the processing technology of germinated seeds, to improve the quality indicators of seeds and lint. In order to achieve this goal, a mesh surface device was created to sort the seeds into fractions. Sorting technology was developed on this device and operating modes were determined. In addition, the law of surface distribution of the fractions separated from the cotton stream moving along the surface of the net was determined, and based on the results of practical and theoretical research, a mode of sorting of cotton seeds was developed. 展开更多
关键词 FIBER LINT Raw cotton Ginning Saw Gin Working Chamber Raw Grate Linting cotton Seeds
下载PDF
Genetic variability predicting breeding potential of upland cotton(Gossypium hirsutum L.)for high temperature tolerance 被引量:1
10
作者 FAROOQ Amjad SHAKEEL Amir +5 位作者 SAEED Asif FAROOQ Jehanzeb RIZWAN Muhammad CHATTHA Waqas Shafqat SARWAR Ghulam RAMZAN Yasir 《Journal of Cotton Research》 CAS 2023年第2期81-97,共17页
Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hy... Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hybrids.Fifty cotton genotypes and 40 F1(hybrids)were tested under field conditions following the treatments,viz.,high temperature stress and control at peak flowering stage in August and October under April and June sowing,respectively.Results The mean squares revealed significant differences among genotypes,treatments,genotype×treatment for relative cell injury,chlorophyll contents,canopy temperature,boll retention and seed cotton yield per plant.The genetic diversity among 50 genotypes was analyzed through cluster analysis and heat susceptibility index(HSI).The heat tolerant genotypes including FH-Noor,NIAB-545,FH-466,FH-Lalazar,FH-458,NIAB-878,IR-NIBGE-8,Weal-AGShahkar,and heat sensitive,i.e.,CIM-602,Silky-3,FH-326,SLH-12 and FH-442 were hybridized in line×tester fashion to produce F1 populations.The breeding materials’populations(40 F1)revealed higher specific combining ability variances along with dominance variances,decided the non-additive type gene action for all the traits.The best general combining ability effects for most of the traits were displayed by the lines,i.e.,FH-Lalazar,NIAB-878 along with testers FH-326 and Silky-3.Specific combining ability effects and better-parent heterosis were showed by the crosses,viz.,FH-Lalazar×Silky-3,FH-Lalazar×FH-326,NIAB-878×Silky-3,and NIAB-878×FH-326 for seed cotton yield and yield contributing traits under high temperature stress.Conclusion Heterosis breeding should be carried out in the presence of non-additive type gene action for all the studied traits.The best combiner parents with better-parent heterosis may be used in crossing program to develop high yielding cultivars,and hybrids for high temperature stress tolerance. 展开更多
关键词 High temperature Upland cotton Peak flowering HETEROSIS Gene action Combining ability
下载PDF
A bZIP transcription factor GhVIP1 increased drought tolerance in upland cotton 被引量:1
11
作者 ZHAO Pei XU Yuewei +3 位作者 CHEN Wei SANG Xiaohui ZHAO Yunlei WANG Hongmei 《Journal of Cotton Research》 CAS 2023年第2期125-137,共13页
Background Cotton is extremely affected by severe natural stresses.Drought is one of the most serious abiotic stress that adversely influences cotton growth,productivity,and fiber quality.Previous studies indicate tha... Background Cotton is extremely affected by severe natural stresses.Drought is one of the most serious abiotic stress that adversely influences cotton growth,productivity,and fiber quality.Previous studies indicate that basic leucinezipper(bZIP)transcription factors are involved in the response of plants to various stresses.However,the molecular function and regulatory mechanism of GhVIP1 in response to drought stress are still unknown.Results In this research,GhVIP1 was cloned from a drought-tolerant variety.Expression of GhVIP1 was up-regulated in response to multiple abiotic stresses,especially under drought stress.And GhVIP1 was highly expressed in the root,stem,and 10 days post-anthesis ovule.Inhibiting the expression of GhVIP1 in cotton using the virus-induced gene silencing method resulted in higher electrical conductivity in leaves,but lower water content under drought stress compared with the WT plant.Overexpression of GhVIP1 in Arabidopsis enhanced plant drought tolerance through increasing the seed germination rate and improving the development of root.The exogenous expression of GhVIP1 up-regulated the transcription of genes associated with drought response and proline biosynthesis during drought stress in Arabidopsis.Conclusion In summary,these results indicated that GhVIP1 played a positive role in plants’response to drought stress.The use of GhVIP1 via modern biotechnology might facilitate the improvement of drought tolerance in cotton cultivars. 展开更多
关键词 cotton GhVIP1 Drought stress Proline Biosynthesis
下载PDF
High-temperature stress suppresses allene oxide cyclase 2 and causes male sterility in cotton by disrupting jasmonic acid signaling 被引量:1
12
作者 Aamir Hamid Khan Yizan Ma +9 位作者 Yuanlong Wu Adnan Akbar Muhammad Shaban Abid Ullah Jinwu Deng Abdul Saboor Khan Huabin Chi Longfu Zhu Xianlong Zhang Ling Min 《The Crop Journal》 SCIE CSCD 2023年第1期33-45,共13页
Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causi... Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causing male sterility in the cotton HT-sensitive line H05. Anther sterility was reversed by exogenous application of methyl jasmonate(MeJA) to early buds. To elucidate the role of GhAOC2 in JA biosynthesis and identify its putative contribution to the anther response to HT, we created gene knockout cotton plants using the CRISPR/Cas9 system. Ghaoc2 mutant lines showed male-sterile flowers with reduced JA content in the anthers at the tetrad stage(TS), tapetum degradation stage(TDS), and anther dehiscence stage(ADS). Exogenous application of MeJA to early mutant buds(containing TS or TDS anthers) rescued the sterile pollen and indehiscent anther phenotypes, while ROS signals were reduced in ADS anthers. We propose that HT downregulates the expression of GhAOC2 in anthers, reducing JA biosynthesis and causing excessive ROS accumulation in anthers, leading to male sterility. These findings suggest exogenous JA application as a strategy for increasing male fertility in cotton under HT. 展开更多
关键词 cotton(Gossypium hirsutum) Jasmonic acid Allene oxide cyclase 2 ROS CRISPR/Cas9 High-temperature stress
下载PDF
Association mapping of lignin response to Verticillium wilt through an eight-way MAGIC population in Upland cotton
13
作者 TIAN Xiao-min HAN Peng +9 位作者 WANG Jing SHAO Pan-xia AN Qiu-shuang Nurimanguli AINI YANG Qing-yong YOU Chun-yuan LIN Hai-rong ZHU Long-fu PAN Zhen-yuan NIE Xin-hui 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第5期1324-1337,共14页
Lignin metabolism plays a pivotal role in plant defense against pathogens and is always positively correlated as a response to pathogen infection. Thus, understanding resistance genes against plant pathogens depends o... Lignin metabolism plays a pivotal role in plant defense against pathogens and is always positively correlated as a response to pathogen infection. Thus, understanding resistance genes against plant pathogens depends on a genetic analysis of the lignin response. This study used eight Upland cotton lines to construct a multi-parent advanced generation intercross(MAGIC) population(n=280), which exhibited peculiar characteristics from the convergence of various alleles coding for advantageous traits. In order to measure the lignin response to Verticillium wilt(LRVW), the artificial disease nursery(ADN) and rotation nursery(RN) were prepared for MAGIC population planting in four environments. The stem lignin contents were collected, and the LRVW was measured with the lignin value of ADN/RN in each environment, which showed significant variations. We employed 9 323 high-quality single-nucleotide polymorphism(SNP) markers obtained from the Cotton-SNP63K array for genotyping the MAGIC population. The SNPs were distributed through the whole genome with 4.78 SNP/Mb density, ranging from 1.14(ChrA06) to 10.08(ChrD08). In addition, a genome-wide association study was performed using a Mixed Linear Model(MLM) for LRVW. Three stable quantitative trait loci(QTLs), qLRVW-A04, qLRVW-A10, and qLRVW-D05, were identified in more than two environments. Two key candidate genes, Ghi_D05G01046 and Ghi_D05G01221, were selected within the QTLs through the combination of variations in the coding sequence, induced expression patterns, and function annotations. Both genes presented nonsynonymous mutations in coding regions and were strongly induced by Verticillium dahliae. Ghi_D05G01046 encodes a leucine-rich extensin(LRx) protein involved in Arabidopsis cell wall biosynthesis and organization. Ghi_D05G01221 encodes a transcriptional co-repressor novel interactor of novel interactor of jasmonic acid ZIM-domain(JAZ–NINJA), which functions in the jasmonic acid(JA) signaling pathway. In summary, the study creates valuable genetic resources for breeding and QTL mapping and opens up a new perspective to uncover the genetic basis of VW resistance in Upland cotton. 展开更多
关键词 genome-wide association study LIGNIN RESPONSE MAGIC POPULATION Upland cotton VERTICILLIUM WILT
下载PDF
Comparative transcriptome and lipidome reveal that a low K^(+) signal effectively alleviates the effect induced by Ca^(2+) deficiency in cotton fibers
14
作者 GUO Kai GAO Wei +11 位作者 ZHANG Tao-rui WANG Zu-ying SUN Xiao-ting YANG Peng LONG Lu LIU Xue-ying WANG Wen-wen TENG Zhong-hua LIU Da-jun LIU De-xin TU Li-li ZHANG Zheng-sheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第8期2306-2322,共17页
Calcium(Ca^(2+))plays an important role in determining plant growth and development because it maintains cell wall and membrane integrity.Therefore,understanding the role of Ca^(2+)in carbon and lipid metabolism could... Calcium(Ca^(2+))plays an important role in determining plant growth and development because it maintains cell wall and membrane integrity.Therefore,understanding the role of Ca^(2+)in carbon and lipid metabolism could provide insights into the dynamic changes in cell membranes and cell walls during the rapid elongation of cotton fibers.In the present study,we found that the lack of Ca^(2+)promoted fiber elongation and rapid ovule expansion,but it also caused tissue browning in the ovule culture system.RNA-sequencing revealed that Ca^(2+)deficiency induced cells to be highly oxidized,and the expression of genes related to carbon metabolism and lipid metabolism was activated significantly.All gene members of nine key enzymes involved in glycolysis were up-regulated,and glucose was significantly reduced in Ca^(2+)deficiency-treated tissues.Ca^(2+)deficiency adjusted the flowing of glycolysis metabolic.However,low K^(+)recovered the expression levels of glycolysis genes and glucose content caused by Ca^(2+)deficiency.Electrospray ionizationtandem mass spectrometry technology was applied to uncover the dynamic profile of lipidome under Ca^(2+)and K^(+)interacted conditions.Ca^(2+)deficiency led to the decrease of fatty acid(FA),diacylglycerol(DAG),glycolipid and the significant increase of triacylglycerol(TAG),phospholipid phosphatidylethanolamine(PE),phosphatidylglycerol(PG),and PC(phosphatidylcholine).Low K^(+)restored the contents of FA,phospholipids,and glycolipids,effectively relieved the symptoms caused by Ca^(2+)deficiency,and recovered the development of fiber cells.This study revealed dynamic changes in transcript and metabolic levels and uncovered the signaling interaction of Ca^(2+)deficiency and low K^(+)in glycolysis and lipid metabolism during fiber development. 展开更多
关键词 cotton fiber GLYCOLYSIS LIPIDOME calcium potassium
下载PDF
The HD-Zip transcription factor GhHB12 represses plant height by regulating the auxin signaling in cotton
15
作者 LIU Yan WANG Wei-ping +3 位作者 ZHANG Lin ZHU Long-fu ZHANG Xian-long HE Xin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第7期2015-2024,共10页
Upland cotton(Gossypium hirsutum L.)is the most important natural textile fiber crop worldwide.Plant height(PH)is a significant component of plant architecture,strongly influencing crop cultivation patterns,overall yi... Upland cotton(Gossypium hirsutum L.)is the most important natural textile fiber crop worldwide.Plant height(PH)is a significant component of plant architecture,strongly influencing crop cultivation patterns,overall yield,and economic coefficient.However,cotton genes regulating plant height have not been fully identified.Previously,an HD-Zip gene(GhHB12)was isolated and characterized in cotton,which regulates the abiotic and biotic stress responses and the growth and development processes.In this study,we showed that GhHB12 was induced by auxin.Moreover,overexpression of GhHB12 induces the expression of HY5,ATH1,and HAT4,represses the spatial-temporal distribution,polar transport,and signaling of auxin,alters the expression of genes involved in cell wall expansion,and restrains the plant height in cotton.These results suggest a role of GhHB12 in regulating cotton plant height,which could be achieved by affecting the auxin signaling and cell wall expansion. 展开更多
关键词 cotton GhHB12 plant height AUXIN cell wall HD-ZIP
下载PDF
Simple and Ultrahigh Efficient Superhydrophilic Polydopamine-coated TiO_(2) Cotton for Oil-water Separation
16
作者 Xin Zhong Zhiguang Guo 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期900-909,共10页
Oil–water mixing has brought many problems to a society, and it is of great significance to develop a simple, convenient, efficient, and durable separation material to solve the problem of oil–water mixing. In this ... Oil–water mixing has brought many problems to a society, and it is of great significance to develop a simple, convenient, efficient, and durable separation material to solve the problem of oil–water mixing. In this paper, modified cottons were successfully prepared using polydopamine as the in situ mineralization site of TiO_(2) nanoparticles combined with synergistic crosslinking with KH550. A large number of hydrophilic groups endowed the cotton with superhydrophilic ability, which greatly shortened its water spreading time. The prepared modified cotton could be successfully separated from oil and water, and still had a separation efficiency of 99.999% after 50 cycles. In addition, after 24 h immersion in 1 M HCl, NaOH, and NaCl solutions and 50 abrasion experiments, the modified cotton showed excellent oil–water separation ability, and the separation efficiency was above 99.990%. Successfully provided a simple preparation method to prepare high-efficiency and clean cottons for oil–water separation. 展开更多
关键词 Oil-water separation SUPERHYDROPHILICITY cotton POLYDOPAMINE
下载PDF
Attenuation of ethylene signaling increases cotton resistance to a defoliating strain of Verticillium dahliae
17
作者 Tianyi Wang Muhammad Shaban +9 位作者 Junhui Shi Weiran Wang Shiming Liu Xinhui Nie Yu Yu Jie Kong Steven J.Klosterman Xianlong Zhang Alifu Aierxi Longfu Zhu 《The Crop Journal》 SCIE CSCD 2023年第1期89-98,共10页
The severity of Verticillium wilt on cotton caused by defoliating strains of Verticillium dahliae has gradually increased and threatens production worldwide. Identification of the molecular components of leaf defoliat... The severity of Verticillium wilt on cotton caused by defoliating strains of Verticillium dahliae has gradually increased and threatens production worldwide. Identification of the molecular components of leaf defoliation may increase cotton tolerance to V. dahliae. Ethylene, a major player in plant physiological processes, is often associated with senescence and defoliation of plants. We investigated the cotton–V.dahliae interaction with a focus on the role of ethylene in defoliation and defense against V. dahliae.Cotton plants inoculated with V. dahliae isolate V991, a defoliating strain, accumulated more ethylene and showed increased disease symptoms than those inoculated with a non-defoliating strain. In cotton with a transiently silenced ethylene synthesis gene(GhACOs) and signaling gene(GhEINs) during cotton–V. dahliae interaction, ethylene produced was derived from cotton and more ethylene increased cotton susceptibility and defoliation rate. Overexpression of AtCTR1, a negative regulator in ethylene signaling, in cotton reduced sensitivity to ethylene and increased plant resistance to V. dahliae.Collectively, the results indicated precise regulation of ethylene synthesis or signaling pathways improve cotton resistant to Verticillium wilt. 展开更多
关键词 cotton Verticillium dahilae ETHYLENE DEFOLIATION
下载PDF
Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images
18
作者 PEI Sheng-zhao ZENG Hua-liang +2 位作者 DAI Yu-long BAI Wen-qiang FAN Jun-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第8期2536-2552,共17页
Remote sensing has been increasingly used for precision nitrogen management to assess the plant nitrogen status in a spatial and real-time manner.The nitrogen nutrition index(NNI)can quantitatively describe the nitrog... Remote sensing has been increasingly used for precision nitrogen management to assess the plant nitrogen status in a spatial and real-time manner.The nitrogen nutrition index(NNI)can quantitatively describe the nitrogen status of crops.Nevertheless,the NNI diagnosis for cotton with unmanned aerial vehicle(UAV)multispectral images has not been evaluated yet.This study aimed to evaluate the performance of three machine learning models,i.e.,support vector machine(SVM),back propagation neural network(BPNN),and extreme gradient boosting(XGB)for predicting canopy nitrogen weight and NNI of cotton over the whole growing season from UAV images.The results indicated that the models performed better when the top 15 vegetation indices were used as input variables based on their correlation ranking with nitrogen weight and NNI.The XGB model performed the best among the three models in predicting nitrogen weight.The prediction accuracy of nitrogen weight at the upper half-leaf level(R^(2)=0.89,RMSE=0.68 g m^(-2),RE=14.62%for calibration and R^(2)=0.83,RMSE=1.08 g m^(-2),RE=19.71%for validation)was much better than that at the all-leaf level(R^(2)=0.73,RMSE=2.20 g m^(-2),RE=26.70%for calibration and R^(2)=0.70,RMSE=2.48 g m^(-2),RE=31.49%for validation)and at the plant level(R^(2)=0.66,RMSE=4.46 g m^(-2),RE=30.96%for calibration and R^(2)=0.63,RMSE=3.69 g m^(-2),RE=24.81%for validation).Similarly,the XGB model(R^(2)=0.65,RMSE=0.09,RE=8.59%for calibration and R^(2)=0.63,RMSE=0.09,RE=8.87%for validation)also outperformed the SVM model(R^(2)=0.62,RMSE=0.10,RE=7.92%for calibration and R^(2)=0.60,RMSE=0.09,RE=8.03%for validation)and BPNN model(R^(2)=0.64,RMSE=0.09,RE=9.24%for calibration and R^(2)=0.62,RMSE=0.09,RE=8.38%for validation)in predicting NNI.The NNI predictive map generated from the optimal XGB model can intuitively diagnose the spatial distribution and dynamics of nitrogen nutrition in cotton fields,which can help farmers implement precise cotton nitrogen management in a timely and accurate manner. 展开更多
关键词 UAV nitrogen diagnosis leaf nitrogen weight nitrogen nutrition index cotton
下载PDF
Fiber-specific increase of carotenoid content promotes cotton fiber elongation by increasing abscisic acid and ethylene biosynthesis
19
作者 Jianyan Zeng Dan Yao +17 位作者 Ming Luo Lingli Ding Yi Wang Xingying Yan Shu’e Ye Chuannan Wang Yiping Wu Jingyi Zhang Yaohua Li Lingfang Ran Yonglu Dai Yang Chen Fanlong Wang Hanyan Lai Nian Liu Nianjuan Fang Yan Pei Yuehua Xiao 《The Crop Journal》 SCIE CSCD 2023年第3期774-784,共11页
Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate lig... Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate light harvesting,and scavenge reactive oxygen species.Although carotenoids accumulate predominantly in rapidly elongating cotton fibers,their roles in cotton fiber development remain poorly understood.In this study,a fiber-specific promoter proSCFP was applied to drive the expression of GhOR1Del,a positive regulator of carotenoid accumulation,to upregulate the carotenoid level in cotton fiber in planta.Fiber length,strength,and fineness were increased in proSCFP:GhOR1Del transgenic cotton and abscisic acid(ABA)and ethylene contents were increased in elongating fibers.The ABA downstream regulator GhbZIP27a stimulated the expression of the ethylene synthase gene GhACO3 by binding to its promoter,suggesting that ABA promoted fiber elongation by increasing ethylene production.These findings suggest the involvement of carotenoids and ABA signaling in promoting cotton fiber elongation and provide a strategy for improving cotton fiber quality. 展开更多
关键词 Abscisic acid CAROTENOID cotton fiber elongation ETHYLENE ORANGE gene
下载PDF
Enhancing boll protein synthesis and carbohydrate conversion by the application of exogenous amino acids at the peak flowering stage increased the boll Bt toxin concentration and lint yield in cotton
20
作者 LIU Zhen-yu LI Yi-yang +7 位作者 Leila.I.M.TAMBEL LIU Yu-ting DAI Yu-yang XU Ze LENG Xin-hua ZHANG Xiang CHEN De-hua CHEN Yuan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1684-1694,共11页
In Bacillus thuringenesis(Bt) transgenic cotton, the cotton boll has the lowest insecticidal protein content when compared to the other organs. The present study investigated the effects of amino acid spray applicatio... In Bacillus thuringenesis(Bt) transgenic cotton, the cotton boll has the lowest insecticidal protein content when compared to the other organs. The present study investigated the effects of amino acid spray application at the peak flowering stage on the cotton boll Bt toxin concentration and yield formation. Boll protein synthesis and carbohydrate conversion were also studied to reveal the fundamental mechanism. Three treatments(i.e., CK, the untreated control;LA1, five amino acids;LA2, 21 amino acids) were applied to two Bt cultivars of G. hirsutum(i.e., the hybrid Sikang 3 and the conventional Sikang 1) in the cotton-growing seasons during 2017 and 2018. Amino acid spray application at the peak flowering stage resulted in an increase of 5.2–16.4% in the boll Bt protein concentration and an increase of 5.5–11.3%in the seed cotton yield, but there was no difference between the two amino acid treatments. In addition, amino acid applications led to increases in the amino acid content, soluble protein content, glutamate pyruvate transaminase(GPT)activity, glutamate oxaloacetate transaminase(GOT) activity, glucose content, fructose content and soluble acid invertase(SAI) activity. This study also found that Bt protein content, enhanced boll number and the weight of opened bolls were closely related to carbon and nitrogen metabolism. The Bt protein content had significant linear positive correlations with amino acid and soluble protein contents. Enhanced boll number had significant linear positive correlations with the GPT and GOT activities from 15–25 days after flowering(DAF). The weight of opened bolls from 55–65 DAF had a significant linear positive correlation with the SAI activity. These results indicate that the enhancement of boll protein synthesis and carbohydrate conversion by amino acid application resulted in a simultaneous increase in the boll Bt protein concentration and cotton lint yield. 展开更多
关键词 Bt cotton boll insecticidal protein protein synthesis carbohydrate conversion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部