Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically...Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.展开更多
The vibration behavior and the synchronization between some internal points of four coupled self-excited beams are numerically studied. Coupling through the root of the beams is considered. The transverse displacement...The vibration behavior and the synchronization between some internal points of four coupled self-excited beams are numerically studied. Coupling through the root of the beams is considered. The transverse displacements of the internal points and the beam tips are monitored, and the power spectra of the resulting time series are employed to determine the oscillation frequencies. The synchronization between beams is analyzed using phase portraits and correlation coefficients. Numerical results show multiple frequencies in the vibration pattern, and complex patterns of synchronization between pairs of beams.展开更多
We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorpt...We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation.展开更多
The propagation of coupled flexural-torsional vibration in the periodic beam including warping effect is investigated with the transfer matrix theory. The band structures of the periodic beam, both including warping e...The propagation of coupled flexural-torsional vibration in the periodic beam including warping effect is investigated with the transfer matrix theory. The band structures of the periodic beam, both including warping effect and ignoring warping effect, are obtained. The frequency response function of the finite periodic beams is simulated with finite element method, which shows large vibration attenuation in the frequency range of the gap as expected. The effect of warping stiffness on the band structure is studied and it is concluded that substantial error can be produced in high frequency range if the effect is ignored. The result including warping effect agrees quite well with the simulated result.展开更多
In this paper, we will compute the transfer matrices to find the eigenfrequenciesfor the vibrations of the general non-collinear Euler-Bernoulli or Timoshenko beamstructure with dissipative joints. We will allow the s...In this paper, we will compute the transfer matrices to find the eigenfrequenciesfor the vibrations of the general non-collinear Euler-Bernoulli or Timoshenko beamstructure with dissipative joints. We will allow the structure to be three dimensional,and thus we must consider all types of vibrations simulaneously, including longitudinaland torsional vibrations. The general structure considered will consist of any number ofbeams joined end to end to form a chain. Many, different kinds of dampers areallowed, even within the same structure. We also will allow different materials withinthe structure as well as different beam widths. We then will show. that asymptotic estimates can be used to find the eigenfrequencies approximately.展开更多
To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and...To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport.展开更多
Couple of DOF technique in FEM and the algorithm for equation group solution in the whole stiffness matrix is studied in this paper. A new procedure is developed for the analysis of telescope beam structure. This meth...Couple of DOF technique in FEM and the algorithm for equation group solution in the whole stiffness matrix is studied in this paper. A new procedure is developed for the analysis of telescope beam structure. This method can solve most of the complex structural problems in engineering practice. This method has been used in the FEM analysis of pile frame of muhifunetion drilling machine, which is designed and manufactured by our research group. The right analysis result can improves the design efficiency and the reliability of the structure and reduce the design cost.展开更多
Aiming at the deformation control problem of the tunnel entrance crossing the spoil heap at the Xialao junction,this paper adopts the micropile combined with the coupling beams method to treat the spoiled layers.The r...Aiming at the deformation control problem of the tunnel entrance crossing the spoil heap at the Xialao junction,this paper adopts the micropile combined with the coupling beams method to treat the spoiled layers.The results show that the excavation of the tunnel after the construction of the micropile and coupling beam will cause vertical deformation of the tunnel and the slope surface.The main reason is that the soil layer structure is loose,and the tunnel excavation causes the whole displacement of the loose body.In addition,the buried depth of the tunnel is shallow,so it cannot form an effective soil arch.The stability process after the construction of the micropile method is the process of stress redistribution,and the rock and soil are gradually compressed and compacted.That is,the construction by the micropile method changes the surrounding rock level of the tunnel and reduces the height of the soil arch.Therefore,it is suggested that the tunnel excavation should be carried out when the micropile is constructed after the soil layers are consolidated completely.The micropile method treats the loose spoiled soil at the tunnel entrance,which saves 73%of the total cost compared with the scheme of directly digging out the accumulation,and the economic benefit is very obvious.展开更多
A general analytical method is developed for the vibrations of two beams coupled together at an arbitrary angle.The stiffness of a joint can take any value from zero to infinity to better model many real-world couplin...A general analytical method is developed for the vibrations of two beams coupled together at an arbitrary angle.The stiffness of a joint can take any value from zero to infinity to better model many real-world coupling conditions.Both flexural and longitudinal waves are included to account for the cross-coupling effects at the junctions.Each displacement compo-nent is here invariantly expressed,regardless of the coupling or boundary conditions,as a Fourier series supplemented by several closed-form functions to ensure the uniform convergence of the series expansions.Examples are presented to compare the current solution with finite element and experimental results.展开更多
So far, numerous numerical studies have been conducted on the behavior of Composite Reinforced Concrete-Steel (RCS) beam-to-column connections. However, the lack of studies regarding the steel joist-concrete girder ...So far, numerous numerical studies have been conducted on the behavior of Composite Reinforced Concrete-Steel (RCS) beam-to-column connections. However, the lack of studies regarding the steel joist-concrete girder connection has yet to be addressed through comprehensive finite element methods to get an understanding of influential parameters. Hence, in this paper, composite connection of embedded steel joist in concrete girder is investigated with an appropriate finite element software, namely, ABAQUS. The validity of the proposed model is examined by the comparison made with the test data in literature. Results indicate that maximum bending capacity of the connection is achieved when embedment ratio is 1.78. Moreover, double web angles in the embedment region significantly reduce the embedment length required to achieve the maximum bending capacity. Finally, damage analyses show that bending capacity of concrete girder is slightly reduced in the connection zone.展开更多
Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. ...Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.展开更多
Through the Galerkin method the nonlinear ordinary differential equations (ODEs) in time are obtained from the nonlinear partial differential equations (PDEs) to describe the mo- tion of the coupled structure of a...Through the Galerkin method the nonlinear ordinary differential equations (ODEs) in time are obtained from the nonlinear partial differential equations (PDEs) to describe the mo- tion of the coupled structure of a suspended-cable-stayed beam. In the PDEs, the curvature of main cables and the deformation of cable stays are taken into account. The dynamics of the struc- ture is investigated based on the ODEs when the structure is subjected to a harmonic excitation in the presence of both high-frequency principle resonance and 1:2 internal resonance. It is found that there are typical jumps and saturation phenomena of the vibration amplitude in the struc- ture. And the structure may present quasi-periodic vibration or chaos, if the stiffness of the cable stays membrane and frequency of external excitation are disturbed.展开更多
An electron cyclotron resonance ion thruster must emit an electron current equivalent to its ion beam current to prevent the thruster system from being electrically charged. This operation is defined as neutralization...An electron cyclotron resonance ion thruster must emit an electron current equivalent to its ion beam current to prevent the thruster system from being electrically charged. This operation is defined as neutralization. The factors which influence neutralization are categorized into the ion beam current parameters, the neutralizer input parameters, and the neutralizer position. To understand the mechanism of neutralization, an experiment and a calculation study on how these factors influence thruster neutralization are presented. The experiment results show that the minimum bias voltage of the neutralizer was -60 V at the ion beam current of 80 mA for the argon propellant, and a critical gas flow rate existed, below which the coupling voltage increased sharply. Based on the experiment, the neutralization was analyzed by means of a onedimensional calculation model. The computation results show that the coupling voltage was influenced by the beam divergence and the negative potential zone near the grids.展开更多
This paper outlines a methodology to assess the seismic drift of reinforced concrete buildings with limited structural and geotechnical information. Based on the latest and the most advanced research on predicting pot...This paper outlines a methodology to assess the seismic drift of reinforced concrete buildings with limited structural and geotechnical information. Based on the latest and the most advanced research on predicting potential near-field and far field earthquakes affecting Hong Kong, the engineering response spectra for both rock and soil sites are derived. A new step-by-step procedure for displacement-based seismic hazard assessment of building structures is proposed to determine the maximum inter-storey drift demand for reinforced concrete buildings. The primary information required for this assessment is only the depth of the soft soil above bedrock and the height of the building. This procedure is further extended to assess the maximum chord rotation angle demand for the coupling beam of coupled shear wall or frame wall structures, which may be very critical when subjected to earthquake forces. An example is provided to illustrate calibration of the assessment procedure by using actual engineering structural models.展开更多
The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study inv...The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study investigated the use of engineered cementitious composite (ECC) in the cast-in-place beam-to-wall joints and the upper regions of the composite coupling beams as an innovative method to improve the seismic performance ofprecast RQ coupled shear walls. Two 1/2-scale precast coupled shear walls were tested under reversed cyclic loading and seismic behavior in terms of failure characteristic, mechanical characteristic value, load-displacement hysteresis curves, load-displacement envelope relationship, stiffness degradation, ductility and energy dissipation capacity were evaluated. Research results show that the substitution of concrete with ECC in the critical cast-in-place regions proved to be an effective method to improve the seismic performance of the two-story spatial of precast RC coupled shear walls.展开更多
In this paper,the buckling behaviors of axially functionally graded and non-uniform Timoshenko beams were investigated.Based on the auxiliary function and power series,the coupled governing equations were converted in...In this paper,the buckling behaviors of axially functionally graded and non-uniform Timoshenko beams were investigated.Based on the auxiliary function and power series,the coupled governing equations were converted into a system of linear algebraic equations.With various end conditions,the characteristic polynomial equations in the buckling loads were obtained for axially inhomogeneous beams.The lower and higher-order eigenvalues were calculated simultaneously from the multi-roots due to the fact that the derived characteristic equation was a polynomial one.The computed results were in good agreement with those analytical and numerical ones in literature.展开更多
Beam Position Monitors(BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system(CADS) Proton linac are of the capacitive pick-up type.They provide higher output signals than that of the induc...Beam Position Monitors(BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system(CADS) Proton linac are of the capacitive pick-up type.They provide higher output signals than that of the inductive type.This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac,including the pick-ups,the test bench and the read-out electronics.The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain.展开更多
Purpose To reduce the beam coupling impedance of the vacuum chamber made of poorly conducting material,a layer of high-conductivity metal,such as copper,is often coated on its inner surface.As the natural bunch length...Purpose To reduce the beam coupling impedance of the vacuum chamber made of poorly conducting material,a layer of high-conductivity metal,such as copper,is often coated on its inner surface.As the natural bunch length of modern accelerators is about several millimeters,its beam spectrum can reach tens of GHz.In this case,the skin depth of copper is of the same order of magnitude as its surface roughness,and its electrical properties can be different from that in DC,which will influence the beam coupling impedance.Therefore,the electrical property of copper coating at high frequency needs to be investigated.Methods In this paper,the method of resonant cavity is adopted to measure the coating conductivity,which is based on the relation between the quality factor of the cavity and material conductivity.Results Three different resonant modes are tested in the measurement,among which the H011 mode shows the best performance.The results also indicate that surface roughness of copper can have an influence on its effective conductivity at high frequency.Conclusion The H011 mode is suitable for measuring high-conductivity materials.When the skin depth of copper is comparable to or larger than its surface roughness,its effective conductivity will be significantly reduced.展开更多
Miniaturized optical benches process free-space light propagating in-plane with respect to the substrate and have a large variety of applications,including the coupling of light through an optical fiber.High coupling ...Miniaturized optical benches process free-space light propagating in-plane with respect to the substrate and have a large variety of applications,including the coupling of light through an optical fiber.High coupling efficiency is usually obtained using assembled micro-optical parts,which considerably increase the system cost and integration effort.In this work,we report a high coupling efficiency,monolithically integrated silicon micromirror with controlled three-dimensional(3D)curvature that is capable of manipulating optical beams propagating in the plane of the silicon substrate.Based on our theoretical modeling,a spherical micromirror with a microscale radius of curvature as small as twice the Gaussian beam Rayleigh range provides a 100%coupling efficiency over a relatively long optical path range.Introducing dimensionless parameters facilitates the elucidation of the role of key design parameters,including the mirror’s radii of curvature,independent of the wavelength.A micromachining method is presented for fabricating the 3D micromirror using fluorinated gas plasmas.The measured coupling efficiency was greater than 50%over a 200-mm optical path,compared to less than 10%afforded by a conventional flat micromirror,which was in good agreement with the model.Using the 3D micromirror,an optical cavity was formed with a round-trip diffraction loss of less than 0.4%,resulting in one order of magnitude enhancement in the measured quality factor.A nearly 100%coupling was also estimated when matching the sagittal and tangential radii of curvature of the presented micromirror’s surface.The reported class of 3D micromirrors may be an advantageous replacement for the optical lenses usually assembled in silicon photonics and optical benches by transforming them into real 3D monolithic systems while achieving wideband high coupling efficiency over submillimeter distances.展开更多
文摘Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.
文摘The vibration behavior and the synchronization between some internal points of four coupled self-excited beams are numerically studied. Coupling through the root of the beams is considered. The transverse displacements of the internal points and the beam tips are monitored, and the power spectra of the resulting time series are employed to determine the oscillation frequencies. The synchronization between beams is analyzed using phase portraits and correlation coefficients. Numerical results show multiple frequencies in the vibration pattern, and complex patterns of synchronization between pairs of beams.
文摘We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 51307)the National Natural Science Foundation of China (Grant No 50575222)
文摘The propagation of coupled flexural-torsional vibration in the periodic beam including warping effect is investigated with the transfer matrix theory. The band structures of the periodic beam, both including warping effect and ignoring warping effect, are obtained. The frequency response function of the finite periodic beams is simulated with finite element method, which shows large vibration attenuation in the frequency range of the gap as expected. The effect of warping stiffness on the band structure is studied and it is concluded that substantial error can be produced in high frequency range if the effect is ignored. The result including warping effect agrees quite well with the simulated result.
文摘In this paper, we will compute the transfer matrices to find the eigenfrequenciesfor the vibrations of the general non-collinear Euler-Bernoulli or Timoshenko beamstructure with dissipative joints. We will allow the structure to be three dimensional,and thus we must consider all types of vibrations simulaneously, including longitudinaland torsional vibrations. The general structure considered will consist of any number ofbeams joined end to end to form a chain. Many, different kinds of dampers areallowed, even within the same structure. We also will allow different materials withinthe structure as well as different beam widths. We then will show. that asymptotic estimates can be used to find the eigenfrequencies approximately.
基金Project(50779032)supported by the National Natural Science Foundation of ChinaProject(20090451330)supported by the Postdoctoral Foundation of ChinaProject(BS2013SF007)supported by Shandong Scientific Research Award Foundation for Outstanding Young Scientists,China
文摘To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport.
文摘Couple of DOF technique in FEM and the algorithm for equation group solution in the whole stiffness matrix is studied in this paper. A new procedure is developed for the analysis of telescope beam structure. This method can solve most of the complex structural problems in engineering practice. This method has been used in the FEM analysis of pile frame of muhifunetion drilling machine, which is designed and manufactured by our research group. The right analysis result can improves the design efficiency and the reliability of the structure and reduce the design cost.
基金support from the Ministry of Transport of the People's Republic of China(Grant no.2021-ZD1-014)Key Research and Development Program of Guangxi(Grant no.2021AB22117).
文摘Aiming at the deformation control problem of the tunnel entrance crossing the spoil heap at the Xialao junction,this paper adopts the micropile combined with the coupling beams method to treat the spoiled layers.The results show that the excavation of the tunnel after the construction of the micropile and coupling beam will cause vertical deformation of the tunnel and the slope surface.The main reason is that the soil layer structure is loose,and the tunnel excavation causes the whole displacement of the loose body.In addition,the buried depth of the tunnel is shallow,so it cannot form an effective soil arch.The stability process after the construction of the micropile method is the process of stress redistribution,and the rock and soil are gradually compressed and compacted.That is,the construction by the micropile method changes the surrounding rock level of the tunnel and reduces the height of the soil arch.Therefore,it is suggested that the tunnel excavation should be carried out when the micropile is constructed after the soil layers are consolidated completely.The micropile method treats the loose spoiled soil at the tunnel entrance,which saves 73%of the total cost compared with the scheme of directly digging out the accumulation,and the economic benefit is very obvious.
文摘A general analytical method is developed for the vibrations of two beams coupled together at an arbitrary angle.The stiffness of a joint can take any value from zero to infinity to better model many real-world coupling conditions.Both flexural and longitudinal waves are included to account for the cross-coupling effects at the junctions.Each displacement compo-nent is here invariantly expressed,regardless of the coupling or boundary conditions,as a Fourier series supplemented by several closed-form functions to ensure the uniform convergence of the series expansions.Examples are presented to compare the current solution with finite element and experimental results.
文摘So far, numerous numerical studies have been conducted on the behavior of Composite Reinforced Concrete-Steel (RCS) beam-to-column connections. However, the lack of studies regarding the steel joist-concrete girder connection has yet to be addressed through comprehensive finite element methods to get an understanding of influential parameters. Hence, in this paper, composite connection of embedded steel joist in concrete girder is investigated with an appropriate finite element software, namely, ABAQUS. The validity of the proposed model is examined by the comparison made with the test data in literature. Results indicate that maximum bending capacity of the connection is achieved when embedment ratio is 1.78. Moreover, double web angles in the embedment region significantly reduce the embedment length required to achieve the maximum bending capacity. Finally, damage analyses show that bending capacity of concrete girder is slightly reduced in the connection zone.
文摘Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.
基金supported by the National Natural Science Foundation of China(Nos.10672121 and 11072125)
文摘Through the Galerkin method the nonlinear ordinary differential equations (ODEs) in time are obtained from the nonlinear partial differential equations (PDEs) to describe the mo- tion of the coupled structure of a suspended-cable-stayed beam. In the PDEs, the curvature of main cables and the deformation of cable stays are taken into account. The dynamics of the struc- ture is investigated based on the ODEs when the structure is subjected to a harmonic excitation in the presence of both high-frequency principle resonance and 1:2 internal resonance. It is found that there are typical jumps and saturation phenomena of the vibration amplitude in the struc- ture. And the structure may present quasi-periodic vibration or chaos, if the stiffness of the cable stays membrane and frequency of external excitation are disturbed.
基金support from National Natural Science Foundation of China (Grant No. 11475137)
文摘An electron cyclotron resonance ion thruster must emit an electron current equivalent to its ion beam current to prevent the thruster system from being electrically charged. This operation is defined as neutralization. The factors which influence neutralization are categorized into the ion beam current parameters, the neutralizer input parameters, and the neutralizer position. To understand the mechanism of neutralization, an experiment and a calculation study on how these factors influence thruster neutralization are presented. The experiment results show that the minimum bias voltage of the neutralizer was -60 V at the ion beam current of 80 mA for the argon propellant, and a critical gas flow rate existed, below which the coupling voltage increased sharply. Based on the experiment, the neutralization was analyzed by means of a onedimensional calculation model. The computation results show that the coupling voltage was influenced by the beam divergence and the negative potential zone near the grids.
基金the Research Grants Council of Hong Kong Under Project No. HKU 7023/99E and HKU 7002/00EThe Ministry of Science and Technology of PRC and The Bureau of Science and Technology of Guangzhou Under Project No. 2004CCA03300 and No.2004Z1-E0051
文摘This paper outlines a methodology to assess the seismic drift of reinforced concrete buildings with limited structural and geotechnical information. Based on the latest and the most advanced research on predicting potential near-field and far field earthquakes affecting Hong Kong, the engineering response spectra for both rock and soil sites are derived. A new step-by-step procedure for displacement-based seismic hazard assessment of building structures is proposed to determine the maximum inter-storey drift demand for reinforced concrete buildings. The primary information required for this assessment is only the depth of the soft soil above bedrock and the height of the building. This procedure is further extended to assess the maximum chord rotation angle demand for the coupling beam of coupled shear wall or frame wall structures, which may be very critical when subjected to earthquake forces. An example is provided to illustrate calibration of the assessment procedure by using actual engineering structural models.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0701703)the Fundamental Research Funds for the Central Universities+1 种基金Project Supported by the Research and Innovation Program for Graduate Students in Jiangsu(Grant No.KYLX16_0257)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.CE02-2-47)
文摘The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study investigated the use of engineered cementitious composite (ECC) in the cast-in-place beam-to-wall joints and the upper regions of the composite coupling beams as an innovative method to improve the seismic performance ofprecast RQ coupled shear walls. Two 1/2-scale precast coupled shear walls were tested under reversed cyclic loading and seismic behavior in terms of failure characteristic, mechanical characteristic value, load-displacement hysteresis curves, load-displacement envelope relationship, stiffness degradation, ductility and energy dissipation capacity were evaluated. Research results show that the substitution of concrete with ECC in the critical cast-in-place regions proved to be an effective method to improve the seismic performance of the two-story spatial of precast RC coupled shear walls.
基金Project supported by the Funds of the Natural Science Foundation of Guangdong Province(Nos.S2013010012463 and S2013010014485)the Excellent Teacher Scheme in Guangdong Higher Education Institutions(No.Yq2014332)the Funds of the Guangdong college discipline construction(Nos.2013KJCX0189 and 2014KZDXM063)
文摘In this paper,the buckling behaviors of axially functionally graded and non-uniform Timoshenko beams were investigated.Based on the auxiliary function and power series,the coupled governing equations were converted into a system of linear algebraic equations.With various end conditions,the characteristic polynomial equations in the buckling loads were obtained for axially inhomogeneous beams.The lower and higher-order eigenvalues were calculated simultaneously from the multi-roots due to the fact that the derived characteristic equation was a polynomial one.The computed results were in good agreement with those analytical and numerical ones in literature.
基金Supported by National Natural Science Foundation of China(11405240)"Western Light" Talents Training Program of Chinese Academy of Sciences
文摘Beam Position Monitors(BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system(CADS) Proton linac are of the capacitive pick-up type.They provide higher output signals than that of the inductive type.This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac,including the pick-ups,the test bench and the read-out electronics.The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain.
基金supported by the National Natural Science Foundation of China(No.11775239).
文摘Purpose To reduce the beam coupling impedance of the vacuum chamber made of poorly conducting material,a layer of high-conductivity metal,such as copper,is often coated on its inner surface.As the natural bunch length of modern accelerators is about several millimeters,its beam spectrum can reach tens of GHz.In this case,the skin depth of copper is of the same order of magnitude as its surface roughness,and its electrical properties can be different from that in DC,which will influence the beam coupling impedance.Therefore,the electrical property of copper coating at high frequency needs to be investigated.Methods In this paper,the method of resonant cavity is adopted to measure the coating conductivity,which is based on the relation between the quality factor of the cavity and material conductivity.Results Three different resonant modes are tested in the measurement,among which the H011 mode shows the best performance.The results also indicate that surface roughness of copper can have an influence on its effective conductivity at high frequency.Conclusion The H011 mode is suitable for measuring high-conductivity materials.When the skin depth of copper is comparable to or larger than its surface roughness,its effective conductivity will be significantly reduced.
基金This work was partially supported by the Information Technology Industry Development Agency(ITIDA)through the ITAC program.
文摘Miniaturized optical benches process free-space light propagating in-plane with respect to the substrate and have a large variety of applications,including the coupling of light through an optical fiber.High coupling efficiency is usually obtained using assembled micro-optical parts,which considerably increase the system cost and integration effort.In this work,we report a high coupling efficiency,monolithically integrated silicon micromirror with controlled three-dimensional(3D)curvature that is capable of manipulating optical beams propagating in the plane of the silicon substrate.Based on our theoretical modeling,a spherical micromirror with a microscale radius of curvature as small as twice the Gaussian beam Rayleigh range provides a 100%coupling efficiency over a relatively long optical path range.Introducing dimensionless parameters facilitates the elucidation of the role of key design parameters,including the mirror’s radii of curvature,independent of the wavelength.A micromachining method is presented for fabricating the 3D micromirror using fluorinated gas plasmas.The measured coupling efficiency was greater than 50%over a 200-mm optical path,compared to less than 10%afforded by a conventional flat micromirror,which was in good agreement with the model.Using the 3D micromirror,an optical cavity was formed with a round-trip diffraction loss of less than 0.4%,resulting in one order of magnitude enhancement in the measured quality factor.A nearly 100%coupling was also estimated when matching the sagittal and tangential radii of curvature of the presented micromirror’s surface.The reported class of 3D micromirrors may be an advantageous replacement for the optical lenses usually assembled in silicon photonics and optical benches by transforming them into real 3D monolithic systems while achieving wideband high coupling efficiency over submillimeter distances.