Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on E...Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on EVs with automatic mechanical transmission (AMT) shifting was resolved. Based on the speed-torque characteristics of the planetary gears and the principle of the auxiliary motor' s zero speed braking, control features of mode switching were introduced. The mode shifting between the main motor mode and dual motors coupled driving were studied. Matlab/Simulink was adopted as a platform to develop the simulation model of EVs with dual motors drive system and 3 gears AMT. Simulation results demonstrated that the power interruption of dual motors drive system was solved during mode switching. The power requirements of EVs were satisfied, too.展开更多
A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on e...A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.展开更多
Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions ...Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions are di cult to be obtained in advance. How to further explore its fuel?saving potential under the complicated city bus driving cycles through an e cient control strategy is still a hot research issue in both academic and engineering area. To realize an e cient coupling driving operation of the hybrid powertrain,a novel coupling driving control strategy for plug?in hybrid electric bus is presented. Combined with the typical feature of a city?bus?route,the fuzzy logic inference is employed to quantify the driving intention,and then to determine the coupling driving mode and the gear?shifting strategy. Considering the response deviation problem in the execution layer,an adaptive robust controller for electric machine is designed to respond to the transient torque demand,and instantaneously compensate the response delay and the engine torque fluctuation. The simulations and hard?in?loop tests with the actual data of two typical driving conditions from the real?world city?bus?route are carried out,and the results demonstrate that the pro?posed method could guarantee the hybrid powertrain to track the actual torque demand with 10.4% fuel economy improvement. The optimal fuel economy can be obtained through the optimal combination of working modes. The fuel economy of plug?in hybrid electric bus can be significantly improved by the proposed control scheme without loss of drivability.展开更多
The simulation of intercity population mobility helps to deepen the understanding of intercity population mobility and its underlying laws,which has great importance for epidemic prevention and control,social manageme...The simulation of intercity population mobility helps to deepen the understanding of intercity population mobility and its underlying laws,which has great importance for epidemic prevention and control,social management,and even urban planning.There are many factors that affect intercity population mobility,such as socioeconomic attributes,geographical distance,and industrial structure.The complexity of the coupling among these factors makes it difficult to simulate intercity population mobility.To address this issue,we propose a novel method named the quantum harmonic oscillator model for simulation of intercity population mobility(QHO-IPM).QHO-IPM describes the intercity population mobility as being affected by coupled driving factors that work as a multioscillator-coupled quantum harmonic oscillator system,which is further transformed by the oscillation process of an oscillator,namely,the breaking point of intercity population mobility.The intercity population mobility among seven cities in the Beijing-Tianjin-Hebei region and its surrounding region is taken as an example for verifying the QHO-IPM.The experimental results show that(1)compared with the reference methods(the autoregressive integrated moving average(ARIMA)and long and short-term memory(LSTM)models),the QHO-IPM achieves better simulation performance regarding intercity population mobility in terms of both overall trend and mutation.(2)The simulation error in the QHO-IPM for different-level intercity population mobility is small and stable,which illustrates the weak sensitivity of the QHO-IPM to intercity population mobility under different structures.(3)The discussion regarding the influence degree of different driving factors reveals the significant“one dominant and multiple auxiliary”factor pattern of driving factors on intercity population mobility in the study area.The proposed method has the potential to provide valuable support for understanding intercity population mobility laws and related decision-making on intercity population mobility control.展开更多
As an important development direction of pure electric vehicle drive system,the distributed drive system has the advantages of compact structure,high transmission efficiency,and flexible control,but there are some ser...As an important development direction of pure electric vehicle drive system,the distributed drive system has the advantages of compact structure,high transmission efficiency,and flexible control,but there are some serious problems such as high performance requirements to the drive motors,complex control strategies,and poor reliability.To solve these problems,a two motors dual-mode coupling drive system has been developed at first,which not only has the capacity of two-speed gear shifting,but also can automatically switch between the distributed drive and the centralized drive by means of modes change control.So,the performance requirements to the drive motors can be reduced,the problem of abnormal running caused by the fault of unilateral distributed drive systems also can be resolved by replacing the drive mode with centralized drive.Then,the system parameters primary and the optimum matching under the principle of efficiency optimization have been carried out,which makes the drive system achieve predetermined functions and meet the actual demands of different operating statuses.At last,the economic comparison of a pure electric vehicle installation with a dual-mode coupling drive sytem,a single-motor centralized drive system or a dual-motor distributed drive system in the simulation conditions has been completed.Compared with other systems,the driving range of the electric vehicle driven by the designed system is significantly increased,which proves the better efficiency and application value of the system.展开更多
As a new drive system for electric vehicles,the dual-mode coupling drive system can automatically switch between centralized and distributed drive modes and realize two-speed gear shifting.Because the actuator’s disp...As a new drive system for electric vehicles,the dual-mode coupling drive system can automatically switch between centralized and distributed drive modes and realize two-speed gear shifting.Because the actuator’s displacement signal affects the mode-switching control,when failure occurs at the angle-displacement sensor,the mode-shifting quality is likely to drop greatly,even possibly leading to shift failure.To address the angle-displacement sensor failure and improve the reliability of the shift control,an adaptive fault-tolerant control method is proposed and verified.First,the effect of the output signal of the angle-displacement sensor in the mode-switching control process is analyzed.Then,an adaptive mode-switching fault-tolerant control method is designed based on the Kalman filter and fuzzy theory.Finally,the feasibility of the control effect is verified through simulations and vehicle experiments.The results indicate that the proposed method can effectively eliminate the signal noise of the angle-displacement sensor and successfully switch the modes when the sensor fails.It provides a reference for ensuring the working quality of similar electric drive systems under sensor failures.展开更多
The single-shaft parallel hybrid powertrain with the automatic mechanical transmission(AMT)is an efficient hybrid driving system in the hybrid electric bus(HEB),while the electromechanical coupling driving control bec...The single-shaft parallel hybrid powertrain with the automatic mechanical transmission(AMT)is an efficient hybrid driving system in the hybrid electric bus(HEB),while the electromechanical coupling driving control becomes a complicated question to find a transient optimal control method to distribute the power between the engine and the electric machine(EM).This paper proposes an innovative control method to deal with the complicated transient coupling driving process of the electromechanical coupling driving system,considering the accelerating condition and the cruising condition mostly in the city driving cycle of HEB.The EM might be operated at driving mode or generating mode to assist the diesel engine to work in its high-efficiency area.Therefore,the adaptive torque tracking controller has been brought forward to ensure that the EM implements the demand torque as well as compensate the torque fluctuation of diesel engine.The d?q axis mathematical model and back stepping method are employed to deduce the adaptive controller and its adaptive laws.Simulation results demonstrate that the proposed control scheme can make the output torque of two power sources respond rapidly to the demand torque from the powertrain in the given driving condition.The proposed method could be adopted in the real control of HEB to improve the efficiency of the hybrid driving system.展开更多
基金Supported by Doctoral Fund of Ministry of Education of China(20101101110012)the National Natural Science Foundationof China(51175040)
文摘Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on EVs with automatic mechanical transmission (AMT) shifting was resolved. Based on the speed-torque characteristics of the planetary gears and the principle of the auxiliary motor' s zero speed braking, control features of mode switching were introduced. The mode shifting between the main motor mode and dual motors coupled driving were studied. Matlab/Simulink was adopted as a platform to develop the simulation model of EVs with dual motors drive system and 3 gears AMT. Simulation results demonstrated that the power interruption of dual motors drive system was solved during mode switching. The power requirements of EVs were satisfied, too.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.
基金Supported by National Natural Science Foundation of China(Grant No.51605243)National Key Science and Technology Projects of China(Grant No.2014ZX04002041)1-class General Financial Grant from the China Postdoctoral Science Foundation(Grant No.2016M590094)
文摘Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions are di cult to be obtained in advance. How to further explore its fuel?saving potential under the complicated city bus driving cycles through an e cient control strategy is still a hot research issue in both academic and engineering area. To realize an e cient coupling driving operation of the hybrid powertrain,a novel coupling driving control strategy for plug?in hybrid electric bus is presented. Combined with the typical feature of a city?bus?route,the fuzzy logic inference is employed to quantify the driving intention,and then to determine the coupling driving mode and the gear?shifting strategy. Considering the response deviation problem in the execution layer,an adaptive robust controller for electric machine is designed to respond to the transient torque demand,and instantaneously compensate the response delay and the engine torque fluctuation. The simulations and hard?in?loop tests with the actual data of two typical driving conditions from the real?world city?bus?route are carried out,and the results demonstrate that the pro?posed method could guarantee the hybrid powertrain to track the actual torque demand with 10.4% fuel economy improvement. The optimal fuel economy can be obtained through the optimal combination of working modes. The fuel economy of plug?in hybrid electric bus can be significantly improved by the proposed control scheme without loss of drivability.
基金National Natural Science Foundation of China,No.42230406,No.42130103,No.41971404,No.42201504。
文摘The simulation of intercity population mobility helps to deepen the understanding of intercity population mobility and its underlying laws,which has great importance for epidemic prevention and control,social management,and even urban planning.There are many factors that affect intercity population mobility,such as socioeconomic attributes,geographical distance,and industrial structure.The complexity of the coupling among these factors makes it difficult to simulate intercity population mobility.To address this issue,we propose a novel method named the quantum harmonic oscillator model for simulation of intercity population mobility(QHO-IPM).QHO-IPM describes the intercity population mobility as being affected by coupled driving factors that work as a multioscillator-coupled quantum harmonic oscillator system,which is further transformed by the oscillation process of an oscillator,namely,the breaking point of intercity population mobility.The intercity population mobility among seven cities in the Beijing-Tianjin-Hebei region and its surrounding region is taken as an example for verifying the QHO-IPM.The experimental results show that(1)compared with the reference methods(the autoregressive integrated moving average(ARIMA)and long and short-term memory(LSTM)models),the QHO-IPM achieves better simulation performance regarding intercity population mobility in terms of both overall trend and mutation.(2)The simulation error in the QHO-IPM for different-level intercity population mobility is small and stable,which illustrates the weak sensitivity of the QHO-IPM to intercity population mobility under different structures.(3)The discussion regarding the influence degree of different driving factors reveals the significant“one dominant and multiple auxiliary”factor pattern of driving factors on intercity population mobility in the study area.The proposed method has the potential to provide valuable support for understanding intercity population mobility laws and related decision-making on intercity population mobility control.
基金supported by the National Key Technology R&D Program of the Ministry of Science and Technology(Grant No.2013BAG14B01)the Shandong Provincial Natural Science Foundation of China(Grant No.ZR2012EEL08)China Postdoctoral Science Foundation Funded Project(Grant No.2013M530608)
文摘As an important development direction of pure electric vehicle drive system,the distributed drive system has the advantages of compact structure,high transmission efficiency,and flexible control,but there are some serious problems such as high performance requirements to the drive motors,complex control strategies,and poor reliability.To solve these problems,a two motors dual-mode coupling drive system has been developed at first,which not only has the capacity of two-speed gear shifting,but also can automatically switch between the distributed drive and the centralized drive by means of modes change control.So,the performance requirements to the drive motors can be reduced,the problem of abnormal running caused by the fault of unilateral distributed drive systems also can be resolved by replacing the drive mode with centralized drive.Then,the system parameters primary and the optimum matching under the principle of efficiency optimization have been carried out,which makes the drive system achieve predetermined functions and meet the actual demands of different operating statuses.At last,the economic comparison of a pure electric vehicle installation with a dual-mode coupling drive sytem,a single-motor centralized drive system or a dual-motor distributed drive system in the simulation conditions has been completed.Compared with other systems,the driving range of the electric vehicle driven by the designed system is significantly increased,which proves the better efficiency and application value of the system.
基金This study was supported by the National Natural Science Foundation of China(Grant No.51775478)Natural Science Foundation of Hebei Province of China(Grant Nos:E2016203173,E2020203078,E2020203174).
文摘As a new drive system for electric vehicles,the dual-mode coupling drive system can automatically switch between centralized and distributed drive modes and realize two-speed gear shifting.Because the actuator’s displacement signal affects the mode-switching control,when failure occurs at the angle-displacement sensor,the mode-shifting quality is likely to drop greatly,even possibly leading to shift failure.To address the angle-displacement sensor failure and improve the reliability of the shift control,an adaptive fault-tolerant control method is proposed and verified.First,the effect of the output signal of the angle-displacement sensor in the mode-switching control process is analyzed.Then,an adaptive mode-switching fault-tolerant control method is designed based on the Kalman filter and fuzzy theory.Finally,the feasibility of the control effect is verified through simulations and vehicle experiments.The results indicate that the proposed method can effectively eliminate the signal noise of the angle-displacement sensor and successfully switch the modes when the sensor fails.It provides a reference for ensuring the working quality of similar electric drive systems under sensor failures.
基金supported by the National Natural Science Foundation of China(Grant No.51275557)the National Science-technology Support Plan Projects of China(Grant No.2013BAG14B01)
文摘The single-shaft parallel hybrid powertrain with the automatic mechanical transmission(AMT)is an efficient hybrid driving system in the hybrid electric bus(HEB),while the electromechanical coupling driving control becomes a complicated question to find a transient optimal control method to distribute the power between the engine and the electric machine(EM).This paper proposes an innovative control method to deal with the complicated transient coupling driving process of the electromechanical coupling driving system,considering the accelerating condition and the cruising condition mostly in the city driving cycle of HEB.The EM might be operated at driving mode or generating mode to assist the diesel engine to work in its high-efficiency area.Therefore,the adaptive torque tracking controller has been brought forward to ensure that the EM implements the demand torque as well as compensate the torque fluctuation of diesel engine.The d?q axis mathematical model and back stepping method are employed to deduce the adaptive controller and its adaptive laws.Simulation results demonstrate that the proposed control scheme can make the output torque of two power sources respond rapidly to the demand torque from the powertrain in the given driving condition.The proposed method could be adopted in the real control of HEB to improve the efficiency of the hybrid driving system.