Titanium alloys play an important role in aerospace and other fields.However,after precision forging and cold rolling process,some defects will appear on the subsurface of titanium alloy bars,thus reducing the surface...Titanium alloys play an important role in aerospace and other fields.However,after precision forging and cold rolling process,some defects will appear on the subsurface of titanium alloy bars,thus reducing the surface quality and precision of turning process.This study aimed at exploring the effect of crack defects on TC4 cutting.Firstly,the finite element cutting simulation model of TC4 material with crack defects was established in ABAQUS.Then,the cutting parameters such as cutting force,stress concentration,chip morphology,residual stress were obtained by changing the variables such as the size and height of crack defects.Finally,the turning experiment was carried out on centerless lathe.The results show that the cutting force changes abruptly when the defect position is located on the cutting path,the maximal stress occurs at the tip of the defect,and the mutation of stress value is more serious with the increase of defect size;the buckling deformation of chip morphology occurs and becomes less serious with the increase of the distance between the defect position and the workpiece surface;the surface residual stress near the defect is related to the stress when the tool is close to the defect,the larger defect size and the closer to the machined surface,the greater the residual stress.Therefore,under certain processing conditions,the TC4 material should avoid large size defects or increase the distance between defects and the machined surface,so as to obtain better and stable surface quality.展开更多
The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects...The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.展开更多
Electromagnetic acoustic emission technology is one of nondestructive testing, which can be used for defect detection of metal specimens. In this study, round and cracked metal specimens, round metal specimens, and in...Electromagnetic acoustic emission technology is one of nondestructive testing, which can be used for defect detection of metal specimens. In this study, round and cracked metal specimens, round metal specimens, and intact metal specimens were prepared. And the electromagnetic acoustic emission signals of the three specimens were collected. In addition, the local mean decomposition(LMD), Autoregressive model(AR model) and least squares support vector machine (LSSVM) algorithms were combined to identify the eletromagnetic acoustic emission signals of round and cracked, round, and intact specimens. According to the algorithm recognition results, the recognition accuracy of can reach above 97.5%, which has a higher recognition rate compared with SVM and BP neural network. The results of the study show that the algorithm is able to identify quickly and accurately crack defect in metal specimens.展开更多
Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufactu...Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufacturing highlights the capability in manufacturing FGMs with a high geometrical complexity and manufacture flexibility.In this work,the 316L/CuSn10/18Ni300/CoCr four-type materials FGMs were fabricated using SLM.The microstructure and properties of the FGMs were investigated to reveal the effects of SLM processing parameters on the defects.A large number of microcracks were found at the 316L/CuSn10 interface,which initiated from the fusion boundary of 316L region and extended along the building direction.The elastic modulus and nano-hardness in the 18Ni300/CoCr fusion zone decreased significantly,less than those in the 18Ni300 region or the CoCr region.The iron and copper elements were well diffused in the 316L/CuSn10 fusion zone,while elements in the CuSn10/18Ni300 and the 18Ni300/CoCr fusion zones showed significantly gradient transitions.Compared with other regions,the width of the CuSn10/18Ni300 interface and the CuSn10 region expand significantly.The mechanisms of materials fusion and crack generation at the 316L/CuSn10 interface were discussed.In addition,FGM structures without macro-crack were built by only altering the deposition subsequence of 316L and CuSn10,which provides a guide for the additive manufacturing of FGM structures.展开更多
When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by therm...When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.展开更多
The mechanical properties of welded joints in resistance spot welding of DP780 steel were tested,and three different types of welding cracks in welded joints were investigated by optical microscopy,scanning electron m...The mechanical properties of welded joints in resistance spot welding of DP780 steel were tested,and three different types of welding cracks in welded joints were investigated by optical microscopy,scanning electron microscopy and electron back-scattered diffraction.Finally,the failure mode of the welded joints in shear tensile test was discussed.It is found the shear tensile strength of welded joints can be greatly improved by adding preheating current or tempering current.The surface crack in welded joint is intergranular fracture,while the inner crack in welded joint is transgranular fracture,and the surface crack on the edge of the electrode imprint can be improved by adding preheating current or tempering current.The traditional failure mode criterion advised by American Welding Society is no longer suitable for DP780 spot welds and the critical nugget size suggested by Pouranvari is overestimated.展开更多
基金supported by Key Research and Development Program of Shaanxi Province(No.2023-YBGY-386)Natural Science and Technology Fund General Program of Shaanxi Province(No.2021JM-599).
文摘Titanium alloys play an important role in aerospace and other fields.However,after precision forging and cold rolling process,some defects will appear on the subsurface of titanium alloy bars,thus reducing the surface quality and precision of turning process.This study aimed at exploring the effect of crack defects on TC4 cutting.Firstly,the finite element cutting simulation model of TC4 material with crack defects was established in ABAQUS.Then,the cutting parameters such as cutting force,stress concentration,chip morphology,residual stress were obtained by changing the variables such as the size and height of crack defects.Finally,the turning experiment was carried out on centerless lathe.The results show that the cutting force changes abruptly when the defect position is located on the cutting path,the maximal stress occurs at the tip of the defect,and the mutation of stress value is more serious with the increase of defect size;the buckling deformation of chip morphology occurs and becomes less serious with the increase of the distance between the defect position and the workpiece surface;the surface residual stress near the defect is related to the stress when the tool is close to the defect,the larger defect size and the closer to the machined surface,the greater the residual stress.Therefore,under certain processing conditions,the TC4 material should avoid large size defects or increase the distance between defects and the machined surface,so as to obtain better and stable surface quality.
基金financially supported by the National Natural Science Foundation of China(No.52175352)the Xing Liao Ying Cai Project of Liaoning Province(No.XLYC2008036)the Shenyang Youth Innovation Talent Support Program(No.RC220429)。
文摘The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.
文摘Electromagnetic acoustic emission technology is one of nondestructive testing, which can be used for defect detection of metal specimens. In this study, round and cracked metal specimens, round metal specimens, and intact metal specimens were prepared. And the electromagnetic acoustic emission signals of the three specimens were collected. In addition, the local mean decomposition(LMD), Autoregressive model(AR model) and least squares support vector machine (LSSVM) algorithms were combined to identify the eletromagnetic acoustic emission signals of round and cracked, round, and intact specimens. According to the algorithm recognition results, the recognition accuracy of can reach above 97.5%, which has a higher recognition rate compared with SVM and BP neural network. The results of the study show that the algorithm is able to identify quickly and accurately crack defect in metal specimens.
基金Project(2020B090922002)supported by Guangdong Provincial Key Field Research and Development Program,ChinaProjects(51875215,52005189)supported by the National Natural Science Foundation of ChinaProject(2019B1515120094)supported by Guangdong Provincial Basic and Applied Basic Research Fund,China。
文摘Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufacturing highlights the capability in manufacturing FGMs with a high geometrical complexity and manufacture flexibility.In this work,the 316L/CuSn10/18Ni300/CoCr four-type materials FGMs were fabricated using SLM.The microstructure and properties of the FGMs were investigated to reveal the effects of SLM processing parameters on the defects.A large number of microcracks were found at the 316L/CuSn10 interface,which initiated from the fusion boundary of 316L region and extended along the building direction.The elastic modulus and nano-hardness in the 18Ni300/CoCr fusion zone decreased significantly,less than those in the 18Ni300 region or the CoCr region.The iron and copper elements were well diffused in the 316L/CuSn10 fusion zone,while elements in the CuSn10/18Ni300 and the 18Ni300/CoCr fusion zones showed significantly gradient transitions.Compared with other regions,the width of the CuSn10/18Ni300 interface and the CuSn10 region expand significantly.The mechanisms of materials fusion and crack generation at the 316L/CuSn10 interface were discussed.In addition,FGM structures without macro-crack were built by only altering the deposition subsequence of 316L and CuSn10,which provides a guide for the additive manufacturing of FGM structures.
文摘When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.
文摘The mechanical properties of welded joints in resistance spot welding of DP780 steel were tested,and three different types of welding cracks in welded joints were investigated by optical microscopy,scanning electron microscopy and electron back-scattered diffraction.Finally,the failure mode of the welded joints in shear tensile test was discussed.It is found the shear tensile strength of welded joints can be greatly improved by adding preheating current or tempering current.The surface crack in welded joint is intergranular fracture,while the inner crack in welded joint is transgranular fracture,and the surface crack on the edge of the electrode imprint can be improved by adding preheating current or tempering current.The traditional failure mode criterion advised by American Welding Society is no longer suitable for DP780 spot welds and the critical nugget size suggested by Pouranvari is overestimated.