In order to improve the performance of support vector machine (SVM) applications in the field of credit risk evaluation, an adaptive Lq SVM model with Gauss kernel (ALqG-SVM) is proposed to evaluate credit risks. The ...In order to improve the performance of support vector machine (SVM) applications in the field of credit risk evaluation, an adaptive Lq SVM model with Gauss kernel (ALqG-SVM) is proposed to evaluate credit risks. The non-adaptive penalty of the object function is extended to (0, 2] to increase classification accuracy. To further improve the generalization performance of the proposed model, the Gauss kernel is introduced, thus the non-linear classification problem can be linearly separated in higher dimensional feature space. Two UCI credit datasets and a real life credit dataset from a US major commercial bank are used to check the efficiency of this model. Compared with other popular methods, satisfactory results are obtained through a novel method in the area of credit risk evaluation. So the new model is an excellent choice.展开更多
Owing to information asymmetry,evaluating the credit risk of small-and mediumsized enterprises(SMEs)is difficult.While previous studies evaluating the credit risk of SMEs have mostly focused on intrinsic risk generate...Owing to information asymmetry,evaluating the credit risk of small-and mediumsized enterprises(SMEs)is difficult.While previous studies evaluating the credit risk of SMEs have mostly focused on intrinsic risk generated by SMEs,our study considers both intrinsic and relational risks generated by neighbor firms’publicly available risk events.We propose a framework for quantifying relational risk based on publicly available risk events for SMEs’credit risk evaluation.Our proposed framework quantifies relational risk by weighting the impact of publicly available risk events of each firm in an interfirm network—considering the impact of interfirm network type,risk event type,and time dependence of risk events—and combines the relational risk score with financial and demographic features to evaluate SMEs credit risk.Our results reveal that relational risk score significantly improves both discrimination and granting performances of credit risk evaluation of SMEs,providing valuable managerial and practical implications for financial institutions.展开更多
In this study, a novel hybrid intelligent mining system integrating rough sets theory and support vector machines is developed to extract efficiently association rules from original information table for credit risk e...In this study, a novel hybrid intelligent mining system integrating rough sets theory and support vector machines is developed to extract efficiently association rules from original information table for credit risk evaluation and analysis. In the proposed hybrid intelligent system, support vector machines are used as a tool to extract typical features and filter its noise, which are different from the previous studies where rough sets were only used as a preprocessor for support vector machines. Such an approach could reduce the information table and generate the final knowledge from the reduced information table by rough sets. Therefore, the proposed hybrid intelligent system overcomes the difficulty of extracting rules from a trained support vector machine classifier and possesses the robustness which is lacking for rough-set-based approaches. In addition, the effectiveness of the proposed hybrid intelligent system is illustrated with two real-world credit datasets.展开更多
In recent years artificial neural networks are used to recognize the risk category of investigated companies. The research is based on data from 81 listed enterprises that applied for credit in domestic regional banks...In recent years artificial neural networks are used to recognize the risk category of investigated companies. The research is based on data from 81 listed enterprises that applied for credit in domestic regional banks operating in China. The backpropagation algorithm-the multilayer feedforward network structure is described. Each firm is described by 9 diagnostic variables and potential borrowers are classified into four classes. The efficiency of classification is evaluated in terms of classification errors calculated from the actual classification made by the credit officers. The results of the experiments show that LevenbergMarque training error is smallest among 4 learning algorithms and its performance is better, and application of artificial neural networks and classification functions can support the creditworthiness evaluation of borrowers.展开更多
A clustering-based undersampling (CUS) and distance-based near-miss method are widely used in current imbalanced learning algorithms, but this method has certain drawbacks. In particular, the CUS does not consider the...A clustering-based undersampling (CUS) and distance-based near-miss method are widely used in current imbalanced learning algorithms, but this method has certain drawbacks. In particular, the CUS does not consider the influence of the distance factor on the majority of instances, and the near-miss method omits the inter-class(es) within the majority of samples. To overcome these drawbacks, this study proposes an undersampling method combining distance measurement and majority class clustering. Resampling methods are used to develop an ensemble-based imbalanced-learning algorithm called the clustering and distance-based imbalance learning model (CDEILM). This algorithm combines distance-based undersampling, feature selection, and ensemble learning. In addition, a cluster size-based resampling (CSBR) method is proposed for preserving the original distribution of the majority class, and a hybrid imbalanced learning framework is constructed by fusing various types of resampling methods. The combination of CDEILM and CSBR can be considered as a specific case of this hybrid framework. The experimental results show that the CDEILM and CSBR methods can achieve better performance than the benchmark methods, and that the hybrid model provides the best results under most circumstances. Therefore, the proposed model can be used as an alternative imbalanced learning method under specific circumstances, e.g., for providing a solution to credit evaluation problems in financial applications.展开更多
基金The National Natural Science Foundation of China (No.70531040)the National Basic Research Program of China (973 Program) (No.2004CB720103)
文摘In order to improve the performance of support vector machine (SVM) applications in the field of credit risk evaluation, an adaptive Lq SVM model with Gauss kernel (ALqG-SVM) is proposed to evaluate credit risks. The non-adaptive penalty of the object function is extended to (0, 2] to increase classification accuracy. To further improve the generalization performance of the proposed model, the Gauss kernel is introduced, thus the non-linear classification problem can be linearly separated in higher dimensional feature space. Two UCI credit datasets and a real life credit dataset from a US major commercial bank are used to check the efficiency of this model. Compared with other popular methods, satisfactory results are obtained through a novel method in the area of credit risk evaluation. So the new model is an excellent choice.
基金the National Natural Science Foundation of China(Grant Nos.71731005,Nos.72101073)。
文摘Owing to information asymmetry,evaluating the credit risk of small-and mediumsized enterprises(SMEs)is difficult.While previous studies evaluating the credit risk of SMEs have mostly focused on intrinsic risk generated by SMEs,our study considers both intrinsic and relational risks generated by neighbor firms’publicly available risk events.We propose a framework for quantifying relational risk based on publicly available risk events for SMEs’credit risk evaluation.Our proposed framework quantifies relational risk by weighting the impact of publicly available risk events of each firm in an interfirm network—considering the impact of interfirm network type,risk event type,and time dependence of risk events—and combines the relational risk score with financial and demographic features to evaluate SMEs credit risk.Our results reveal that relational risk score significantly improves both discrimination and granting performances of credit risk evaluation of SMEs,providing valuable managerial and practical implications for financial institutions.
基金This research was partially supported by the National Natural Science Foundation of China under Grant Nos.70221001,70701035the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant Nos.3547600,3046540,3047540+1 种基金the Key Research Institute of Philosophies and Social Sciences in Hunan Universitiesthe National Natural Science Foundation of China/Research Grants Council (RGC) of Hong Kong Joint Research Scheme under Grant No.N_CityU110/07.
文摘In this study, a novel hybrid intelligent mining system integrating rough sets theory and support vector machines is developed to extract efficiently association rules from original information table for credit risk evaluation and analysis. In the proposed hybrid intelligent system, support vector machines are used as a tool to extract typical features and filter its noise, which are different from the previous studies where rough sets were only used as a preprocessor for support vector machines. Such an approach could reduce the information table and generate the final knowledge from the reduced information table by rough sets. Therefore, the proposed hybrid intelligent system overcomes the difficulty of extracting rules from a trained support vector machine classifier and possesses the robustness which is lacking for rough-set-based approaches. In addition, the effectiveness of the proposed hybrid intelligent system is illustrated with two real-world credit datasets.
文摘In recent years artificial neural networks are used to recognize the risk category of investigated companies. The research is based on data from 81 listed enterprises that applied for credit in domestic regional banks operating in China. The backpropagation algorithm-the multilayer feedforward network structure is described. Each firm is described by 9 diagnostic variables and potential borrowers are classified into four classes. The efficiency of classification is evaluated in terms of classification errors calculated from the actual classification made by the credit officers. The results of the experiments show that LevenbergMarque training error is smallest among 4 learning algorithms and its performance is better, and application of artificial neural networks and classification functions can support the creditworthiness evaluation of borrowers.
文摘A clustering-based undersampling (CUS) and distance-based near-miss method are widely used in current imbalanced learning algorithms, but this method has certain drawbacks. In particular, the CUS does not consider the influence of the distance factor on the majority of instances, and the near-miss method omits the inter-class(es) within the majority of samples. To overcome these drawbacks, this study proposes an undersampling method combining distance measurement and majority class clustering. Resampling methods are used to develop an ensemble-based imbalanced-learning algorithm called the clustering and distance-based imbalance learning model (CDEILM). This algorithm combines distance-based undersampling, feature selection, and ensemble learning. In addition, a cluster size-based resampling (CSBR) method is proposed for preserving the original distribution of the majority class, and a hybrid imbalanced learning framework is constructed by fusing various types of resampling methods. The combination of CDEILM and CSBR can be considered as a specific case of this hybrid framework. The experimental results show that the CDEILM and CSBR methods can achieve better performance than the benchmark methods, and that the hybrid model provides the best results under most circumstances. Therefore, the proposed model can be used as an alternative imbalanced learning method under specific circumstances, e.g., for providing a solution to credit evaluation problems in financial applications.