G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducte...G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducted under a constant stress of 130 MPa and temperatures of 625,650 and 675 ℃.Comparing creep curves under different temperatures,it is observed that the creep performance of a G115 tube is more sensitive to temperature than stress.Steady-state creep rates of creep specimens are significantly increased by enhancing the temperature.A micro-structural analysis of ruptured creep specimens under a stress of 130 MPa and temperatures of 650 ℃ and 675 ℃ was performed;the fracture mechanism of creep specimens under these two temperatures mainly included the appearance of creep holes on the grain boundary and a decrease in the martensite lath density.展开更多
In this paper,the interrupted and ruptured creep tests were carried out in a novel second generation single crystal superalloy named DD11 at 1100℃/130 MPa.The alloy exhibited typical creep curve including primary,ste...In this paper,the interrupted and ruptured creep tests were carried out in a novel second generation single crystal superalloy named DD11 at 1100℃/130 MPa.The alloy exhibited typical creep curve including primary,steady,and tertiary three creep stages.The microstructural evolution at different stages of the creep were analyzed by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The results show that theγ′phases transform into rafted structure at the early stage of the steady creep and keep stable during the steady creep stage.As the creep goes on,the rafted structure further coarsens and the topological inversion occurs.In addition,at the primary creep,the dislocations mainly move in theγmatrix and pile up in theγ/γ′interface since the matrix channels widen slightly.The formation of the regular interfacial dislocation networks occurs at the early stage of the steady creep.Under the low stress,the dominated deformation mechanism during steady creep stage is the climbing of the〈010〉type edge dislocation.Furthermore,the effect of the deformation mechanism on creep property was discussed in detail.展开更多
To investigate the microstructure and creep properties of a hot corrosion resistant Ni-based single crystal superal oy containing different hafnium(Hf)additions(0-0.4wt.%),creep test was performed at 980℃/200 MPa.Opt...To investigate the microstructure and creep properties of a hot corrosion resistant Ni-based single crystal superal oy containing different hafnium(Hf)additions(0-0.4wt.%),creep test was performed at 980℃/200 MPa.Optical microscopy,scanning electron microscopy,electron probe micro analysis(EPMA),and transmission electron microscopy were employed to analyze the microstructure differences.With the increase of Hf,the creep rupture life of the alloys at 980℃/200 MPa gradually increases.Microstructure analysis reveals that Hf promotes the transformation of carbide morphology from script to rod-like and finally to blocky.Upon the addition of Hf,there is an increase in the volume fraction of blocky MC carbides,along with an elevation in the partitioning ratio of Cr and Mo elements.Concurrently,theγ/γ′interfacial dislocation spacing undergoes a reduction.It is found that script carbides are more likely to cause stress concentration in high temperature creep,leading to nucleation and propagation of microcracks.The formation mechanism of blocky MC carbides is related to the increase in precipitation temperature and lattice constant,and its beneficial impact on creep resistance is also investigated based on the analysis of the creep test results.展开更多
In this work,AZ31B extruded sheets with mixed-grain microstructures were prepared through extrusion.Samples of mixed-grain microstructure with different morphologies were selected from the AZ31B extruded sheets(referr...In this work,AZ31B extruded sheets with mixed-grain microstructures were prepared through extrusion.Samples of mixed-grain microstructure with different morphologies were selected from the AZ31B extruded sheets(referred to as M1 and M2 samples,respectively).The creep tests were performed on these samples at the temperature range of 150-200℃,and the stress level range of 50-100 MPa.The creep properties and fracture behavior of AZ31 extruded sheets with mixed-grain microstructures were studied.Results showed that the creep properties of the M2 sample always outperformed that of the M1 sample and M1 and M2 samples’creep was dominated by dislocation movement.The creep rate of M2 samples(1.5×10^(-7)±1.1×10^(-10) s^(-1))is an order of magnitude lower than that of M1 samples(4.8×10^(-6)±8.1×10^(-10) s^(-1))at 200℃under 50 MPa The high activity of basal slip and softening mechanism in the M1 sample significantly accelerated creep,resulting in a relatively high creep rate.Moreover,the stress concentration within the M1 sample caused by deformation incompatibility,increased the initiation and propagation of voids,ultimately leading to fracture and poorer creep performance.However,the numerous<10µm fine grains surrounding deformed coarse grains in the M2 sample facilitated better coordination of deformation through dislocation slip,effectively slowing down the initiation of voids during the creep process.Meanwhile,the strain was uniformly distributed within each grain,mitigating stress concentration,inhibiting voids propagation,and contributing to the superior creep resistance of the M2 sample.展开更多
Both surface and internal microstructures of a second-generation Ni-based single crystal(SX) superalloy were studied after creep and rejuvenation heat treatment(RHT).It is indicated that the microstructures,such as th...Both surface and internal microstructures of a second-generation Ni-based single crystal(SX) superalloy were studied after creep and rejuvenation heat treatment(RHT).It is indicated that the microstructures,such as the dislocation network,the γ phase and the γ' phase,can be recovered to those after the standard heat treatment(SHT).It is found that RHT affected zone(RAZ) formed at the surface is composed of theγ'-free layer,the transition layer and the recrystallization(RX),which are less than 20 μm in depth totally.Such depth of the RAZ doesn't affect the properties of the superalloy.The morphology of γ' phase at the RAZ is related to the composition of the elements.The average creep life after RHT is close to the average life after SHT.It is concluded that RHT could effectively repair SX parts and increase the total life of the sample after a damage by creep.展开更多
Rejuvenation heat treatments can restore the microstructures and mechanical properties of the degraded turbine blades in gas turbine engines.Herein we analyze the effects of rejuvenation heat treatments on the microst...Rejuvenation heat treatments can restore the microstructures and mechanical properties of the degraded turbine blades in gas turbine engines.Herein we analyze the effects of rejuvenation heat treatments on the microstructural characteristics and mechanical properties of damaged and undamaged specimens of a Ni-based superalloy,K403.The damaged specimens were found to have degraded microstructures and shorter creep lifetime than the undamaged specimen.The rejuvenation heat treatment proved beneficial,especially for specimens exposed to damage for 50 h.In addition,the microstructure recovery and creep life were found to depend on the predamage durations of the specimens.A y’-precipitate-based creep lifetime model was established to predict the residual lifetime based on the microstructural information.展开更多
In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation o...In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation of anatomic diffusion layer with thickness of about 17μm at the interface during the ARB under three creep loadingconditions namely 30 MPa at 225℃,35 MPa at 225℃,and 35 MPa at 275℃.An generated intermetallic compoundresulted in a 40%increase of interface thickness near Al.The stress level decreased by 13%at constant temperature withno signi fi cant effect on the interface thickness,and the creep failure time declined by 44%.It was observed that atconstant temperatures,the second slope of the creep curve reached to 39%with increasing stress level,then,it dropped to2%with a little temperature rising.After creep test under 35 MPa at 275℃,the sample displays the presence of 60%Aland 40%Cu,containing brittle Al_(2)Cu intermetallic compound at the interface.Applied temperature and stress had effecton the creep properties,specially increasing the slope of creep curves with higher stresses.展开更多
Nickel-based superalloy IN738LC produced by selective laser melting(SLM)exhibits inferior hightemperature creep properties than its cast counterparts due to relatively smaller grain size,particularly for the plane nor...Nickel-based superalloy IN738LC produced by selective laser melting(SLM)exhibits inferior hightemperature creep properties than its cast counterparts due to relatively smaller grain size,particularly for the plane normal to the building direction.This work studied effects of post heating strategy on the microstructure and especially the grain size to improve the high temperature creep resistance.The asbuilt microstructure exhibited a fine grain size and large quantities of MC carbides that could effectively hinder grain growth.It was found that unconventional two-step heat treatments could lead to substantial grain growth,and the effect is particularly prominent at a specific temperature.The ease of grain growth was explained after classifying the microstructural evolution(boundary carbide transformation)during each heating step and related to the reduced grain boundary pinning force from MC carbides.Creep tests validated the effect of the new heat treatment scheme on the SLM-processed IN738LC at 850℃.An extended creep fracture life(1.5 to 4 times improvement)and lower secondary creep rates were achieved with samples subjected to the newly optimized two-step heat treatment.The complete creep curves are also firstly presented for SLM-IN738LC,confirming the effectiveness of grain growth and highlighting the importance of dedicated heat treatment for SLM superalloys.展开更多
The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal beh...The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal behavior of pore water. Based on the idea of using the fractional order to reflect mechanical properties of soils, a fractional creep model is proposed by introducing a variable-order fractional operator, and realized on a series of creep responses in soft soils. A comparative analysis illustrates that the evolution of mechanical properties, shown through the simulated results, exactly corresponds to the motion of pore water and the solid skeleton. This demonstrates that the proposed variable-order fractional model can be employed to characterize the evolution of mechanical properties of and the pore water motion in soft soils during creep. It is observed that the fractional order from the proposed model is related to the dissipation rate of pore water pressure.展开更多
The study developed the three alloy systems with different precipitates and examined the role of precipitated phase particles in modifying the creep properties of as-cast Mg^(-1)0Bi-0.5Mn-0.5Ag(BMQ1000),Mg-5Bi-5Sn-0.5...The study developed the three alloy systems with different precipitates and examined the role of precipitated phase particles in modifying the creep properties of as-cast Mg^(-1)0Bi-0.5Mn-0.5Ag(BMQ1000),Mg-5Bi-5Sn-0.5Mn-0.5Ag(BTMQ5500)and Mg^(-1)0Sn-0.5Mn-0.5Ag(TMQ1000)alloys at temperatures ranging from 423 to 473 K and stresses of 45-85 MPa.The values of n for the BMQ1000,BTMQ5500,and TMQ1000 alloys were determined as 6.67,5.75,and 5.92,respectively.Moreover,the activation energy for these alloys was found to be 164.71,134.68,and 135.93 k J/mol,respectively.The results suggested that the creep properties followed the order of BTMQ5500>TMQ1000>BMQ1000.A coarse and uneven distribution of the Mg_(3)Bi_(2)precipitated phase in the BMQ1000 alloy leads to a feeble pining effect on dislocation slipping and generates substantial stress concentrations.For TMQ1000 alloy,while the nanoscale Mg_(2)Sn precipitates have a stronger barrier effect on dislocations than the Mg_(3)Bi_(2)in the BMQ1000 alloy,their ability to inhibit dislocation climbing is comparatively weak.Furthermore,it was found that Mg_(2)Sn precipitates andα-Mg exhibited a preferential orientation relationship of(020)Mg_(2)Sn//(-1010)Mg,and the morphology of the precipitated phase transformed in a way that hinders dislocation movement effectively.In addition,elastic interactions between the precipitated phases are identified.The above-mentioned factors are largely responsible for the notable enhancement in creep resistance.Further,it is ascertained that cross-slip and pyramidal(c+a)slip are primary creep mechanisms in the BMQ1000 alloy.In contrast,the dominant mechanisms in TMQ1000 and BTMQ5500 alloys are dislocation climb and pyramidal(c+a)slip.Moreover,stacking faults(SFs)and twinning assist in the creep deformation of the BTMQ5500 alloy.展开更多
The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic...The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress.展开更多
Effects of alloying processing on tensile test properties of Fe 3Al based alloys have been studied. Results show that microalloying of cerium is very effective on increasing the room temperature ductility of Fe 3Al...Effects of alloying processing on tensile test properties of Fe 3Al based alloys have been studied. Results show that microalloying of cerium is very effective on increasing the room temperature ductility of Fe 3Al based alloys. Surface analysis by XPS demonstrates that cerium addition causes the change in the oxide chemistry and provides rapid passivation of the specimen surface. The high temperature strength and creep resistance of Fe 3Al based alloys can be significantly enhanced by alloying additions of tungsten, niobium or molybdenum, especially when combined additions of tungsten with niobium or molybdenum are used. The additions of tungsten, niobium or molybdenum also result in the significant microstructural refinement and the formation of fine precipitates which are identified as M 6C type carbide in the alloys containing tungsten.展开更多
Triaxial creep tests on CCG specimens were systematically performed using aself-made creep seepage experimental apparatus for determining the creep law of CCG.An improved triaxial creep model of CCG was established on...Triaxial creep tests on CCG specimens were systematically performed using aself-made creep seepage experimental apparatus for determining the creep law of CCG.An improved triaxial creep model of CCG was established on the basis of a Nishiharamodel and another visco-elasto-plastic model,parameters of which were fitted on test data.Furthermore,the creep model is validated according to the result of triaxial creep experiments,and the outcome shows that the proposed triaxial creep model can properly characterizethe properties of various creep deformation phases of CCG,especially the acceleratingcreep phase.At the same time,the instability conditions of CCG were presentedbased on the discussion of the improved model's stability in terms of stability theories ofdifferential equation solution.展开更多
The present work reports the creep behavior and microstructural evolution of the sand-cast Mg-14Gd-0.4Zr alloy(wt.%) prepared by the differential pressure casting machine. Their compressive creep tests at 250 ℃ were ...The present work reports the creep behavior and microstructural evolution of the sand-cast Mg-14Gd-0.4Zr alloy(wt.%) prepared by the differential pressure casting machine. Their compressive creep tests at 250 ℃ were performed under various applied stresses(i.e., 60, 80 and100 MPa). Among them, the sand-cast Mg-14Gd-0.4Zr samples examined under 250 ℃/80 MPa for 39 and 95 h, respectively, were chosen to systemically analyze their creep mechanisms using high-angle annular dark field-scanning transmission electron microscopy(HAADF-STEM).The obtained results showed that the enhancement of creep resistance can be mainly attributed to the coherent β' and β'_F phases with an alternate distribution, effectively impeding the basal dislocations movement. However, with the creep time increasing, the fine β'+β'_F precipitate chains coarsened and transformed to semi-coherent β_1 phase and even to large incoherent β phase(surrounded by precipitate-free areas) in grain interiors. The precipitate-free zones(PFZs) at grain boundaries(GBs) were formed, and they could expand during creep deformation. Apart from the main cross-slip of basal and prismatic dislocations, type dislocations were activated and tended to distribute near the GBs. The aforementioned phenomena induced the stress concentrations, consequently leading to the increment of the creep strain.展开更多
High-temperature creep properties of sintered uranium dioxide pellets with two grain sizes (9.0 μm and 23.8μm) were studied. The results indicate that the creep rate becomes a little faster with the reduction of t...High-temperature creep properties of sintered uranium dioxide pellets with two grain sizes (9.0 μm and 23.8μm) were studied. The results indicate that the creep rate becomes a little faster with the reduction of the uranium dioxide grain size at the same temperature and the same load. At the same temperature, the logarithmic value of the steady creep rate vs stress has linear relation, and with increasing load, the steady creep rate of the sintered uranium dioxide pellet increases. Under the same load, the steady creep rate of the sintered uranium dioxide pellet increases with increasing temperature; and the creep rates of sintered uranium dioxide pellet with the grain size of 9.0 μm and 23.8 μm under 10 MPa are almost the same. The creep process is controlled both by Nabarro--Herring creep and Hamper-Dorn creep for uranium dioxide pellet with grain size of 9.0 μm, while Hamper---Dora creep is the dominantmechanism for uranium dioxide with grain size of 23.8 μm.展开更多
The characters of limestone in weak interlayer of a high rocky slope in Xuzhou, China, are studied by shear static test and shear creep test. The results show that limestone specimens have attenuation creep properties...The characters of limestone in weak interlayer of a high rocky slope in Xuzhou, China, are studied by shear static test and shear creep test. The results show that limestone specimens have attenuation creep properties and constant rate creep properties, almost have no accelerated creep properties. The exponential type empirical formula is selected to fit creep grading curves by polynomial regression analysis method, and the square sums of the fitting results residual are in the order of 10^(-7). Then grade creep curves at every shear loads are set up. Combining creep rate-time curve, the creep properties of limestone are analyzed. As the physical meaning of component model is clearer, the Poytin–Thomson model is set up. Through the least square method, the optimal parameters of Poytin–Thomson model are obtained,and the sums of squared residuals belong to 10^(-3)order of magnitude, which can meet the accuracy requirements of engineering calculation. So the Poytin–Thomson model can reflect the shear creep characteristics of limestone very well.展开更多
The results of a theoretical and finite element (FE) investigation of a two-material impression creep test method, using a rectangular indenter, are presented. The method uses a general formulation for steady-state cr...The results of a theoretical and finite element (FE) investigation of a two-material impression creep test method, using a rectangular indenter, are presented. The method uses a general formulation for steady-state creep deformation for multi-material components in conjunction with the results of FE analyses. The practical application of the proposed technique, in determining the secondary creep properties of heat-affected zone (HAZ) materials in welds, for which conventional creep testing methods cannot be used, is considered. A number of numerical examples are used to describe solution procedures and to verify the method.展开更多
Effects of combined additions of tungsten and molybdenum on the creep properties of Fe3AI-based alloys have been investigated. Results show that combined additions of tungsten and molybdenum increase significantly the...Effects of combined additions of tungsten and molybdenum on the creep properties of Fe3AI-based alloys have been investigated. Results show that combined additions of tungsten and molybdenum increase significantly the creep rupture life of the Fe3Al base alloys at high temperature. TEM analysis of the alloys containing tungsten plus molybdenum indicates that both solid-solution strengthening and precipitation harden- ing make the significant increase of creep rupture life.展开更多
Vertical section method has been used to measure the fractal dimension of cyclic creep frac- ture surfaces of rotor steel 34CrMoA at 550℃.The relationship between fractal dimension and cyclic creep properties has bee...Vertical section method has been used to measure the fractal dimension of cyclic creep frac- ture surfaces of rotor steel 34CrMoA at 550℃.The relationship between fractal dimension and cyclic creep properties has been analyzed.The fractal dimension is dependent upon the power product of minimum creep rate and rupture time,and satisfies the linear function with rupture strain.展开更多
The lithology of fracture zone which was developed at the dam foundation of a hydropower station is weak sandstone with poor integrity and pore cementation contact.Its creep properties have a significant impact on the...The lithology of fracture zone which was developed at the dam foundation of a hydropower station is weak sandstone with poor integrity and pore cementation contact.Its creep properties have a significant impact on the deformation and stability of the dam.Based on the characteristics of loose organizational structure,high moisture content and poor mechanical properties,the triaxial compression tests and creep tests were carried out,respectively.The results show significant non-linear,low strength and no obvious strength peaks.Both axial and lateral strains are achieved more than 3%when the tests are failed.The weak sandstone has a significant creep property,but only transient and steady state appear under low stress.Increased stress causes creep intensified and lateral strain gradually exceeds axial strain.In the failure stage,it has characteristics of large axial plastic deformation,obvious volumetric ductility dilation and large steady creep rate.The accelerated creep appears shortly after transient loading under confining of pressures 1.0 MPa and 1.5 MPa.Therefore,an improved Burgers creep model considering the non-linear characteristics of weak sandstone is built based on hyperbolic equation and the creep parameters are identified.This model can well describe the creep properties of weak sandstone.展开更多
文摘G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducted under a constant stress of 130 MPa and temperatures of 625,650 and 675 ℃.Comparing creep curves under different temperatures,it is observed that the creep performance of a G115 tube is more sensitive to temperature than stress.Steady-state creep rates of creep specimens are significantly increased by enhancing the temperature.A micro-structural analysis of ruptured creep specimens under a stress of 130 MPa and temperatures of 650 ℃ and 675 ℃ was performed;the fracture mechanism of creep specimens under these two temperatures mainly included the appearance of creep holes on the grain boundary and a decrease in the martensite lath density.
基金This study was financially supported by the National Natural Science Foundation of China(No.51471014).
文摘In this paper,the interrupted and ruptured creep tests were carried out in a novel second generation single crystal superalloy named DD11 at 1100℃/130 MPa.The alloy exhibited typical creep curve including primary,steady,and tertiary three creep stages.The microstructural evolution at different stages of the creep were analyzed by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The results show that theγ′phases transform into rafted structure at the early stage of the steady creep and keep stable during the steady creep stage.As the creep goes on,the rafted structure further coarsens and the topological inversion occurs.In addition,at the primary creep,the dislocations mainly move in theγmatrix and pile up in theγ/γ′interface since the matrix channels widen slightly.The formation of the regular interfacial dislocation networks occurs at the early stage of the steady creep.Under the low stress,the dominated deformation mechanism during steady creep stage is the climbing of the〈010〉type edge dislocation.Furthermore,the effect of the deformation mechanism on creep property was discussed in detail.
基金financially supported by the National Key Research and Development Program of China (No.2021YFA1600603)the National Science and Technology Major Project (No.J20191-VI-0010-0124)the National Natural Science Foundation of China (No.52071219)。
文摘To investigate the microstructure and creep properties of a hot corrosion resistant Ni-based single crystal superal oy containing different hafnium(Hf)additions(0-0.4wt.%),creep test was performed at 980℃/200 MPa.Optical microscopy,scanning electron microscopy,electron probe micro analysis(EPMA),and transmission electron microscopy were employed to analyze the microstructure differences.With the increase of Hf,the creep rupture life of the alloys at 980℃/200 MPa gradually increases.Microstructure analysis reveals that Hf promotes the transformation of carbide morphology from script to rod-like and finally to blocky.Upon the addition of Hf,there is an increase in the volume fraction of blocky MC carbides,along with an elevation in the partitioning ratio of Cr and Mo elements.Concurrently,theγ/γ′interfacial dislocation spacing undergoes a reduction.It is found that script carbides are more likely to cause stress concentration in high temperature creep,leading to nucleation and propagation of microcracks.The formation mechanism of blocky MC carbides is related to the increase in precipitation temperature and lattice constant,and its beneficial impact on creep resistance is also investigated based on the analysis of the creep test results.
基金supported by the National Natural Science Foundation of China(52474419,52374395)Natural Science Foundation of Shanxi Province(20210302123135,202303021221143)+3 种基金Scientific and Technological Achievements Transformation Guidance Special Project of Shanxi Province(202104021301022,202204021301009)Central Government Guided Local Science and Technology development projects(YDZJSX20231B003,YDZJSX2021A010)The Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant(No.075-15-2022-1133)the National Research Foundation(NRF)grant funded by the Ministry of Science and ICT(2015R1A2A1A01006795)of Korea through the Research Institute of Advanced.
文摘In this work,AZ31B extruded sheets with mixed-grain microstructures were prepared through extrusion.Samples of mixed-grain microstructure with different morphologies were selected from the AZ31B extruded sheets(referred to as M1 and M2 samples,respectively).The creep tests were performed on these samples at the temperature range of 150-200℃,and the stress level range of 50-100 MPa.The creep properties and fracture behavior of AZ31 extruded sheets with mixed-grain microstructures were studied.Results showed that the creep properties of the M2 sample always outperformed that of the M1 sample and M1 and M2 samples’creep was dominated by dislocation movement.The creep rate of M2 samples(1.5×10^(-7)±1.1×10^(-10) s^(-1))is an order of magnitude lower than that of M1 samples(4.8×10^(-6)±8.1×10^(-10) s^(-1))at 200℃under 50 MPa The high activity of basal slip and softening mechanism in the M1 sample significantly accelerated creep,resulting in a relatively high creep rate.Moreover,the stress concentration within the M1 sample caused by deformation incompatibility,increased the initiation and propagation of voids,ultimately leading to fracture and poorer creep performance.However,the numerous<10µm fine grains surrounding deformed coarse grains in the M2 sample facilitated better coordination of deformation through dislocation slip,effectively slowing down the initiation of voids during the creep process.Meanwhile,the strain was uniformly distributed within each grain,mitigating stress concentration,inhibiting voids propagation,and contributing to the superior creep resistance of the M2 sample.
基金financially supported by the National Science and Technology Major Project(No.2017-VI-0002-0072)the National Key R&D Program of China(Nos.2017YFA0700704,2018YFB110660 and 2017YFB1103800)+2 种基金the National Natural Science Foundation of China(Nos.51601192,51671188,51701210 and 51771190)the Youth Innovation Promotion Association,the Chinese Academy of SciencesState Key Lab of Advanced Metals and Materials Open Fund(No.2018-Z07)。
文摘Both surface and internal microstructures of a second-generation Ni-based single crystal(SX) superalloy were studied after creep and rejuvenation heat treatment(RHT).It is indicated that the microstructures,such as the dislocation network,the γ phase and the γ' phase,can be recovered to those after the standard heat treatment(SHT).It is found that RHT affected zone(RAZ) formed at the surface is composed of theγ'-free layer,the transition layer and the recrystallization(RX),which are less than 20 μm in depth totally.Such depth of the RAZ doesn't affect the properties of the superalloy.The morphology of γ' phase at the RAZ is related to the composition of the elements.The average creep life after RHT is close to the average life after SHT.It is concluded that RHT could effectively repair SX parts and increase the total life of the sample after a damage by creep.
基金the National Science and Technology Major Project(No.2017-IV-00120049)。
文摘Rejuvenation heat treatments can restore the microstructures and mechanical properties of the degraded turbine blades in gas turbine engines.Herein we analyze the effects of rejuvenation heat treatments on the microstructural characteristics and mechanical properties of damaged and undamaged specimens of a Ni-based superalloy,K403.The damaged specimens were found to have degraded microstructures and shorter creep lifetime than the undamaged specimen.The rejuvenation heat treatment proved beneficial,especially for specimens exposed to damage for 50 h.In addition,the microstructure recovery and creep life were found to depend on the predamage durations of the specimens.A y’-precipitate-based creep lifetime model was established to predict the residual lifetime based on the microstructural information.
文摘In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation of anatomic diffusion layer with thickness of about 17μm at the interface during the ARB under three creep loadingconditions namely 30 MPa at 225℃,35 MPa at 225℃,and 35 MPa at 275℃.An generated intermetallic compoundresulted in a 40%increase of interface thickness near Al.The stress level decreased by 13%at constant temperature withno signi fi cant effect on the interface thickness,and the creep failure time declined by 44%.It was observed that atconstant temperatures,the second slope of the creep curve reached to 39%with increasing stress level,then,it dropped to2%with a little temperature rising.After creep test under 35 MPa at 275℃,the sample displays the presence of 60%Aland 40%Cu,containing brittle Al_(2)Cu intermetallic compound at the interface.Applied temperature and stress had effecton the creep properties,specially increasing the slope of creep curves with higher stresses.
基金financially supported by"Industrial Transformation Research Hub for Transforming Australia’s Manufacturing Industry through High Value Additive Manufacturing"of the Australian Research Council(grant No.IH130100008)the use of instruments and scientific and technical assistance at the Monash Centre for Electron Microscopy,a Node of Microscopy Australiathe financial support from the Monash Graduate Research Scholarship(MGS)and International Monash Postgraduate Research Scholarship(IMPRS)from the Monash University。
文摘Nickel-based superalloy IN738LC produced by selective laser melting(SLM)exhibits inferior hightemperature creep properties than its cast counterparts due to relatively smaller grain size,particularly for the plane normal to the building direction.This work studied effects of post heating strategy on the microstructure and especially the grain size to improve the high temperature creep resistance.The asbuilt microstructure exhibited a fine grain size and large quantities of MC carbides that could effectively hinder grain growth.It was found that unconventional two-step heat treatments could lead to substantial grain growth,and the effect is particularly prominent at a specific temperature.The ease of grain growth was explained after classifying the microstructural evolution(boundary carbide transformation)during each heating step and related to the reduced grain boundary pinning force from MC carbides.Creep tests validated the effect of the new heat treatment scheme on the SLM-processed IN738LC at 850℃.An extended creep fracture life(1.5 to 4 times improvement)and lower secondary creep rates were achieved with samples subjected to the newly optimized two-step heat treatment.The complete creep curves are also firstly presented for SLM-IN738LC,confirming the effectiveness of grain growth and highlighting the importance of dedicated heat treatment for SLM superalloys.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK2012810)the Fundamental Research Funds for the Central Universities(Grant No.2009B15114)
文摘The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal behavior of pore water. Based on the idea of using the fractional order to reflect mechanical properties of soils, a fractional creep model is proposed by introducing a variable-order fractional operator, and realized on a series of creep responses in soft soils. A comparative analysis illustrates that the evolution of mechanical properties, shown through the simulated results, exactly corresponds to the motion of pore water and the solid skeleton. This demonstrates that the proposed variable-order fractional model can be employed to characterize the evolution of mechanical properties of and the pore water motion in soft soils during creep. It is observed that the fractional order from the proposed model is related to the dissipation rate of pore water pressure.
基金National Natural Science Foundation of China(Grant Nos.51901153)Shanxi Scholarship Council of China(Grant No.2019032)Natural Science Foundation of Shanxi(Grant No.202103021224049)。
文摘The study developed the three alloy systems with different precipitates and examined the role of precipitated phase particles in modifying the creep properties of as-cast Mg^(-1)0Bi-0.5Mn-0.5Ag(BMQ1000),Mg-5Bi-5Sn-0.5Mn-0.5Ag(BTMQ5500)and Mg^(-1)0Sn-0.5Mn-0.5Ag(TMQ1000)alloys at temperatures ranging from 423 to 473 K and stresses of 45-85 MPa.The values of n for the BMQ1000,BTMQ5500,and TMQ1000 alloys were determined as 6.67,5.75,and 5.92,respectively.Moreover,the activation energy for these alloys was found to be 164.71,134.68,and 135.93 k J/mol,respectively.The results suggested that the creep properties followed the order of BTMQ5500>TMQ1000>BMQ1000.A coarse and uneven distribution of the Mg_(3)Bi_(2)precipitated phase in the BMQ1000 alloy leads to a feeble pining effect on dislocation slipping and generates substantial stress concentrations.For TMQ1000 alloy,while the nanoscale Mg_(2)Sn precipitates have a stronger barrier effect on dislocations than the Mg_(3)Bi_(2)in the BMQ1000 alloy,their ability to inhibit dislocation climbing is comparatively weak.Furthermore,it was found that Mg_(2)Sn precipitates andα-Mg exhibited a preferential orientation relationship of(020)Mg_(2)Sn//(-1010)Mg,and the morphology of the precipitated phase transformed in a way that hinders dislocation movement effectively.In addition,elastic interactions between the precipitated phases are identified.The above-mentioned factors are largely responsible for the notable enhancement in creep resistance.Further,it is ascertained that cross-slip and pyramidal(c+a)slip are primary creep mechanisms in the BMQ1000 alloy.In contrast,the dominant mechanisms in TMQ1000 and BTMQ5500 alloys are dislocation climb and pyramidal(c+a)slip.Moreover,stacking faults(SFs)and twinning assist in the creep deformation of the BTMQ5500 alloy.
文摘The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress.
文摘Effects of alloying processing on tensile test properties of Fe 3Al based alloys have been studied. Results show that microalloying of cerium is very effective on increasing the room temperature ductility of Fe 3Al based alloys. Surface analysis by XPS demonstrates that cerium addition causes the change in the oxide chemistry and provides rapid passivation of the specimen surface. The high temperature strength and creep resistance of Fe 3Al based alloys can be significantly enhanced by alloying additions of tungsten, niobium or molybdenum, especially when combined additions of tungsten with niobium or molybdenum are used. The additions of tungsten, niobium or molybdenum also result in the significant microstructural refinement and the formation of fine precipitates which are identified as M 6C type carbide in the alloys containing tungsten.
基金Supported by the National Natural Science Foundation of China(50874124)the National Basic Research Program of China(973)(2005CB221502)+1 种基金the National Natural Science Foundation of China(50534080)the Natural Science Foundation Project of CQ CSTC(2008BA6028)
文摘Triaxial creep tests on CCG specimens were systematically performed using aself-made creep seepage experimental apparatus for determining the creep law of CCG.An improved triaxial creep model of CCG was established on the basis of a Nishiharamodel and another visco-elasto-plastic model,parameters of which were fitted on test data.Furthermore,the creep model is validated according to the result of triaxial creep experiments,and the outcome shows that the proposed triaxial creep model can properly characterizethe properties of various creep deformation phases of CCG,especially the acceleratingcreep phase.At the same time,the instability conditions of CCG were presentedbased on the discussion of the improved model's stability in terms of stability theories ofdifferential equation solution.
基金the Shanghai Sailing Program (23YF1417100)National Natural Science Foundation of China (U2037601)China Scholarship Council (Grant No: 202006890008) for the financial support。
文摘The present work reports the creep behavior and microstructural evolution of the sand-cast Mg-14Gd-0.4Zr alloy(wt.%) prepared by the differential pressure casting machine. Their compressive creep tests at 250 ℃ were performed under various applied stresses(i.e., 60, 80 and100 MPa). Among them, the sand-cast Mg-14Gd-0.4Zr samples examined under 250 ℃/80 MPa for 39 and 95 h, respectively, were chosen to systemically analyze their creep mechanisms using high-angle annular dark field-scanning transmission electron microscopy(HAADF-STEM).The obtained results showed that the enhancement of creep resistance can be mainly attributed to the coherent β' and β'_F phases with an alternate distribution, effectively impeding the basal dislocations movement. However, with the creep time increasing, the fine β'+β'_F precipitate chains coarsened and transformed to semi-coherent β_1 phase and even to large incoherent β phase(surrounded by precipitate-free areas) in grain interiors. The precipitate-free zones(PFZs) at grain boundaries(GBs) were formed, and they could expand during creep deformation. Apart from the main cross-slip of basal and prismatic dislocations, type dislocations were activated and tended to distribute near the GBs. The aforementioned phenomena induced the stress concentrations, consequently leading to the increment of the creep strain.
基金Project(50874126)supported by the National Natural Science Foundation of China
文摘High-temperature creep properties of sintered uranium dioxide pellets with two grain sizes (9.0 μm and 23.8μm) were studied. The results indicate that the creep rate becomes a little faster with the reduction of the uranium dioxide grain size at the same temperature and the same load. At the same temperature, the logarithmic value of the steady creep rate vs stress has linear relation, and with increasing load, the steady creep rate of the sintered uranium dioxide pellet increases. Under the same load, the steady creep rate of the sintered uranium dioxide pellet increases with increasing temperature; and the creep rates of sintered uranium dioxide pellet with the grain size of 9.0 μm and 23.8 μm under 10 MPa are almost the same. The creep process is controlled both by Nabarro--Herring creep and Hamper-Dorn creep for uranium dioxide pellet with grain size of 9.0 μm, while Hamper---Dora creep is the dominantmechanism for uranium dioxide with grain size of 23.8 μm.
基金funded by the State Key Development Program for Basic Research of China(No.2013CB227900)the Joint Funds of the National Natural Science Foundation of China(NoU1261201)Prof.Mao Xianbiao for his valuable assistance in the preparation of manuscript
文摘The characters of limestone in weak interlayer of a high rocky slope in Xuzhou, China, are studied by shear static test and shear creep test. The results show that limestone specimens have attenuation creep properties and constant rate creep properties, almost have no accelerated creep properties. The exponential type empirical formula is selected to fit creep grading curves by polynomial regression analysis method, and the square sums of the fitting results residual are in the order of 10^(-7). Then grade creep curves at every shear loads are set up. Combining creep rate-time curve, the creep properties of limestone are analyzed. As the physical meaning of component model is clearer, the Poytin–Thomson model is set up. Through the least square method, the optimal parameters of Poytin–Thomson model are obtained,and the sums of squared residuals belong to 10^(-3)order of magnitude, which can meet the accuracy requirements of engineering calculation. So the Poytin–Thomson model can reflect the shear creep characteristics of limestone very well.
基金the Engineering&Physics Science Research Council(EPSRC)the Institution of Mechanical Engineers(IMechE),UK,Ior financial support.
文摘The results of a theoretical and finite element (FE) investigation of a two-material impression creep test method, using a rectangular indenter, are presented. The method uses a general formulation for steady-state creep deformation for multi-material components in conjunction with the results of FE analyses. The practical application of the proposed technique, in determining the secondary creep properties of heat-affected zone (HAZ) materials in welds, for which conventional creep testing methods cannot be used, is considered. A number of numerical examples are used to describe solution procedures and to verify the method.
文摘Effects of combined additions of tungsten and molybdenum on the creep properties of Fe3AI-based alloys have been investigated. Results show that combined additions of tungsten and molybdenum increase significantly the creep rupture life of the Fe3Al base alloys at high temperature. TEM analysis of the alloys containing tungsten plus molybdenum indicates that both solid-solution strengthening and precipitation harden- ing make the significant increase of creep rupture life.
文摘Vertical section method has been used to measure the fractal dimension of cyclic creep frac- ture surfaces of rotor steel 34CrMoA at 550℃.The relationship between fractal dimension and cyclic creep properties has been analyzed.The fractal dimension is dependent upon the power product of minimum creep rate and rupture time,and satisfies the linear function with rupture strain.
基金Project(2011CB013504)supported by the National Basic Research Program of ChinaProject(11172090)supported by the National Natural Science Foundation of China
文摘The lithology of fracture zone which was developed at the dam foundation of a hydropower station is weak sandstone with poor integrity and pore cementation contact.Its creep properties have a significant impact on the deformation and stability of the dam.Based on the characteristics of loose organizational structure,high moisture content and poor mechanical properties,the triaxial compression tests and creep tests were carried out,respectively.The results show significant non-linear,low strength and no obvious strength peaks.Both axial and lateral strains are achieved more than 3%when the tests are failed.The weak sandstone has a significant creep property,but only transient and steady state appear under low stress.Increased stress causes creep intensified and lateral strain gradually exceeds axial strain.In the failure stage,it has characteristics of large axial plastic deformation,obvious volumetric ductility dilation and large steady creep rate.The accelerated creep appears shortly after transient loading under confining of pressures 1.0 MPa and 1.5 MPa.Therefore,an improved Burgers creep model considering the non-linear characteristics of weak sandstone is built based on hyperbolic equation and the creep parameters are identified.This model can well describe the creep properties of weak sandstone.