The self-intercalation of Cr into pristine two-dimensional(2D) van der Waals ferromagnetic CrTe_(2),which forms chromium tellurides(Cr_(x)Te_(2)),has garnered interest due to their remarkable magnetic characteristics ...The self-intercalation of Cr into pristine two-dimensional(2D) van der Waals ferromagnetic CrTe_(2),which forms chromium tellurides(Cr_(x)Te_(2)),has garnered interest due to their remarkable magnetic characteristics and the wide variety of chemical compositions available.Here,comprehensive basic characterization and magnetic studies are conducted on quasi-2D ferromagnetic Cr_(1.04)Te_(2) crystals.Measurements of the isothermal magnetization curves are conducted around the critical temperature to systematically investigate the critical behavior.Specifically,the critical exponents β=0.2399,γ=0.859,and δ=4.3498,as well as the Curie temperature T_(C)=249.56 K,are determined using various methods,including the modified Arrott plots,the Kouvel-Fisher method,the Widom scaling method,and the critical isotherm analysis.These results indicate that the tricritical mean-field model accurately represents the critical behavior of Cr_(1.04)Te_(2.A magnetic phase diagram with tricritical phenomenon is thus constructed.Further investigations confirm that the critical exponents obtained conform to the scalar equation near T_(C),indicating their self-consistency and reliability.Our work sheds light on the magnetic properties of quasi-2D Cr_(1.04)Te_(2),broadening the scope of the van der Waals crystals for developments of future spintronic devices operable at room temperature.展开更多
Comparing with the predictions of the transitional dynamical symmetry E(5) proposed by Iachello [Phys. Rev. Lett. 85 (2000) 3580], the critical behaviors from U(5)-0(6) are studied in the space of two control ...Comparing with the predictions of the transitional dynamical symmetry E(5) proposed by Iachello [Phys. Rev. Lett. 85 (2000) 3580], the critical behaviors from U(5)-0(6) are studied in the space of two control parameters in the interacting boson model. A simple shape phase diagram has been presented. It is found that E(5) predictions cannot be exactly reproduced by our calculations and that the best agreement is close to the calculations with boson number N = 9. By comparing with experimental data on E(5)-like nuclei, we find that E(5) predictions and IBM calculations can reproduce the energy ratios and E2 transition ones.展开更多
The polycrystalline samples of La2/3Ca1/3MnO3 were prepared by a conventional solid state reaction method. The magnetizations (ZFC, FC and initial magnetization) of the polycrystalline La2/3Ca1/3MnO3 were measured w...The polycrystalline samples of La2/3Ca1/3MnO3 were prepared by a conventional solid state reaction method. The magnetizations (ZFC, FC and initial magnetization) of the polycrystalline La2/3Ca1/3MnO3 were measured with superconducting quantum interference device magnetometer. The scaling theory was employed to study the changes of critical behavior arising from the applied external field. The critical parameter β decreases with increasing the external magnetic field results in an increase in the magnitude of ferromagnetic ordering.展开更多
We consider the earthquake model on a random graph. A detailed analysis of the probability distribution of the size of the avalanches will be given. The model with different inhomogeneities is studied in order to comp...We consider the earthquake model on a random graph. A detailed analysis of the probability distribution of the size of the avalanches will be given. The model with different inhomogeneities is studied in order to compare the critical behavior of different systems. The results indicate that with the increase of the inhomogeneities, the avalanche exponents reduce, i.e., the different numbers of defects cause different critical behaviors of the system. This is virtually ascribed to the dynamical perturbation.展开更多
We present the temperature-dependent susceptibility and specific heat measurement of spinel ZnV204. The structural transition with orbital ordering and the antiferromagnetic transition with spin ordering were observed...We present the temperature-dependent susceptibility and specific heat measurement of spinel ZnV204. The structural transition with orbital ordering and the antiferromagnetic transition with spin ordering were observed at 50 K and 37 K, respectively. By analysis of the hysteresis behavior between the specific heat curves obtained in warming and cooling processes, the structural transition was confirmed to be the first-order transition, while the antiferromagnetic transition was found to be of the second-order type. At the structural transition, the latent heat and entropy change were calculated from the excess specific heat, and the derivative of pressure with respect to temperature was obtained using the Clausius--Clapayron equation. At the magnetic transition, the width of the critical fluctuation region was obtained to be about 0.5 K by comparing with Gaussian fluctuations. In the critical region, the critical behavior was analyzed by using renormalization-group theory. The critical amplitude ratio A+/A- = 1.46, which deviates from the 3D Heisenburg model; while the critical exponent a is -0.011, which is close to the 3D XY model. We proposed that these abnormal critical behaviors can be attributed to strong spin-orbital coupling accompanied with the antiferromagnetic transition. Moreover, in the low temperature range (2-5 K), the Fermi energy, the density of states near the Fermi surface, and the low limit of Debye temperature were estimated to be 2.42 eV, 2.48 eV-1, and 240 K, respectively.展开更多
The critical properties and the nature of the ferromagnetic–paramagnetic phase transition in the 2D organic-inorganic hybrid(CH3NH3)2 CuCl4 single crystal have been investigated by dc magnetization in the vicinity of...The critical properties and the nature of the ferromagnetic–paramagnetic phase transition in the 2D organic-inorganic hybrid(CH3NH3)2 CuCl4 single crystal have been investigated by dc magnetization in the vicinity of the magnetic transition. Different techniques were used to estimate the critical exponents near the ferromagnetic–paramagnetic phase transition such as modified Arrott plots, the Kouvel–Fisher method, and the scaling hypothesis. Values of β = 0.22, γ = 0.82, and δ = 4.4 were obtained. These critical exponents are in line with their corresponding values confirmed through the scaling hypothesis as well as the Widom scaling relation, supporting their reliability. It is concluded that this 2D hybrid compound possesses strong ferromagnetic intra-layer exchange interaction as well as weak interlayer ferromagnetic coupling that causes a crossover from 2D to 3D long-range interaction.展开更多
We study the P V critical behavior of a four-dimensional AdS black hole in an Einstein Maxwell gravity with a conformal anomaly by treating the cosmological constant as a variable that is related to the thermodynamic ...We study the P V critical behavior of a four-dimensional AdS black hole in an Einstein Maxwell gravity with a conformal anomaly by treating the cosmological constant as a variable that is related to the thermodynamic pressure, It is shown that there will be no phase transition if k = 0 or -1 are taken. When the charge ql of the conformal field and the coefficient α satisfy a certain relation, the van de Waals like phase transition for the spherical black hole can occur where the temperature is lower than the small critical temperature or higher than the large one. We also evaluate the critical exponents of the phase transitions and find that the thermodynamic exponents associated with this four-dimensional AdS black hole coincide with those of the van de Waals fluid.展开更多
Since the massless quantum electrodynamics in 2+1 dimensions (QEDa) with nonzero gauge boson mass ζ can be used to explain some important traits of high-Tc superconductivity in planar cuprates, it is worthwhile to...Since the massless quantum electrodynamics in 2+1 dimensions (QEDa) with nonzero gauge boson mass ζ can be used to explain some important traits of high-Tc superconductivity in planar cuprates, it is worthwhile to apply this model to analyze the nature of chiral phase transition at the critical value ζ. Based on the feature of chiral susceptibility, we show that the system at ζ exhibits a second-order phase transition which accords with the nature of appearance of the high-To superconductivity, and the estimated critical exponents around ζ are illustrated.展开更多
In our previous work [Phys. Rev. A 85 (2012) 044102], we studied the Berry phase of the ground state and exited states in the Lipkin model. In this work, using the Hellmann-Feynman theorem, we derive the relation be...In our previous work [Phys. Rev. A 85 (2012) 044102], we studied the Berry phase of the ground state and exited states in the Lipkin model. In this work, using the Hellmann-Feynman theorem, we derive the relation between the energy gap and the Berry phase closed to the excited state quantum phase transition (ESQPT) in the Lipkin model. It is found that the energy gap is approximately linearly dependent on the Berry phase being closed to the ESQPT for large N. As a result, the critical behavior of the energy gap is similar to that of the Berry phase. In addition, we also perform a semiclassical qualitative analysis about the critical behavior of the energy gap.展开更多
We investigate the bound states of the Yukawa potential V(r)=-λexp(-αr)/r, using different algorithms: solving the Schrodinger equation numerically and our Monte Carlo Hamiltonian approach. There is a critical α = ...We investigate the bound states of the Yukawa potential V(r)=-λexp(-αr)/r, using different algorithms: solving the Schrodinger equation numerically and our Monte Carlo Hamiltonian approach. There is a critical α = αC, above which no bound state exists. We study the relation between αC and A for various angular momentum quantum number l. and find in atomic units, αC(l) = λ[A1 exp(-l/B1) + A2exp(-l/B2)], with A1 = 1.020(18), B1 = 0.443(14), A2 = 0.170(17), and B2 = 2.490(180).展开更多
The behavior of shear modulus in solid-liquid mixing phase has been discussed and analyzed. The result was concluded that shear modulus went to zero as the melting mass ratio attained a critical value. The percolation...The behavior of shear modulus in solid-liquid mixing phase has been discussed and analyzed. The result was concluded that shear modulus went to zero as the melting mass ratio attained a critical value. The percolation theory model we pro-posed showed that this value was about 0.68742. The melting-induced destabilizing factor of material proposed by us can represent phenomenologically the change of shear modulus in melting process.展开更多
A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconse...A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconservative: the result indicates that the model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling. We compare our mode/with the mode/ introduced by Stefano Lise and Maya Paczuski [Phys. Rev. Lett. 88 (2002) 228301], it is proved that they are not in the same universality class.展开更多
Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uni...Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.展开更多
The paper is designed to research the translation practice of Divided We Stand from the perspective of Translator Behavior Criticism.Thus,the paper uses the tools of degree of truth-seeking,degree of utility and degre...The paper is designed to research the translation practice of Divided We Stand from the perspective of Translator Behavior Criticism.Thus,the paper uses the tools of degree of truth-seeking,degree of utility and degree of rationality under the macro-guidance of Truth-seeking-Utility-attaining evaluative model of continuum.Specifically from the perspective of intra-translation,extra-translation and non-translation,the paper research and evaluate the translation practice.展开更多
We investigated the critical dynamical scalarization and descalarization of black holes within the framework of the EinsteinMaxwell-scalar theory featuring higher-order coupling functions.Both the critical scalarizati...We investigated the critical dynamical scalarization and descalarization of black holes within the framework of the EinsteinMaxwell-scalar theory featuring higher-order coupling functions.Both the critical scalarization and descalarization displayed first-order phase transitions.When examining the nonlinear dynamics near the threshold,we always observed critical solutions that are linearly unstable static scalarized black holes.The critical dynamical scalarization and descalarization share certain similarities with the typeⅠcritical gravitational collapse.However,their initial configurations,critical solutions,and final outcomes differ significantly.To provide further insights into the dynamical results,we conducted a comparative analysis involving static solutions and perturbative analysis.展开更多
We study the critical dynamics in scalarization and descalarization in the fully nonlinear dynamical evolution in the class of theories with a scalar field coupling with both Gauss-Bonnet(GB) invariant and Ricci scala...We study the critical dynamics in scalarization and descalarization in the fully nonlinear dynamical evolution in the class of theories with a scalar field coupling with both Gauss-Bonnet(GB) invariant and Ricci scalar. We explore the manner in which the GB term triggers black hole(BH) scalarization. A typical type Ⅰ critical phenomenon is observed, in which an unstable critical solution emerges at the threshold and acts as an attractor in the dynamical scalarization. For the descalarization, we reveal that a marginally stable attractor exists at the threshold of the first-order phase transition in shedding off BH hair. This is a new type Ⅰ critical phenomenon in the BH phase transition. Implications of these findings are discussed from the perspective of thermodynamic properties and perturbations for static solutions. We examine the effect of scalar-Ricci coupling on the hyperbolicity in the fully nonlinear evolution and observe that such coupling can suppress the elliptic region and enlarge parameter space in computations.展开更多
The magnetocaloric effect(MCE) in EuCu1.75P2 compound is studied by the magnetization and heat capacity measurements.Magnetization and modified Arrott plots indicate that the compound undergoes a second-order phase ...The magnetocaloric effect(MCE) in EuCu1.75P2 compound is studied by the magnetization and heat capacity measurements.Magnetization and modified Arrott plots indicate that the compound undergoes a second-order phase transition at TC ~ 51 K.A large reversible MCE is observed around TC.The values of maximum magnetic entropy change(-△SxMma) reach 5.6 J·kg^-1·K-1 and 13.3 J·kg^-1·K-1 for the field change of 2 T and 7 T,respectively,with no obvious hysteresis loss in the vicinity of Curie temperature.The corresponding maximum adiabatic temperature changes(△Tadmax) are evaluated to be 2.1 K and 5.0 K.The magnetic transition and the origin of large MCE in EuCu1.75P2 are also discussed.展开更多
Magnetoresistance(MR) provides rich information about Fermi surface, carrier scatterings, and exotic phases for a given electronic system. Here, we report a study of the magnetoresistance for the metallic states in tw...Magnetoresistance(MR) provides rich information about Fermi surface, carrier scatterings, and exotic phases for a given electronic system. Here, we report a study of the magnetoresistance for the metallic states in twisted double bilayer graphene(TDBG). We observe quadratic magnetoresistance in both Moiré valence band(VB) and Moiré conduction band(CB). The scaling analysis shows validity of Kohler's rule in the Moiré valence band. On the other hand, the quadratic magnetoresistance appears near the halo structure in the Moiré conduction band, and it violates Kohler's rule, demonstrating the MR scaling related to band structure in TDBG. We also propose an alternative scaling near the halo structure. Further analysis implies that the observed quadratic magnetoresistance and alternative scaling in conduction band are related to the halo boundary. Our results may inspire investigation on MR in twisted 2D materials and provide new knowledge for MR study in condensed matter physics.展开更多
In this paper, we first investigate the thermodynamic features of the black hole with a coulomb-like field. Moreover, we obtain the geometric description of the black hole thermodynamics. We find that for the black ho...In this paper, we first investigate the thermodynamic features of the black hole with a coulomb-like field. Moreover, we obtain the geometric description of the black hole thermodynamics. We find that for the black hole with a coulomb-like field the Weinhold geometry is fiat, whereas its Ruppeiner geometry is curved. For the heat capacity and curvature calculation shows the Ruppeiner geometry has a transition point.展开更多
Serrated flows are known as repeated yielding of bulk metallic glasses(BMGs)during plastic deformation under different loading conditions,which are associated with the operation of shear banding.According to the sta...Serrated flows are known as repeated yielding of bulk metallic glasses(BMGs)during plastic deformation under different loading conditions,which are associated with the operation of shear banding.According to the statistics of some parameters,the shear avalanches can display a self-organized critical state,suggesting a large ductility of BMGs.The emergence of the self-organized criticality(SOC)behavior in different BMGs is due to the temperature,strain rate,and chemical compositions.The SOC behavior is accompanied with the following phenomena:the interactions occur in the shear bands;the incubation time is longer than the relaxation time;the time interval is lacking of typical time scale;and the spatial or temporal parameters should display apower-law distribution.展开更多
基金Project supported by the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY222170)Jiangsu Specially-Appointed Professor Program,and Natural Science Foundation of Universities of Jiangsu Province(Grant No.TJ219008)the support of the open research fund of Key Laboratory of Quantum Materials and Devices(Southeast University),Ministry of Education。
文摘The self-intercalation of Cr into pristine two-dimensional(2D) van der Waals ferromagnetic CrTe_(2),which forms chromium tellurides(Cr_(x)Te_(2)),has garnered interest due to their remarkable magnetic characteristics and the wide variety of chemical compositions available.Here,comprehensive basic characterization and magnetic studies are conducted on quasi-2D ferromagnetic Cr_(1.04)Te_(2) crystals.Measurements of the isothermal magnetization curves are conducted around the critical temperature to systematically investigate the critical behavior.Specifically,the critical exponents β=0.2399,γ=0.859,and δ=4.3498,as well as the Curie temperature T_(C)=249.56 K,are determined using various methods,including the modified Arrott plots,the Kouvel-Fisher method,the Widom scaling method,and the critical isotherm analysis.These results indicate that the tricritical mean-field model accurately represents the critical behavior of Cr_(1.04)Te_(2.A magnetic phase diagram with tricritical phenomenon is thus constructed.Further investigations confirm that the critical exponents obtained conform to the scalar equation near T_(C),indicating their self-consistency and reliability.Our work sheds light on the magnetic properties of quasi-2D Cr_(1.04)Te_(2),broadening the scope of the van der Waals crystals for developments of future spintronic devices operable at room temperature.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10265001 and 10547003, the Natural Science Foundation of Inner Mongolian under Grant No. 200607010111, and the Key Scientific Research Fund of Educational Bureau of Inner Mongolian under Grant No. NJ05007 .Acknowledgments The authors are greatly indebted to Prof. G.L. Long for his continuing interest in this work and his many suggestions.
文摘Comparing with the predictions of the transitional dynamical symmetry E(5) proposed by Iachello [Phys. Rev. Lett. 85 (2000) 3580], the critical behaviors from U(5)-0(6) are studied in the space of two control parameters in the interacting boson model. A simple shape phase diagram has been presented. It is found that E(5) predictions cannot be exactly reproduced by our calculations and that the best agreement is close to the calculations with boson number N = 9. By comparing with experimental data on E(5)-like nuclei, we find that E(5) predictions and IBM calculations can reproduce the energy ratios and E2 transition ones.
文摘The polycrystalline samples of La2/3Ca1/3MnO3 were prepared by a conventional solid state reaction method. The magnetizations (ZFC, FC and initial magnetization) of the polycrystalline La2/3Ca1/3MnO3 were measured with superconducting quantum interference device magnetometer. The scaling theory was employed to study the changes of critical behavior arising from the applied external field. The critical parameter β decreases with increasing the external magnetic field results in an increase in the magnitude of ferromagnetic ordering.
基金The project supported by National Natural Science Foundation of China under Grant No. 50272022
文摘We consider the earthquake model on a random graph. A detailed analysis of the probability distribution of the size of the avalanches will be given. The model with different inhomogeneities is studied in order to compare the critical behavior of different systems. The results indicate that with the increase of the inhomogeneities, the avalanche exponents reduce, i.e., the different numbers of defects cause different critical behaviors of the system. This is virtually ascribed to the dynamical perturbation.
基金supported by the National Basic Research Program of China(Grant No.2012CB821404)the National Natural Science Foundation of China(Grant Nos.51172166 and 61106005)+1 种基金the National Science Fund for Talent Training in Basic Science,China(Grant No.J1210061)the Doctoral Fund of Ministry of Education of China(Grant No.20110141110007)
文摘We present the temperature-dependent susceptibility and specific heat measurement of spinel ZnV204. The structural transition with orbital ordering and the antiferromagnetic transition with spin ordering were observed at 50 K and 37 K, respectively. By analysis of the hysteresis behavior between the specific heat curves obtained in warming and cooling processes, the structural transition was confirmed to be the first-order transition, while the antiferromagnetic transition was found to be of the second-order type. At the structural transition, the latent heat and entropy change were calculated from the excess specific heat, and the derivative of pressure with respect to temperature was obtained using the Clausius--Clapayron equation. At the magnetic transition, the width of the critical fluctuation region was obtained to be about 0.5 K by comparing with Gaussian fluctuations. In the critical region, the critical behavior was analyzed by using renormalization-group theory. The critical amplitude ratio A+/A- = 1.46, which deviates from the 3D Heisenburg model; while the critical exponent a is -0.011, which is close to the 3D XY model. We proposed that these abnormal critical behaviors can be attributed to strong spin-orbital coupling accompanied with the antiferromagnetic transition. Moreover, in the low temperature range (2-5 K), the Fermi energy, the density of states near the Fermi surface, and the low limit of Debye temperature were estimated to be 2.42 eV, 2.48 eV-1, and 240 K, respectively.
基金National Natural Science Foundation of China(Grant No.51725104)the Beijing Natural Science Foundation,China(Grant No.Z180009).
文摘The critical properties and the nature of the ferromagnetic–paramagnetic phase transition in the 2D organic-inorganic hybrid(CH3NH3)2 CuCl4 single crystal have been investigated by dc magnetization in the vicinity of the magnetic transition. Different techniques were used to estimate the critical exponents near the ferromagnetic–paramagnetic phase transition such as modified Arrott plots, the Kouvel–Fisher method, and the scaling hypothesis. Values of β = 0.22, γ = 0.82, and δ = 4.4 were obtained. These critical exponents are in line with their corresponding values confirmed through the scaling hypothesis as well as the Widom scaling relation, supporting their reliability. It is concluded that this 2D hybrid compound possesses strong ferromagnetic intra-layer exchange interaction as well as weak interlayer ferromagnetic coupling that causes a crossover from 2D to 3D long-range interaction.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11275099 and 11475135
文摘We study the P V critical behavior of a four-dimensional AdS black hole in an Einstein Maxwell gravity with a conformal anomaly by treating the cosmological constant as a variable that is related to the thermodynamic pressure, It is shown that there will be no phase transition if k = 0 or -1 are taken. When the charge ql of the conformal field and the coefficient α satisfy a certain relation, the van de Waals like phase transition for the spherical black hole can occur where the temperature is lower than the small critical temperature or higher than the large one. We also evaluate the critical exponents of the phase transitions and find that the thermodynamic exponents associated with this four-dimensional AdS black hole coincide with those of the van de Waals fluid.
基金Supported by the Natural Science Foundation of Jiangsu Province under Grant No BK20130387the Fundamental Research Funds for the Central Universities under Grant No 2242014R30011
文摘Since the massless quantum electrodynamics in 2+1 dimensions (QEDa) with nonzero gauge boson mass ζ can be used to explain some important traits of high-Tc superconductivity in planar cuprates, it is worthwhile to apply this model to analyze the nature of chiral phase transition at the critical value ζ. Based on the feature of chiral susceptibility, we show that the system at ζ exhibits a second-order phase transition which accords with the nature of appearance of the high-To superconductivity, and the estimated critical exponents around ζ are illustrated.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11204012 and 91321103
文摘In our previous work [Phys. Rev. A 85 (2012) 044102], we studied the Berry phase of the ground state and exited states in the Lipkin model. In this work, using the Hellmann-Feynman theorem, we derive the relation between the energy gap and the Berry phase closed to the excited state quantum phase transition (ESQPT) in the Lipkin model. It is found that the energy gap is approximately linearly dependent on the Berry phase being closed to the ESQPT for large N. As a result, the critical behavior of the energy gap is similar to that of the Berry phase. In addition, we also perform a semiclassical qualitative analysis about the critical behavior of the energy gap.
基金the National Natural Science Foundation of China (Grant No. 10235040) the Education Ministry of China (Grant No. 105135)+1 种基金 Chinese Academy of Sciences (Grant No. KJCX2-SW-N10) Guangdong Provincial Natural Science Foundation (Grant No. 05101821).
文摘We investigate the bound states of the Yukawa potential V(r)=-λexp(-αr)/r, using different algorithms: solving the Schrodinger equation numerically and our Monte Carlo Hamiltonian approach. There is a critical α = αC, above which no bound state exists. We study the relation between αC and A for various angular momentum quantum number l. and find in atomic units, αC(l) = λ[A1 exp(-l/B1) + A2exp(-l/B2)], with A1 = 1.020(18), B1 = 0.443(14), A2 = 0.170(17), and B2 = 2.490(180).
文摘The behavior of shear modulus in solid-liquid mixing phase has been discussed and analyzed. The result was concluded that shear modulus went to zero as the melting mass ratio attained a critical value. The percolation theory model we pro-posed showed that this value was about 0.68742. The melting-induced destabilizing factor of material proposed by us can represent phenomenologically the change of shear modulus in melting process.
文摘A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconservative: the result indicates that the model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling. We compare our mode/with the mode/ introduced by Stefano Lise and Maya Paczuski [Phys. Rev. Lett. 88 (2002) 228301], it is proved that they are not in the same universality class.
基金Project(51479048) supported by National Natural Science Foundation of China
文摘Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.
文摘The paper is designed to research the translation practice of Divided We Stand from the perspective of Translator Behavior Criticism.Thus,the paper uses the tools of degree of truth-seeking,degree of utility and degree of rationality under the macro-guidance of Truth-seeking-Utility-attaining evaluative model of continuum.Specifically from the perspective of intra-translation,extra-translation and non-translation,the paper research and evaluate the translation practice.
基金supported by the National Natural Science Foundation of China(Grant Nos.11975235,12005077,12035016,and 12075202)Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012374)。
文摘We investigated the critical dynamical scalarization and descalarization of black holes within the framework of the EinsteinMaxwell-scalar theory featuring higher-order coupling functions.Both the critical scalarization and descalarization displayed first-order phase transitions.When examining the nonlinear dynamics near the threshold,we always observed critical solutions that are linearly unstable static scalarized black holes.The critical dynamical scalarization and descalarization share certain similarities with the typeⅠcritical gravitational collapse.However,their initial configurations,critical solutions,and final outcomes differ significantly.To provide further insights into the dynamical results,we conducted a comparative analysis involving static solutions and perturbative analysis.
基金supported by the National Key R&D Program of China(Grant No.2020YFC2201400)the National Natural Science Foundation of China(Grant Nos.11975235,12005077,and 12035016)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012374)partially supported by the National Natural Science Foundation of China(Grant No.12075202)。
文摘We study the critical dynamics in scalarization and descalarization in the fully nonlinear dynamical evolution in the class of theories with a scalar field coupling with both Gauss-Bonnet(GB) invariant and Ricci scalar. We explore the manner in which the GB term triggers black hole(BH) scalarization. A typical type Ⅰ critical phenomenon is observed, in which an unstable critical solution emerges at the threshold and acts as an attractor in the dynamical scalarization. For the descalarization, we reveal that a marginally stable attractor exists at the threshold of the first-order phase transition in shedding off BH hair. This is a new type Ⅰ critical phenomenon in the BH phase transition. Implications of these findings are discussed from the perspective of thermodynamic properties and perturbations for static solutions. We examine the effect of scalar-Ricci coupling on the hyperbolicity in the fully nonlinear evolution and observe that such coupling can suppress the elliptic region and enlarge parameter space in computations.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11004044)the Natural Science Foundation of Zhejiang Province,China(Grant No. Y4110581)
文摘The magnetocaloric effect(MCE) in EuCu1.75P2 compound is studied by the magnetization and heat capacity measurements.Magnetization and modified Arrott plots indicate that the compound undergoes a second-order phase transition at TC ~ 51 K.A large reversible MCE is observed around TC.The values of maximum magnetic entropy change(-△SxMma) reach 5.6 J·kg^-1·K-1 and 13.3 J·kg^-1·K-1 for the field change of 2 T and 7 T,respectively,with no obvious hysteresis loss in the vicinity of Curie temperature.The corresponding maximum adiabatic temperature changes(△Tadmax) are evaluated to be 2.1 K and 5.0 K.The magnetic transition and the origin of large MCE in EuCu1.75P2 are also discussed.
基金supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309600)the National Natural Science Foundation of China (Grant Nos. 61888102, 11834017, and 12074413)+3 种基金the Strategic Priority Research Program of CAS (Grant Nos. XDB30000000 and XDB33000000)the Key-Area Research and Development Program of Guangdong Province (Grant No. 2020B0101340001)supported by the Elemental Strategy Initiative conducted by the MEXT, Japan, Grant Number JPMXP0112101001, JSPS KAKENHI (Grant No. JP20H00354)A3 Foresight by JSPS。
文摘Magnetoresistance(MR) provides rich information about Fermi surface, carrier scatterings, and exotic phases for a given electronic system. Here, we report a study of the magnetoresistance for the metallic states in twisted double bilayer graphene(TDBG). We observe quadratic magnetoresistance in both Moiré valence band(VB) and Moiré conduction band(CB). The scaling analysis shows validity of Kohler's rule in the Moiré valence band. On the other hand, the quadratic magnetoresistance appears near the halo structure in the Moiré conduction band, and it violates Kohler's rule, demonstrating the MR scaling related to band structure in TDBG. We also propose an alternative scaling near the halo structure. Further analysis implies that the observed quadratic magnetoresistance and alternative scaling in conduction band are related to the halo boundary. Our results may inspire investigation on MR in twisted 2D materials and provide new knowledge for MR study in condensed matter physics.
基金Supported by the Scientific and Technological Foundation of Chongqing Municipal Education Commission under Grant N0.KJ100706
文摘In this paper, we first investigate the thermodynamic features of the black hole with a coulomb-like field. Moreover, we obtain the geometric description of the black hole thermodynamics. We find that for the black hole with a coulomb-like field the Weinhold geometry is fiat, whereas its Ruppeiner geometry is curved. For the heat capacity and curvature calculation shows the Ruppeiner geometry has a transition point.
基金Item Sponsored by National Natural Science Foundation of China(51371122)Program for the Innovative Talents of Higher Learning Institutions of Shanxi of China(2013)The Youth Natural Science Foundation of Shanxi Province of China(2015021005)
文摘Serrated flows are known as repeated yielding of bulk metallic glasses(BMGs)during plastic deformation under different loading conditions,which are associated with the operation of shear banding.According to the statistics of some parameters,the shear avalanches can display a self-organized critical state,suggesting a large ductility of BMGs.The emergence of the self-organized criticality(SOC)behavior in different BMGs is due to the temperature,strain rate,and chemical compositions.The SOC behavior is accompanied with the following phenomena:the interactions occur in the shear bands;the incubation time is longer than the relaxation time;the time interval is lacking of typical time scale;and the spatial or temporal parameters should display apower-law distribution.