期刊文献+
共找到127,506篇文章
< 1 2 250 >
每页显示 20 50 100
Evaluation of Actual Evapotranspiration and Crop Coefficient in Carrot by Remote Sensing Methodology Using Drainage and River Water to Overcome Reduced Water Availability
1
作者 Ali H. Hommadi Nadhir Al-Ansari +2 位作者 Hatem H. Hussien Rafat N. Abd Algan Ghaith M. Ali Majed 《Engineering(科研)》 CAS 2023年第5期352-366,共15页
Searching for alternative methods for traditional irrigation is World trend at days due to a reduction in water and increased of drought due to climate changes therefore farmers need use modern methods of scheduling w... Searching for alternative methods for traditional irrigation is World trend at days due to a reduction in water and increased of drought due to climate changes therefore farmers need use modern methods of scheduling water and minimizing water losses while also increasing yield. To meet the future increasing demands water and food there is a need to utilize alternative methods to reduce evaporation, transpiration and deep percolation of water. Any countries use recycled water (drain and sewage) and desalination water from the sea or drains to irrigate crops plus computing actual crop evapotranspiration (ET<sub>c</sub>) so as to calculate the amount of water to apply to a crop. The paper aims to assess the actual evaporation and evaporation coefficient of carrots, by planting carrots in a field and the crop was exposed to several sources of water (DW and RW) and comparing ET<sub>c</sub>, K<sub>c</sub> and production among plots of three sites (A, B and C). The study used two types of irrigation water (drain water (DW) and river water (RW)). The results were to monthly rate and accumulated actual evapotranspiration to C (irrigation by RW only) more than A (67% RW and 33% DW) and B (17% RW and 83% DW) via 7% and 58%, respectively. The yield to C more than A and B by 17% and 75%, respectively. In conclusion the use of DW can cause a reduction in crop consumptive of carrot crops also causes a reduction in yield, crop length, root length, root size, canopy of crop, number of leaves and biomass of the plant therefore, the drainage water needs to treated before irrigating crops And making use of it to irrigate the fields and fill the shortfall in the amount of water from the river. The drain water helped on filling the water shortage due to climate changes and giving production of carrot crop but less than river water. 展开更多
关键词 CARROT Reference Evapotranspiration Actual Evapotranspiration (ETa) Marginal Water crop coefficient Landsat Satellite
下载PDF
覆土浅埋滴灌玉米分阶段亏水条件下AquaCrop与Dual Crop Coefficient模型精度对比研究
2
作者 戚迎龙 赵举 +3 位作者 宁小莉 李彬 李敏 史海滨 《东北农业大学学报》 CAS CSCD 北大核心 2023年第6期64-77,共14页
近年来,西辽河流域地下水超采问题日益突出,改进灌溉技术降低农业用水可有效解决这一问题,但该技术缺乏科学的水分管理方法及适宜的理论模型。基于单阶段及多阶段亏水情形试验,对比同类农田水分模型精度,优选阶段性亏水管理辅助模型。... 近年来,西辽河流域地下水超采问题日益突出,改进灌溉技术降低农业用水可有效解决这一问题,但该技术缺乏科学的水分管理方法及适宜的理论模型。基于单阶段及多阶段亏水情形试验,对比同类农田水分模型精度,优选阶段性亏水管理辅助模型。研究设置7个玉米分阶段亏水调控处理,于2018、2019年进行田间小区试验,取得2个同类模型的本地化参数并比较其模拟精度。结果表明,AquaCrop和双作物系数模型可相近表达玉米冠层发育到最大而未开始衰减期间土壤水分的消耗过程,而对快速生长期与后期1m土层贮水量的模拟差异大。AquaCrop模型在土壤贮水量偏低时高估其实测值,其他情形正负偏差分布相对均匀,双作物系数模型多数情形低估其实测值。AquaCrop模型描述玉米各阶段蒸散量因亏水情形而变化能力优于双作物系数模型。AquaCrop模型和双作物系数模型的标准均方根误差平均值在模拟1 m土层贮水量时分别为4.494%~8.443%、6.017%~8.626%,在模拟蒸散量时分别为8.158%~9.510%、5.980%~15.022%。综合来看,AquaCrop模型表现更好,推荐作为适宜西辽河流域覆土浅埋滴灌玉米水分管理模型。研究可为该区域覆土浅埋滴灌种植玉米选出适宜的水分管理模型,理解新技术条件下玉米分阶段亏水调控机制及田间灌溉管理优化提供参考。 展开更多
关键词 模型精度 Aquacrop模型 双作物系数模型 覆土浅埋滴灌 玉米分阶段亏水
下载PDF
Seasonal variation of evapotranspiration,Priestley-Taylor coefficient and crop coefficient in diverse landscapes
3
作者 Hantian Wu Weiwei Zhu Bo Huang 《Geography and Sustainability》 2021年第3期224-233,共10页
Priestley-Taylor equation(PT)and the Penman-Monteith equation(PM)are commonly used methods for regional evapotranspiration monitoring,using the PT coefficient(α_(a))and PM crop/vegetation coefficient(K_(c)).This pape... Priestley-Taylor equation(PT)and the Penman-Monteith equation(PM)are commonly used methods for regional evapotranspiration monitoring,using the PT coefficient(α_(a))and PM crop/vegetation coefficient(K_(c)).This paper investigates the seasonal changes inα_(a)and K_(c)at five sites in Australia and China,to understand the relation-ship between environmental conditions and evapotranspiration when applying different evaporation estimation methods.The research shows that higher actual evapotranspiration does not lead to higherα_(a)and K_(c)values.α_(a)and K_(c)perform similarly in cropland and forest environments in both China and Australia.Bothα_(a)and K_(c)continuously increase to a peak during the growing season and then decrease to their lowest values during the winter season.Considering K_(c)’s similar performance toα_(a)and its greater data processing requirements,K_(c)has few advantages for estimating regional evapotranspiration.Applying the Priestley-Taylor equation with a regional𝛼indicator will enhance the accuracy and reduce the workload when estimating regional evapotranspiration for similar landcover types based on remote sensing. 展开更多
关键词 crop coefficient Evapotranspiration riestley-Taylor coefficient easonal variation Landscapes
下载PDF
Evapotranspiration, Yield and Crop Coefficient of Irrigated Maize Under Straw Mulch 被引量:12
4
作者 ZHANG Xi-Ying CHEN Su-Ying PEI Dong LIU Meng-Yu SUN Hong-Yong 《Pedosphere》 SCIE CAS CSCD 2005年第5期576-584,共9页
Maize (Zea mays L.), a staple crop grown from June to September during the rainy season on the North China Plain,is usually inter-planted in winter wheat (Triticum aestivum L.) fields about one week before harvesting ... Maize (Zea mays L.), a staple crop grown from June to September during the rainy season on the North China Plain,is usually inter-planted in winter wheat (Triticum aestivum L.) fields about one week before harvesting of the winterwheat. In order to improve irrigation efficiency in this region of serious water shortage, field studies in 1999 and 2001, twodry seasons with less than average seasonal rainfall, were conducted with up to five irrigation applications to determineevapotranspiration, calculate the crop coefficient, and optimize the irrigation schedule with maize under mulch, as well asto establish the effects of irrigation timing and the number of applications on grain yield and water use efficiency (WUE)of maize. Results showed that with grain production at about 8 000 kg ha-1 the total evapotranspiration and WUE ofirrigated maize under mulch were about 380-400 mm and 2.0-2.2 kg m-3, respectively. Also in 2001 WUE of maizewith mulch for the treatment with three irrigations was 11.8% better than that without mulch. In the 1999 and 2001seasons, maize yield significantly improved (P = 0.05) with four irrigation applications, however, further increases werenot significant. At the same time there were no significant differences for WUE with two to four irrigation applications.In the 2001 season mulch lead to a decrease of 50 mm in the total soil evaporation, and the maize crop coefficient undermulch varied between 0.3-1.3 with a seasonal average of 1.0. 展开更多
关键词 土壤水分 蒸发蒸腾损失总量 中国 平原 北方地区
下载PDF
Changes and determining factors of crop evapotranspiration derived from satellite-based dual crop coefficients in North China Plain 被引量:1
5
作者 Qinghua Tan Yujie Liu +2 位作者 Tao Pan Xianfang Song Xiaoyan Li 《The Crop Journal》 SCIE CSCD 2022年第5期1496-1506,共11页
Evaluating actual crop evapotranspiration(ET) variations and their determining factors under changing climates is crucial for agricultural irrigation management and crop productivity improvement in nonhumid regions.Th... Evaluating actual crop evapotranspiration(ET) variations and their determining factors under changing climates is crucial for agricultural irrigation management and crop productivity improvement in nonhumid regions.This study analyzed the spatiotemporal characteristics and detected the determining factors of ETfor winter wheat and summer maize rotation system from 2000 to 2017 in the North China Plain(NCP),by combining the FAO-56 dual crop coefficient approach with remotely sensed vegetation indices(VIs).The results indicated that daily air temperature increased in varying degrees while wind speed and sunshine hours decreased slightly during the growing season of winter wheat and summer maize over the study period.The trends of relative humidity and effective precipitation varied in crop growing seasons.Based on the validated relationship of dual crop coefficients and VIs,the estimated multi-year average ETof winter wheat(370.29±31.28 mm) was much higher than summer maize(281.85±20.14 mm),and the rotation cycle was 652.43±27.67 mm.Annual ETof winter wheat and the rotation cycle increased by 2.96 mm aand 1,77 mm a,respectively.However,the ETof summer maize decreased with distinct spatial variation.Spatially,winter wheat ETincreased significantly in the northeast NCP,covering the Beijing-Tianiin-Hebei areas.Meanwhile,significant increases in summer maize ETwere detected in the southwest NCP.The sensitivity and contribution analysis showed that ETof winter wheat and summer maize was positively sensitive to temperature,wind speed,and sunshine hours while negatively to relative humidity.Moreover,wind speed and sunshine hours contributed most to changes in ET(around 20%-40%). 展开更多
关键词 Actual crop evapotranspiration Determining factor North China Plain Rotation system Spatiotemporal variation
下载PDF
Water requirements and single and dual crop coefficients of sugarcane grown in a tropical region, Brazil
6
作者 Vicente de P. R. da Silva Cícera J. R. Borges +3 位作者 Carlos H. A. Farias Vijay P. Singh Walker G. Albuquerque Bernardo Barbosa da Silva 《Agricultural Sciences》 2012年第2期274-286,共13页
A field experiment was conducted throughout 2009/2010 in a sugarcane field of a commercial distillery located on the coastal area of Paraiba state, Brazil. The objectives were to determine sugarcane water requirements... A field experiment was conducted throughout 2009/2010 in a sugarcane field of a commercial distillery located on the coastal area of Paraiba state, Brazil. The objectives were to determine sugarcane water requirements and to test the single and dual crop coefficients by comparing the calculated values of ET with measured ones. Crop evapotranspiration was determined by field water balance, reference evapotranspiration (ETo) by the Penman-Monteith approach, while single and dual crop coefficients were computed through the standard FAO-56 methodology. The experimental area was cultivated with irrigation applied weekly by a centre pivot system in addition to rainfall and the irrigation scheduling was based on 100% ETo. Three statistical tests, mean bias difference (MBD), normalized root mean square difference (NRMSD) and regression analysis, were used to evaluate the performance of single and dual crop coefficients. Results showed that there was a notable symmetry between ET measured and ET calculated by Kc dual. The ET values, calculated from Kc single, underestimated those obtained from soil water balance measurements by 36%. 展开更多
关键词 crop coefficient EVAPOTRANSPIRATION RAINFED RAINFALL Water Stress
下载PDF
Spectral Crop Coefficient Approach for Estimating Daily Crop Water Use
7
作者 Nithya Rajan Stephan J. Maas 《Advances in Remote Sensing》 2014年第3期197-207,共11页
While the amount of water used by a crop can be measured using lysimeters or eddy covariance systems, it is more common to estimate this quantity based on weather data and crop-related factors. Among these approaches,... While the amount of water used by a crop can be measured using lysimeters or eddy covariance systems, it is more common to estimate this quantity based on weather data and crop-related factors. Among these approaches, the standard crop coefficient method has gained widespread use. A limitation of the standard crop coefficient approach is that it applies to “standard conditions” that are invariant from field to field. In this article, we describe a method for estimating daily crop water use (CWU) that is specific to individual fields. This method, the “spectral crop coefficient” approach, utilizes a crop coefficient numerically equivalent to the crop ground cover observed in a field using remote sensing. This “spectral crop coefficient” Ksp is multiplied by potential evapotranspiration determined from standard weather observations to estimate CWU. We present results from a study involving three farmers' fields in the Texas High Plains in which CWU estimated using the Ksp approach is compared to observed values obtained from eddy covariance measurements. Statistical analysis of the results suggests that the Ksp approach can produce reasonably accurate estimates of daily CWU under a variety of irrigation strategies from fully irrigated to dryland. These results suggest that the Ksp?approach could be effectively used in applications such as operational irrigation scheduling, where its field-specific nature could minimize over-irrigation and support water conservation. 展开更多
关键词 crop coefficient EVAPOTRANSPIRATION Water Use Ground COVER Remote Sensing
下载PDF
Estimating Crop Coefficient in Intermittent Irrigation Paddy Fields Using Excel Solver
8
作者 Chusnul ARIF Budi Indra SETIAWAN +3 位作者 Hanhan Ahmad SOFIYUDDIN Lolly Martina MARTIEF Masaru MIZOGUCHI Ryoichi DOI 《Rice science》 2012年第2期143-152,共10页
The current study proposes a novel method using Excel Solver to estimate,from limited data,crop coefficient(Kc) in paddy fields under intermittent irrigation(II).The proposed method was examined in a field experiment ... The current study proposes a novel method using Excel Solver to estimate,from limited data,crop coefficient(Kc) in paddy fields under intermittent irrigation(II).The proposed method was examined in a field experiment conducted at Karang Sari Village,Bekasi,West Java,Indonesia during the first rice season of 2007/2008(December 2007 to April 2008) in the rainy season.As the control,continuous flooding irrigation(CF) was applied to the conventional rice cultivation fields.Based on the observed water storage,Excel Solver was used to estimate crop evapotranspiration.Estimated crop evapotranspiration was used to compute Kc value,then the average Kc values at each growth stage were compared with that for the CF treatment.The estimation method was evaluated by comparing estimated crop evapotranspiration and the crop evapotranspiration derived by the well established FAO procedure.Excel Solver estimated crop evapotranspiration accurately with R2 values higher than 0.81.Accordingly,more than 81% of the FAO crop evapotranspiration was described by the proposed method.Thus,Kc value could be well determined from those estimated crop evapotranspiration.Under the II treatment,the average Kc values were 0.70,1.06,1.24 and 1.22 for the initial,crop development,reproductive and late stages,respectively.These values were lower than those under the CF treatment for initial and crop development stages because of a minimal soil evaporation and intense dryness during these stages.However,average Kc values under the II treatment were higher than those under the CF treatment at the reproductive and late stages,indicating that the II treatment promoted more plant activity particularly for dry biomass production as indicated by a greater number of tillers per hill. 展开更多
关键词 EXCEL 作物系数 规划求解 灌溉稻田 间歇灌溉 估算 作物蒸散量 精确估计
下载PDF
A dual-RPA based lateral flow strip for sensitive,on-site detection of CP4-EPSPS and Cry1Ab/Ac genes in genetically modified crops 被引量:1
9
作者 Jinbin Wang Yu Wang +7 位作者 Xiuwen Hu Yifan Chen Wei Jiang Xiaofeng Liu Juan Liu Lemei Zhu Haijuan Zeng Hua Liu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期183-190,共8页
Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSP... Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field. 展开更多
关键词 Genetically modifi ed crops On-site detection Lateral fl ow test strips Dual recombinase polymerase amplification (RPA)
下载PDF
Adding Value to Crop Production Systems by Integrating Forage Cover Crop Grazing
10
作者 Robert B. Mitchell Daren D. Redfearn +9 位作者 Kenneth P. Vogel Terry J. Klopfenstein Galen Erickson P. Stephen Baenziger Bruce E. Anderson Mary E. Drewnoski Jay Parsons Steven D. Masterson Marty R. Schmer Virginia L. Jin 《American Journal of Plant Sciences》 CAS 2024年第3期180-192,共13页
In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance... In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance was compared in the spring following autumn establishment as for age cover crops after soybean [Glycine max (L.) Merr.] grain harvest. Replicated pastures (0.4 ha) were no-till seeded in three consecutive years into soybean stubble in autumn, fertilized, and grazed the following spring near Ithaca, NE, USA. Each pasture (n = 3) was continuously stocked in spring with four yearling steers (380 ± 38 kg) for 17, 32, and 28 d in 2005, 2006, and 2007, respectively. In 2005, average daily gain (ADG) for steers grazing triticale exceeded the ADG for wheat by 0.31 kghd<sup>-1</sup>d<sup>-1</sup>. In 2006, wheat ADG exceeded that for triticale by 0.12 kghd<sup>-1</sup>d<sup>-1</sup>. In 2007, steers grazing wheat lost weight, while steers grazing triticale gained 0.20 kghd<sup>-1</sup>d<sup>-1</sup>. Based on the 3-year average animal gains valued at $1.32 kg<sup>-1</sup>, mean net return ($ ha<sup>-1</sup> yr<sup>-1</sup>) was $62.15 for triticale and $22.55 for wheat. Since these grazed cover crops provide ecosystem services in addition to forage, grazing could be viewed as a mechanism for recovering costs and adds additional value to the system. Based on this 3-year grazing trial, triticale was superior to wheat and likely will provide the most stable beef yearling performance across years with variable weather for the western Cornbelt USA. 展开更多
关键词 Cover crops SOYBEAN TRITICALE WHEAT
下载PDF
Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat-cotton cropping system
11
作者 Changqin Yang Xiaojing Wang +6 位作者 Jianan Li Guowei Zhang Hongmei Shu Wei Hu Huanyong Han Ruixian Liu Zichun Guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期669-679,共11页
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott... Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system. 展开更多
关键词 straw return crop yields SOC soil aggregates wheat-cotton cropping system
下载PDF
Assessment of Crop Yield in China Simulated by Thirteen Global Gridded Crop Models
12
作者 Dezhen YIN Fang LI +3 位作者 Yaqiong LU Xiaodong ZENG Zhongda LIN Yanqing ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期420-434,共15页
Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far o... Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies have assessed the performance of GGCMs in China, and these studies mainly focused on the average and interannual variability of national and regional yields. Here, a systematic national-and provincial-scale evaluation of the simulations by13 GGCMs [12 from the GGCM Intercomparison(GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of wheat, maize, and rice well. Most GGCMs struggle to simulate the spatial patterns of crop yields. In terms of temporal variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the top-10 producing provinces in China, albeit with a few exceptions. This study, for the first time, provides a complete picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and uncertainty of national-and provincial-scale crop yield prediction in China. 展开更多
关键词 global gridded crop model historical crop yield China multi-model evaluation
下载PDF
Comprehensive Overview and Analytical Study on Automatic Bird Repellent Laser System for Crop Protection
13
作者 Sireesha Abotula Srinivas Gorla +1 位作者 Prasad Reddy PVGD Mohankrishna S 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期38-53,共16页
Birds are a huge hazard to agriculture all around the world,causing harm to profitable field crops.Growers use a variety of techniques to keep them away,including visual,auditory,tactile,and olfactory deterrents. This... Birds are a huge hazard to agriculture all around the world,causing harm to profitable field crops.Growers use a variety of techniques to keep them away,including visual,auditory,tactile,and olfactory deterrents. This study presents a comprehensive overview of current bird repellant approaches used in agricultural contexts,as well as potential new ways. The bird repellent techniques include Internet of Things technology,Deep Learning,Convolutional Neural Network,Unmanned Aerial Vehicles,Wireless Sensor Networks and Laser biotechnology. This study’s goal is to find and review about previous approach towards repellent of birds in the crop fields using various technologies. 展开更多
关键词 Bird repellent crop protection IoT UAV Deep Learning
下载PDF
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
14
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes Soil N Soil Organic C Green Manure Deer Browse Forage cropping Systems
下载PDF
Molecular Dynamics, Diffusion Coefficients and Activation Energy of the Electrolyte (Anode) in Lithium (Li and Li+), Sodium (Na and Na+) and Potassium (K and K+)
15
作者 Alain Second Dzabana Honguelet Timothée Nsongo +1 位作者 Bitho Rodongo Earvin Loumbandzila 《Modeling and Numerical Simulation of Material Science》 2024年第1期39-57,共19页
This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studi... This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed. 展开更多
关键词 Molecular Dynamics Diffusion coefficients Activation Energy LITHIUM Alkali Metals MEAM Potential
下载PDF
Adaptive Random Effects/Coefficients Modeling
16
作者 George J. Knafl 《Open Journal of Statistics》 2024年第2期179-206,共28页
Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using general... Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time. 展开更多
关键词 Adaptive Regression Correlated Outcomes Extended Linear Mixed Modeling Fractional Polynomials Likelihood Cross-Validation Random Effects/coefficients
下载PDF
Microplastic Can Decrease Enzyme Activities and Microbes in Soil
17
作者 Tazeen Fatima Khan Abdul Halim Farhad Sikder 《Open Journal of Soil Science》 2024年第1期1-12,共12页
An in vitro study was conducted to investigate the impacts of microplastics on enzyme activities and soil bacteria. The study included four different treatments of microplastics including a control. Different levels o... An in vitro study was conducted to investigate the impacts of microplastics on enzyme activities and soil bacteria. The study included four different treatments of microplastics including a control. Different levels of microplastics were applied to the soil ranging from 0% to 5%, to assess the impacts of microplastics on soil enzymes and subsequent soil bacteria. After 30 days of incubation, the soil samples were collected and growth parameters of bacteria were assessed. Activities of β-glucosidase, urease and dehydrogenase enzymes were also determined. Our results showed that the presence of microplastics in the soil significantly reduced bacterial population together with bacterial strains. The activities of β-glucosidase, urease and dehydrogenase enzymes were reduced significantly to approximately 32%, 40% and 50% in microplastics treated soils respectively. Concentration of microplastic has a role to play towards this direction;the higher the concentration of microplastic the greater is the impact on enzymes and soil bacteria. The present study on the microbial soil health vis-à-vis microplastic application indicates that the material can have negative effect on the soil bacterial population of and thus ultimately may jeopardize soil health and crop production. 展开更多
关键词 Microplastic CONCENTRATION Enzyme Activity BACTERIA crop Production
下载PDF
Evaluation of dual crop coefficient approach on evapotranspiration calculation of cherry trees
18
作者 Tong Guodong Liu Honglu Li Fahu 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第3期29-39,共11页
A simple way to estimate tree evapotranspiration is needed for orchard irrigation schedules and water management practice,and the dual crop coefficient(DCC)approach provides such a method.Plot experiments on cherry tr... A simple way to estimate tree evapotranspiration is needed for orchard irrigation schedules and water management practice,and the dual crop coefficient(DCC)approach provides such a method.Plot experiments on cherry trees were conducted in an orchard of Beijing,China,from 2011 to 2013,to test the suitability and reliability of the DCC method.The calculated results from the DCC method were compared with those directly measured by water balance(WB)and sap flow(SF)methods.Results showed that total evapotranspiration in the whole growth period of cherry trees obtained by WB,SF and DCC methods was 560.0-569.3 mm,544.7-569.8 mm and 564.1-574.6 mm,respectively.The Nash-Sutcliffe efficiency(NSE)and the ratio of root-mean-square error to the standard deviation of measured data(RSR)showed that the calculated total evapotranspiration by DCC method was consistent to that measured by the WB method at above“Satisfactory”level(0.50<NSEd0.65 and 0.60<RSRd0.70),and at“Very good”level(0.75<NSEd1.00 and 0<RSRd0.50)when compared to the SF method.However,the performance of the DCC method on monthly evapotranspiration was worse than on total evapotranspiration,and the consistency mostly was classified as“Unsatisfactory”(NSE≤0.50 and RSR>0.70)for the monthly evapotranspiration and as“Satisfactory”for the total evapotranspiration,respectively when compared with the WB and SF methods.Crop coefficients for the whole growth period were similar for all three methods,but the crop coefficient suggested by the DCC method was larger at the beginning and the late growth stages but smaller at the vigorous growth stage of cherry trees than those measured by using the WB and SF methods.It can be concluded that the DCC method is an effective tool to estimate total evapotranspiration in the whole growth period of cherry tree,but an improvement on accuracy of estimating monthly evapotranspiration of cherry trees is required. 展开更多
关键词 dual crop coefficient method crop coefficient EVAPOTRANSPIRATION sap flow method water balance method
原文传递
Determination of Natural Logarithm of Diffusion Coefficient and Activation Energy of Thin Layer Drying Process of Ginger Rhizome Slices
19
作者 Austin Ikechukwu Gbasouzor Sam Nna Omenyi +1 位作者 Sabuj Mallik Jude E. Njoku 《World Journal of Engineering and Technology》 2024年第1期213-228,共16页
This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhiz... This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy were determined. For this purpose, the experiments were done at six levels of varied temperatures: 10°C, 20°C, 30°C, 40°C, 50°C and 60°C. The values of effective diffusion coefficients obtained in this work for the variously treated ginger rhizomes closely agreed with the average effective diffusion coefficients of other notable authors who determined the drying kinetics and convective heat transfer coefficients of ginger slices. 展开更多
关键词 Activation Energy Diffusion coefficients Ginger Rhizomes Drying Model Drying Time Moisture Ratio Thin Layer
下载PDF
Lysimeter based crop coefficients for estimation of crop evapotranspiration of black gram (Vigna Mungo L.) in sub-humid region 被引量:1
20
作者 Pankaj K Pandey Vanita Pandey 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2011年第4期50-58,共9页
Black gram is dominant pulse crop of the region.Crop coefficient is an important parameter,which needs to be determined for accurate estimates of the crop water requirement.Crop coefficient,the ratio of potential crop... Black gram is dominant pulse crop of the region.Crop coefficient is an important parameter,which needs to be determined for accurate estimates of the crop water requirement.Crop coefficient,the ratio of potential crop evapotranspiration to reference evapotranspiration,is an important parameter in irrigation planning and management.However,this information is not available for many important crops in the study region.A study was undertaken to develop crop coefficients for black gram crop,and a comparison is made of single and dual crop coefficient approaches to estimate actual crop evapotranspiration under the climatic conditions of Udaipur,India.Crop coefficient was developed from daily measured black gram evapotranspiration(ETBG)data by electronic weighing lysimeter and reference evapotranspiration calculated using standard Penman-Monteith method.The measured values of crop coefficient for the crop were 0.48,1.18 and 0.33 during initial,mid-season and late-season stages.The evaluation of different approaches showed that daily ETBG estimate based on dual crop coefficient method have been found best(SE=0.40,r=0.96).Furthermore,a quadratic curve(second-order polynomial)method were fitted well(SE=0.47,r=0.94)to predict crop coefficient values as function of days after sowing(DAS).These locally developed and evaluated values can be used for proper irrigation planning in water scarcity area of Udaipur and other areas with similar agro-ecological conditions. 展开更多
关键词 LYSIMETER EVAPOTRANSPIRATION crop coefficient electronic weighing lysimeter reference evapotranspiration black gram(Vigna Mungo L.) IRRIGATION
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部