期刊文献+
共找到2,822篇文章
< 1 2 142 >
每页显示 20 50 100
Assessment of Crop Yield in China Simulated by Thirteen Global Gridded Crop Models
1
作者 Dezhen YIN Fang LI +3 位作者 Yaqiong LU Xiaodong ZENG Zhongda LIN Yanqing ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期420-434,共15页
Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far o... Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies have assessed the performance of GGCMs in China, and these studies mainly focused on the average and interannual variability of national and regional yields. Here, a systematic national-and provincial-scale evaluation of the simulations by13 GGCMs [12 from the GGCM Intercomparison(GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of wheat, maize, and rice well. Most GGCMs struggle to simulate the spatial patterns of crop yields. In terms of temporal variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the top-10 producing provinces in China, albeit with a few exceptions. This study, for the first time, provides a complete picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and uncertainty of national-and provincial-scale crop yield prediction in China. 展开更多
关键词 global gridded crop model historical crop yield China multi-model evaluation
下载PDF
In vitro and in silico studies of salicylic acid on systemic induced resistance against bacterial leaf blight disease and enhancement of crop yield
2
作者 Wannaporn THEPBANDIT Narendra Kumar PAPATHOTI +4 位作者 Jayasimha Rayulu DADDAM Nguyen Huy HOANG Toan LE THANH Chanon SAENGCHAN Kumrai BUENSANTEAI 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期170-184,共15页
Salicylic acid(SA)is an effective elicitor to promote plant defenses and growth.This study aimed to investigate rice(Oryza sativa L.)cv.Khao Dawk Mali 105 treated with salicylic acid(SA)-Ricemate as an enhanced plant ... Salicylic acid(SA)is an effective elicitor to promote plant defenses and growth.This study aimed to investigate rice(Oryza sativa L.)cv.Khao Dawk Mali 105 treated with salicylic acid(SA)-Ricemate as an enhanced plant protection mechanism against bacterial leaf blight(BLB)disease caused by Xanthomonas oryzae pv.oryzae(Xoo).Results indicated that the use of SA-Ricemate as a foliar spray at concentrations of more than 100 mg L^(-1)can reduce the severity of BLB disease by 71%.SA-Ricemate treatment also increased the hydrogen peroxide(H_(2)O_(2))content of rice leaf tissues over untreated samples by 39–61%.Malondialdehyde(MDA)in rice leaves treated with SA-Ricemate also showed an increase of 50–65%when comparing to non-treated samples.The differential development of these defense compounds was faster and distinct when the SA-Ricemate-treated rice was infected with Xoo,indicating plant-induced resistance.Besides,SA-Ricemate elicitor at a concentration of 50–250 mg L^(-1)was correlated with a substantial increase in the accumulation of total chlorophyll content at 2.53–2.73 mg g^(-1)of fresh weight which suggests that plant growth is activated by SA-Ricemate.The catalase-and aldehyde dehydrogenase-binding sites were searched for using the CASTp server,and the findings were compared to the template.Chemsketch was used to design and optimize SA,which was then docked to the catalase and aldehyde dehydrogenase-binding domains of the enzymes using the GOLD 3.0.1 Software.SA is shown in several docked conformations with the enzymes catalase and aldehyde dehydrogenase.All three catalase amino acids(GLN7,VAL27,and GLU38)were discovered to be involved in the creation of a strong hydrogen bond with SA when SA was present.In this mechanism,the aldehyde dehydrogenase amino acids LYS5,HIS6,and ASP2 were all implicated,and these amino acids created strong hydrogen bonds with SA.In field conditions,SA-Ricemate significantly reduced disease severity by 78%and the total grain yield was significantly increased which was an increase of plant height,tiller per hill,and panicle in three field trials during Aug–Nov 2017 and 2018.Therefore,SA-Ricemate can be used as an alternative elicitor on replacing harmful pesticides to control BLB disease with a high potential of increasing rice defenses,growth,and yield components. 展开更多
关键词 bacterial leaf blight crop yield in vitro in silico rice defense salicylic acid
下载PDF
Effects of residual plastic film on crop yield and soil fertility in a dryland farming system
3
作者 WANG Dong XI Yue +7 位作者 SHI Xiao-yan GUO Chao-li ZHONG Yu-jie SONG Chao GUAN Yu HUANG Lu YANG Qi-feng LI Feng-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3783-3791,共9页
Plastic film mulch in agricultural production becomes essential to maintaining crop yields in arid and semiarid areas.However,the presence of residual film in farmland soil has also drawn much attention.In this study,... Plastic film mulch in agricultural production becomes essential to maintaining crop yields in arid and semiarid areas.However,the presence of residual film in farmland soil has also drawn much attention.In this study,three experiments were conducted.The first two experimental designs included 0,450,1350,and 2700 kg ha^(-1) of residual film pieces of approximately 5 cm side length added to field soil(0-20 cm soil depth)for seven years and added to pots for four years.In the third experiment,1350 kg ha^(-1)of the residual film with different side lengths(2-5,5-10,10-15,and 15-20 cm)was added to field soil for six years to explore the effect of residual film fragment size on soil nutrients,soil microorganisms,crop growth and yields.The residual film had little effect on the soil moisture at a field depth of 0-2(or 0-1.8)m.There were no significant effects on organic carbon,total nitrogen,inorganic nitrogen,total phosphorus or available phosphorus in the 0-20 cm soil layer.The presence of residual film decreased the richness and diversity of the bacterial community of the surface soil of the residual film,but it had no significant effect on the microbial community of the non-surface soil.The emergence rates of wheat and lentils occasionally decreased significantly with different amounts of residue fragments added to the field.At 450-2700 kg ha^(-1),the residual film reduced the plant height and stem diameter of maize and significantly reduced the shoot biomass of harvested maize by 11-19%.The average yields of maize and potato over the seven years decreased,but there were almost no significant statistical differences among the treatments.These results provide important data for a comprehensive scientific understanding of the effects of residual film on soil and crops in dryland farming systems. 展开更多
关键词 residual film soil nutrients microbial community crop yield
下载PDF
Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system
4
作者 ZHANG Chong WANG Dan-dan +6 位作者 ZHAO Yong-jian XIAO Yu-lin CHEN Huan-xuan LIU He-pu FENG Li-yuan YU Chang-hao JU Xiao-tang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1883-1895,共13页
Ammonia (NH_3) emissions should be mitigated to improve environmental quality.Croplands are one of the largest NH_3sources,they must be managed properly to reduce their emissions while achieving the target yields.Here... Ammonia (NH_3) emissions should be mitigated to improve environmental quality.Croplands are one of the largest NH_3sources,they must be managed properly to reduce their emissions while achieving the target yields.Herein,we report the NH_3 emissions,crop yield and changes in soil fertility in a long-term trial with various fertilization regimes,to explore whether NH_3 emissions can be significantly reduced using the 4R nutrient stewardship (4Rs),and its interaction with the organic amendments (i.e.,manure and straw) in a wheat–maize rotation.Implementing the 4Rs significantly reduced NH_3 emissions to 6 kg N ha~(–1) yr~(–1) and the emission factor to 1.72%,without compromising grain yield (12.37 Mg ha~(–1) yr~(–1))and soil fertility (soil organic carbon of 7.58 g kg~(–1)) compared to the conventional chemical N management.When using the 4R plus manure,NH_3 emissions (7 kg N ha~(–1) yr~(–1)) and the emission factor (1.74%) were as low as 4Rs,and grain yield and soil organic carbon increased to 14.79 Mg ha~(–1) yr~(–1) and 10.09 g kg~(–1),respectively.Partial manure substitution not only significantly reduced NH_3 emissions but also increased crop yields and improved soil fertility,compared to conventional chemical N management.Straw return exerted a minor effect on NH_3 emissions.These results highlight that 4R plus manure,which couples nitrogen and carbon management can help achieve both high yields and low environmental costs. 展开更多
关键词 ammonia emission crop yield 4R nutrient stewardship partial manure substitution winter wheat–summer maize cropping system
下载PDF
AI Method for Improving Crop Yield Prediction Accuracy Using ANN
5
作者 T.Sivaranjani S.P.Vimal 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期153-170,共18页
Crop Yield Prediction(CYP)is critical to world food production.Food safety is a top priority for policymakers.They rely on reliable CYP to make import and export decisions that must be fulfilled before launching an ag... Crop Yield Prediction(CYP)is critical to world food production.Food safety is a top priority for policymakers.They rely on reliable CYP to make import and export decisions that must be fulfilled before launching an agricultural business.Crop Yield(CY)is a complex variable influenced by multiple factors,including genotype,environment,and their interactions.CYP is a significant agrarian issue.However,CYP is the main task due to many composite factors,such as climatic conditions and soil characteristics.Machine Learning(ML)is a powerful tool for supporting CYP decisions,including decision support on which crops to grow in a specific season.Generally,Artificial Neural Networks(ANN)are usually used to predict the behaviour of complex non-linear models.As a result,this research paper attempts to determine the correlations between climatic variables,soil nutrients,and CYwith the available data.InANN,threemethods,Levenberg-Marquardt(LM),Bayesian regularisation(BR),and scaled conjugate gradient(SCG),are used to train the neural network(NN)model and then compared to determine prediction accuracy.The performance measures of the training,as declared above,such as Mean Squared Error(MSE)and correlation coefficient(R),were determined to assess the ANN models that had been built.The experimental study proves that LM training algorithms are better,while BR and SCG have minimal performance. 展开更多
关键词 crop prediction accuracy ANN precision agriculture crop yield
下载PDF
Emerging Negative Warming Impacts on Tibetan Crop Yield 被引量:3
6
作者 Tsechoe Dorji Shilong Piao +5 位作者 Xuhui Wang Chuang Zhao Baohua Liu Anping Chen Shiping Wang Tao Wang 《Engineering》 SCIE EI CAS 2022年第7期163-168,共6页
Preserving Tibet’s unique history and cultural heritage relies on the sustainability of the Tibetan croplands,which are characterized by highland barley,the only cereal crop cultivated over 4000 m above sea level.Yet... Preserving Tibet’s unique history and cultural heritage relies on the sustainability of the Tibetan croplands,which are characterized by highland barley,the only cereal crop cultivated over 4000 m above sea level.Yet it is unknown how these croplands will respond to climate change.Here,using yield statistics from 1985 to 2015,we found that the impact of temperature anomalies on the Tibetan crop yield shifted from nonsignificant(P>0.10)in the 1980s and 1990s to significantly negative(P<0.05)in recent years.Meanwhile,the apparent sensitivity of the crop yield to temperature anomalies almost doubled,from(–0.13±0.20)to(–0.22±0.14)t·ha^(-1)℃^(–1).The emerging negative impacts of higher temperatures suggest an increasing vulnerability of Tibetan croplands to warmer climate.With global warming scenarios of+1.5 or+2.0℃above the pre-industry level,the temperature sensitivities of crop yield may further increase to(–0.33±0.10)and(–0.51±0.18)t·ha^(-1)℃^(–1),respectively,making the crops 2–3 times more vulnerable to warmer temperatures than they are today. 展开更多
关键词 Tibet WARMING crop yield BARLEY Negative warming impacts
下载PDF
Wastewater irrigation and crop yield:A meta-analysis
7
作者 WANG Han-jie Jingjing WANG Xiaohua YU 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第4期1215-1224,共10页
Although wastewater irrigation in agriculture could be a potential adaptation to water scarcity, its effect on crop yield varies in the literature, making it difficult to evaluate its role in global food security comp... Although wastewater irrigation in agriculture could be a potential adaptation to water scarcity, its effect on crop yield varies in the literature, making it difficult to evaluate its role in global food security comprehensively. Using agronomic experiment data from 62 studies between 1987 and 2021, we employ a meta-analysis to analyze the factors contributing to the heterogeneous effects of wastewater irrigation on crop yield. Our findings can be summarized as(1) the mean yield growth effect of wastewater irrigation is 19.7%;(2) domestic and breeding wastewater irrigation could significantly increase crop yield, while industrial wastewater has a negative effect although not significant;(3) high nutrients concentration of domestic wastewater is significantly positively correlated with crop yield;(4) agronomic experiment designs in terms of field experiment, experiment times, and fertilizer use could contribute to the divergent crop yield effects across the studies;(5) there is a publication bias of the research results between the English and Chinese literature;(6) the literature mainly sheds light on the short-run effect, and the long-run impact shall be an important research question in the future. 展开更多
关键词 wastewater irrigation crop yield food security META-ANALYSIS
下载PDF
Crop Yield Prediction Using Machine Learning Approaches on a Wide Spectrum
8
作者 SVinson Joshua ASelwin Mich Priyadharson +5 位作者 Raju Kannadasan Arfat Ahmad Khan Worawat Lawanont Faizan Ahmed Khan Ateeq Ur Rehman Muhammad Junaid Ali 《Computers, Materials & Continua》 SCIE EI 2022年第9期5663-5679,共17页
The exponential growth of population in developing countries likeIndia should focus on innovative technologies in the Agricultural processto meet the future crisis. One of the vital tasks is the crop yield predictiona... The exponential growth of population in developing countries likeIndia should focus on innovative technologies in the Agricultural processto meet the future crisis. One of the vital tasks is the crop yield predictionat its early stage;because it forms one of the most challenging tasks inprecision agriculture as it demands a deep understanding of the growth patternwith the highly nonlinear parameters. Environmental parameters like rainfall,temperature, humidity, and management practices like fertilizers, pesticides,irrigation are very dynamic in approach and vary from field to field. In theproposed work, the data were collected from paddy fields of 28 districts in widespectrum of Tamilnadu over a period of 18 years. The Statistical model MultiLinear Regression was used as a benchmark for crop yield prediction, whichyielded an accuracy of 82% owing to its wide ranging input data. Therefore,machine learning models are developed to obtain improved accuracy, namelyBack Propagation Neural Network (BPNN), Support Vector Machine, andGeneral Regression Neural Networks with the given data set. Results showthat GRNN has greater accuracy of 97% (R2 = 0.97) with a normalizedmean square error (NMSE) of 0.03. Hence GRNN can be used for crop yieldprediction in diversified geographical fields. 展开更多
关键词 Machine learning crop yield PREDICTION computer simulation and modelling
下载PDF
Effect of Different Heating Systems in Cucumber Production Greenhouses in Varamin Region on Crop Yield, Volume and Cost of Gas Consumed
9
作者 Majid Rashidi 《Journal of Environmental Science and Engineering(B)》 2020年第5期206-214,共9页
This research was conducted to study the effect of different heating systems in cucumber production greenhouses in Varamin region,Tehran province,Iran on crop yield,volume and cost of gas consumed.Three types of conve... This research was conducted to study the effect of different heating systems in cucumber production greenhouses in Varamin region,Tehran province,Iran on crop yield,volume and cost of gas consumed.Three types of conventional heating systems,namely the central heating system(including boiler+hot water pipes),gas heater system(including double-walled tank+blower)and traditional furnace system(including ignition chamber+torch+pipes carrying a mixture of hot air and flammable gases)were studied during two consecutive periods of greenhouse cucumber cultivation in the cold season(from January to June),and average values of crop yield,volume and cost of gas consumed were determined separately.Results of the study indicated that the central heating system with the highest crop yield(295 tžha^-1),and the lowest volume(100,000 m3žha^-1)and cost(210,000,000 Rialsžha^-1)of gas consumed was the best and most suitable heating system for greenhouses producing cucumbers in Varamin region and other regions with the same and similar climate as well as regions with active greenhouses in the cold season. 展开更多
关键词 GREENHOUSE heating systems greenhouse cucumber crop yield gas consumed Varamin Iran
下载PDF
A Hybrid Approach of TLBO and EBPNN for Crop YieldPrediction Using Spatial Feature Vectors
10
作者 Preeti Tiwari Piyush Shukla 《Journal on Artificial Intelligence》 2019年第2期45-58,共14页
The prediction of crop yield is one of the important factor and also challenging,to predict the future crop yield based on various criteria’s.Many advanced technologies are incorporated in the agricultural processes,... The prediction of crop yield is one of the important factor and also challenging,to predict the future crop yield based on various criteria’s.Many advanced technologies are incorporated in the agricultural processes,which enhances the crop yield production efficiency.The process of predicting the crop yield can be done by taking agriculture data,which helps to analyze and make important decisions before and during cultivation.This paper focuses on the prediction of crop yield,where two models of machine learning are developed for this work.One is Modified Convolutional Neural Network(MCNN),and the other model is TLBO(Teacher Learning Based Optimization)-a Genetic algorithm which reduces the input size of data.In this work,some spatial information used for analysis is the Normalized Difference Vegetation Index,Standard Precipitation Index and Vegetation Condition Index.TLBO finds some best feature value set in the data that represents the specific yield of the crop.So,these selected feature valued set is passed in the Error Back Propagation Neural Network for learning.Here,the training was done in such a way that all set of features were utilized in pair with their yield value as output.For increasing the reliability of the work whole experiment was done on a real dataset from Madhya Pradesh region of country India.The result shows that the proposed model has overcome various evaluation parameters on different scales as compared to previous approaches adopted by researchers. 展开更多
关键词 crop yield prediction data mining MACHINELEARNING vegetation index TLBO.
下载PDF
Crop Yield Sensitivity to Climatic Variability as the Basis for Creating Climate Resilient Agriculture
11
作者 David Chikodzi 《American Journal of Climate Change》 2016年第1期69-76,共8页
Climate change and variability are presenting challenges to the agricultural sector as well as agricultural sustainability in Zimbabwe. This paper was aimed at investigating the impacts of climate change and variabili... Climate change and variability are presenting challenges to the agricultural sector as well as agricultural sustainability in Zimbabwe. This paper was aimed at investigating the impacts of climate change and variability on maize, sorghum and groundnut production in the Buhera district of Zimbabwe. The paper specifically determined the climatic scenarios in Buhera and how crop production is sensitive to them. Temperature and rainfall data used were obtained from the Zimbabwe Meteorological Services Department. Crop yield data for maize, sorghum and groundnuts were obtained from the Department of Agriculture and Rural Extension Buhera District office. The Mann-Kendall Trend test was then used to determine if there were significant changes in the precipitation and temperature scenarios at Buhera weather station. Before performing the Mann-Kendall test, the time series data were first tested for auto-correlation. Finally the Spearman’s correlation coefficient was used to determine how precipitation and crop yields were related and the strength of their relationships. Mann-Kendall trend tests reviewed that only mean minimum temperatures show significant trends over time (p = 0.003, α = 0.05). Correlation analysis showed that only maize showed a significant correlation coefficient with the amount of rainfall (r = 0.79, r2 = 0.625 and p = 0.001, α = 0.05). The research showed that groundnuts were the least sensitive to climatic variations followed by sorghum;hence their production offers the best climatic resilience and must be encouraged to local subsistence farmers. 展开更多
关键词 Climate Change crop yield Sensitivity Climate Resilience Buhera District
下载PDF
Assessing the Impacts of Climate Change on Crop Yields in Different Agro-climatic Zones of India
12
作者 Naveen P Singh Bhawna Anand +3 位作者 S K Srivastava K V Rao S K Bal M Prabhakar 《Journal of Atmospheric Science Research》 2020年第4期16-27,共12页
The study attempts to estimate and predict climate impact on crop yields using future temperature projections under two climate emissions scenarios of RCP 4.5 and 8.5 for three different time periods(2030s,2050s and 2... The study attempts to estimate and predict climate impact on crop yields using future temperature projections under two climate emissions scenarios of RCP 4.5 and 8.5 for three different time periods(2030s,2050s and 2080s)across Agro-climatic zones(ACZ)of India.During the period 1966-2011,a significant rise was observed in both the annual mean maximum and minimum temperature across ACZs.Rainfall recorded an annual decline in Himalayan Regions and Gangetic Plains and a rise in Coastal Regions,Plateau&Hills and Western Dry Region.Our results showed high heterogeneity in climate impact on kharif and rabi crop yields(with both negative and positive estimates)across ACZs.It was found that rainfall had a positive effect on most of crop yields,but was not sufficient enough to counterbalance the impact of temperature.Changes in crop yield were more pronounced for higher emission scenario of RCP 8.5.Thus,it was evident that the relative impacts of climate change and the associated vulnerability vary by ACZs,hence comprehensive crop and region-specific adaptation measures should be emphasized that helps in enhancing resilience of agricultural system in short to medium term. 展开更多
关键词 Agro-climatic zones Climate change crop yields RCPs
下载PDF
Utilization of Compost as a Soil Amendment to Increase Soil Health and to Improve Crop Yields
13
作者 Jerome Wright Scott Kenner Bret Lingwall 《Open Journal of Soil Science》 2022年第6期216-224,共9页
Compost amendments have remarkable potential for improving soil structure, porosity and water holding capacity. Soil health is the ability to function as a living system, to sustain plant and animal productivity, to e... Compost amendments have remarkable potential for improving soil structure, porosity and water holding capacity. Soil health is the ability to function as a living system, to sustain plant and animal productivity, to enhance water and air quality, and to promote plant and animal health. Soil health can be estimated by measuring the total living microbial biomass, retained carbon, odor, and texture. Poor or deteriorating soil health is threatening food security. The potential for compost to reverse these negative trends is transformative if means and methods for large scale composting and compost amendments can be developed. A field-scale compost soil amendment project was implemented in Rapid City, South Dakota. The compost was added to a soil plot at 5 wt% and 10 wt% and the results were compared with an adjacent untreated plot without any compost addition. Measurements of soil health characteristics indicate that compost amendments improve soil health, crop yields, and soil water content. Treating soils with compost has the potential to reverse global deteriorating soil health. 展开更多
关键词 COMPOST crop yields Soil Health Food Security
下载PDF
Crop Yield and Soil Properties in the First 3 Years After Biochar Application to a Calcareous Soil 被引量:37
14
作者 LIANG Feng LI Gui-tong +1 位作者 LIN Qi-mei ZHAO Xiao-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第3期525-532,共8页
It remains unclear whether biochar applications to calcareous soils can improve soil fertility and crop yield. A long-term field experiment was established in 2009 so as to determine the effect of biochar on crop yiel... It remains unclear whether biochar applications to calcareous soils can improve soil fertility and crop yield. A long-term field experiment was established in 2009 so as to determine the effect of biochar on crop yield and soil properties in a calcareous soil. Five treatments were: 1) straw incorporation; 2) straw incorporation with inorganic fertilizer; 3), 4) and 5) straw incorporation with inorganic fertilizer, and biochar at 30, 60, and 90 t ha-1, respectively. The annual yield of either winter wheat or summer maize was not increased significantly following biochar application, whereas the cumulative yield over the first 4 growing seasons was significantly increased. Soil pH, measured in situ, was increased by a maximum of 0.35 units after 2 yr following biochar application. After 3 yr, soil bulk density significantly decreased while soil water holding capacity increased with adding biochar of 90 t ha-1. Alkaline hydrolysable N decreased but exchangeable K increased due to biochar addition. Olsen-P did not change compared to the treatment without biochar. The results suggested that biochar could be used in calcareous soils without yield loss or significant impacts on nutrient availability. 展开更多
关键词 土壤理化性质 石灰性土壤 应用程序 作物产量 生物炭 长期田间试验 稻草还田 土壤肥力
下载PDF
Effect of Long-Term Application of K Fertilizer and Wheat Straw to Soil on Crop Yield and Soil K Under Different Planting Systems 被引量:25
15
作者 TAN De-shui JIN Ji-yun HUANG Shao-wen LI Shu-tian HE Ping 《Agricultural Sciences in China》 CAS CSCD 2007年第2期200-207,共8页
Effect of application of K fertilizer and wheat straw to soil on crop yield and status of soil K in the plough layer under different planting systems was studied. The experiments on long-term application of K fertiliz... Effect of application of K fertilizer and wheat straw to soil on crop yield and status of soil K in the plough layer under different planting systems was studied. The experiments on long-term application of K fertilizer and wheat straw to soil in Hebei fluvo aquic soil and Shanxi brown soil in northern China were begun in 1992. The results showed that K fertilizer and straw could improve the yields of wheat and maize with the order of NPK + St > NPK > NP + St > NP, and treatment of K fertilizer made a significant difference to NP, and the efficiency of K fertilizer in maize was higher than in wheat under rotation system of Hebei. In contrast with Shanxi, the wastage of soil potassium was a more serious issue in the rotation system in Hebei, only treatment of NPK + St showed a surplus of potassium and the others showed a wane. K fertilizer and straw could improve the content of water-soluble K, nonspecifically adsorbed K, non-exchangeable K, mineral K, and total K in contrast to NP; however, K fertilizer and straw reduce the proportion of mineral K and improve proportion of other forms of potassium in the two locating sites. Compared with the beginning of orientation, temporal variability character of soil K content and proportion showed a difference between the two soil types; furthermore, there was a decrease in the content of mineral K and total K simultaneously in the two locating sites. As a whole, the effect of K fertilizer applied to soil directly excelled to wheat straw to soil. Wheat straw to soil was an effective measure to complement potassium to increase crop yield and retard the decrease of soil K. 展开更多
关键词 钾肥 长期应用 麦秸 秸杆还田 土壤K 作物产量 栽培制度
下载PDF
Influence of Long-Term Fertilization with Different Mineral Fertilizers and Farmyard Manure on Some Soil Chemical Properties and Crop Yields 被引量:8
16
作者 LIU DEHUI 1, J. LABETOWICZ 2 and L. KUSZELEWSKI 2 1 Nanjing Agricultural University, Nanjing 210095 (China) 2 Department of Agricultural Chemistry, Warsaw Agricultural University, Warsaw 02 528 (Poland) (Received February 15, 1998 r 《Pedosphere》 SCIE CAS CSCD 1998年第3期281-288,共8页
Longtermexperimentshaveaspecialvalueforprovidinginformationtoguideagriculturaldevelopments.Asearlyasin1843,... Longtermexperimentshaveaspecialvalueforprovidinginformationtoguideagriculturaldevelopments.Asearlyasin1843,LawesandGilbertes... 展开更多
关键词 庄稼产量 农家肥料 矿物肥料 土壤化学性质 施肥
下载PDF
The Possible Effect of Climate Warming on Northern Limits of Cropping System and Crop Yield in China 被引量:18
17
作者 YANG Xiao-guang LIU Zhi-juan CHEN Fu 《Agricultural Sciences in China》 CAS CSCD 2011年第4期585-594,共10页
Significantly increasing temperature since the 1980s in China has become a consensus under the background of global climate change and how climate change affects agriculture or even cropping systems has attracted more... Significantly increasing temperature since the 1980s in China has become a consensus under the background of global climate change and how climate change affects agriculture or even cropping systems has attracted more and more attention from Chinese government and scientists. In this study, the possible effects of climate warming on the national northern limits of cropping systems, the northern limits of winter wheat and double rice, and the stable-yield northern limits of rainfed winter wheat-summer maize rotation in China from 1981 to 2007 were analyzed. Also, the possible change of crop yield caused by planting limits displacement during the periods 1950s-1981 and 1981-2007 was compared and discussed. The recognized calculation methods of agricultural climatic indices were employed. According to the indices of climatic regionalization for cropping systems, the national northern limits of cropping systems, winter wheat and double rice, and the stable-yield northern limits of rainfed winter wheat-summer maize rotation during two periods, including the 1950s-1980 and 1981-2007, were drawn with ArcGIS software. Compared with the situation during the 1950s- 1980, the northern limits of double cropping system during 1981-2007 showed significant spatial displacement in Shaanxi, Shanxi, Hebei, and Liaoning provinces and Beijing municipality, China. The northern limits of triple cropping system showed the maximum spatial displacement in Hunan, Hubei, Anhui, Jiangsu, and Zhejiang provinces, China. Without considering variety change and social economic factors, the per unit area grain yield of main planting patterns would increase about 54-106% if single cropping system was replaced by double cropping system, which turned out to be 27- 58% if double cropping system was replaced by triple cropping system. In Liaoning, Hebei, Shanxi, Shaanxi, Gansu, and Qinghai provinces, Inner Mongolia and Ningxia autonomous regions, China, the northern limits of winter wheat during 1981-2007 moved northward and expanded westward in different degrees, compared with those during the 1950s-1980. Taking Hebei Province as an example, the northern limits of winter wheat moved northward, and the per unit area grain yield would averagely increase about 25% in the change region if the spring wheat was replaced by winter wheat. In Zhejiang, Anhui, Hubei, and Hunan provinces, China, the planting northern limits of double rice moved northward, and the per unit area grain yield would increase in different degrees only from the perspective of heat resource. The stable- yield northern limits of rainfed winter wheat-summer maize rotation moved southeastward in most regions, which was caused by the decrease of local precipitation in recent years. During the past 50 yr, climate warming made the national northern limits of cropping systems move northward in different degrees, the northern limits of winter wheat and double rice both moved northward, and the cropping system change would cause the increase of per unit area grain yield in the change region. However, the stable-yield northern limits of rainfed winter wheat-summer maize rotation moved southeastward due to the decrease of precipitation. 展开更多
关键词 农业种植制度 中国北方 农作物产量 气候变暖 旱作冬小麦 全球气候变化 粮食产量 单位面积
下载PDF
Timing and splitting of nitrogen fertilizer supply to increase crop yield and efficiency of nitrogen utilization in a wheat–peanut relay intercropping system in China 被引量:12
18
作者 Zhaoxin Liu Fang Gao +9 位作者 Yan Liu Jianqun Yang Xiaoyu Zhen Xinxin Li Ying Li Jihao Zhao Jinrong Li Bichang Qian Dongqing Yang Xiangdong Li 《The Crop Journal》 SCIE CAS CSCD 2019年第1期101-112,共12页
Agronomically optimizing the timing and rates of nitrogen(N) fertilizer application can increase crop yield and decrease N loss to the environment. Wheat(Triticum aestivum L.)–peanut(Arachis hypogaea L.) relay interc... Agronomically optimizing the timing and rates of nitrogen(N) fertilizer application can increase crop yield and decrease N loss to the environment. Wheat(Triticum aestivum L.)–peanut(Arachis hypogaea L.) relay intercropping systems are a mainstay of economic and food security in China. We performed a field experiment to investigate the effects of N fertilizer on N recovery efficiency, crop yield, and N loss rate in wheat–peanut relay intercropping systems in the Huang-Huai-Hai Plain, China during 2015–2017. The N was applied on the day before sowing, the jointing stage(G30) or the booting stage(G40) of winter wheat, and the anthesis stage(R1) of peanut in the following percentage splits: 50-50-0-0(N1), 35-35-0-30(N2), and 35-0-35-30(N3), using 300 kg N ha-1, with 0 kg N ha-1(N0) as control. ^(15)N-labeled(20.14 atom %) urea was used to trace the fate of N in microplots. The yields of wheat and peanut increased by 12.4% and 15.4% under the N2 and N3 treatments, relative to those under the N1 treatment. The ^(15)N recovery efficiencies( ^(15)NRE) were 64.9% and 58.1% for treatments N2 and N3, significantly greater than that for the N1 treatment(45.3%). The potential N loss rates for the treatments N2 and N3 were23.7% and 7.0%, significantly lower than that for treatment N1(30.1%). Withholding N supply until the booting stage(N3) did not reduce the wheat grain yield; however, it increased the N content derived from ^(15)N-labeled urea in peanuts, promoted the distribution of ^(15)N to pods, and ultimately increased pod yields in comparison with those obtained by topdressing N at jointing stage(N2). In comparison with N2, the N uptake and N recovery efficiency(NRE) of N3 was increased by 12.0% and 24.1%,respectively, while the apparent N loss decreased by 16.7%. In conclusion, applying N fertilizer with three splits and delaying topdressing fertilization until G40 of winter wheat increased total grain yields and NRE and reduced N loss. This practice could be an environment-friendly N management strategy for wheat–peanut relay intercropping systems in China. 展开更多
关键词 NITROGEN management Wheat–peanut RELAY intercropping system crop yield NITROGEN recovery EFFICIENCY Apparent N loss
下载PDF
SPATIAL CORRELATION ANALYSIS OF CROP YIELD IN THE MIDDLE AND WEST OF JILIN PROVINCE 被引量:3
19
作者 LILin-yi LIChun-lin 《Chinese Geographical Science》 SCIE CSCD 2002年第2期182-185,共4页
In this paper,spatial correlation of crop yield in the middle and west of Jilin Province is analyzed by us-ing the method of geostatistics semivariogram,taking the NDVI of NOAA/AVHRR spectrum data as the regionalized ... In this paper,spatial correlation of crop yield in the middle and west of Jilin Province is analyzed by us-ing the method of geostatistics semivariogram,taking the NDVI of NOAA/AVHRR spectrum data as the regionalized vari-able,aiming to provide theory and practical basis for field sampling of crop yield estimation using remote sensing.The ratio of nugget variance and sill of semivariograms are 21.1% and 9.7% in the west and middle regions in Jilin Province respectively.This shows that the crop yields are spatially correlated.The degree and range of correlation are far different in the different situations.In the west test region,the range is 49.9 km and the sill is 0.00019.In the middle testre-gion,the range is 16.5 km and the sill is0.00453.The dissimilarity in the western test region is larger than that in the middle one.The range in which the correlation existed of the former is far larger than the later.Different character is tics of spatial correlation of crop yield are decided by the environmental factors.Samples for crop yield estimation should be extracted according to the characteristic of spatial distribution of crop yield to promote the efficiency of sampling. 展开更多
关键词 空间相互关系 产量 半方差图 地缘战略学家 庄稼 归一化差分植被指数 NDVI 吉林
下载PDF
The Impact of Climate Change on Crop Yields in Sub-Saharan Africa 被引量:3
20
作者 Elodie Blanc 《American Journal of Climate Change》 2012年第1期1-13,共13页
This study estimates of the impact of climate change on yields for the four most commonly grown crops (millet, maize, sorghum and cassava) in Sub-Saharan Africa (SSA). A panel data approach is used to relate yields to... This study estimates of the impact of climate change on yields for the four most commonly grown crops (millet, maize, sorghum and cassava) in Sub-Saharan Africa (SSA). A panel data approach is used to relate yields to standard weather variables, such as temperature and precipitation, and sophisticated weather measures, such as evapotranspiration and the standardized precipitation index (SPI). The model is estimated using data for the period 1961-2002 for 37 countries. Crop yields through 2100 are predicted by combining estimates from the panel analysis with climate change predictions from general circulation models (GCMs). Each GCM is simulated under a range of greenhouse gas emissions (GHG) assumptions. Relative to a case without climate change, yield changes in 2100 are near zero for cassava and range from –19% to +6% for maize, from –38% to –13% for millet and from –47% to –7% for sorghum under alternative climate change scenarios. 展开更多
关键词 CLIMATE Change crop yield ERROR CORRECTION Model
下载PDF
上一页 1 2 142 下一页 到第
使用帮助 返回顶部