期刊文献+
共找到1,829篇文章
< 1 2 92 >
每页显示 20 50 100
Mechanism of high Li-ion conductivity in poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network based electrolyte revealed by solid-state NMR
1
作者 Fan Li Tiantian Dong +5 位作者 Yi Ji Lixin Liang Kuizhi Chen Huanrui Zhang Guanglei Cui Guangjin Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期377-383,I0010,共8页
Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked pol... Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked polymers have the potential to further improve the mechanical property without trading off Li-ion conductivity.In this study,focusing on a recently developed cross-linked SPE,i.e.,the one based on poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network(PVCN),we used solid-state nuclear magnetic resonance(NMR)techniques to investigate the fundamental interaction between the chain segments and Li ions,as well as the lithium-ion motion.By utilizing homonuclear/heteronuclear correlation,CP(cross-polarization)kinetics,and spin-lattice relaxation experiments,etc.,we revealed the structural characteristics and their relations to lithium-ion mobilities.It is found that the network formation prevents poly(ethylene oxide)chains from crystallization,which could create sufficient space for segmental tumbling and Li-ion co nductio n.As such,the mechanical property is greatly improved with even higher Li-ion mobilities compared to the poly(vinylene carbonate)or poly(ethylene oxide)based SPE analogues. 展开更多
关键词 ssNMR Lithium-ion mobility cross-link Solid polymer electrolyte
下载PDF
Residual alkali-evoked cross-linked polymer layer for anti-air-sensitivity LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)cathode
2
作者 Chao Zhao Xuebao Li +7 位作者 Yun Zhao Jingjing He Yuanpeng Cao Wei Luo Ding Wang Jianguo Duan Xianshu Wang Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期450-458,共9页
High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)M... High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs. 展开更多
关键词 Lithium-ion batteries Nickel-rich layered cathode Residual alkalis cross-linked polyme rmodification Airsensitivity
下载PDF
Tuning the cross-linked structure of basic poly(ionic liquid)to develop an efficient catalyst for the conversion of vinyl carbonate to dimethyl carbonate
3
作者 Zhaoyang Qi Shiquan Zhong +4 位作者 Huiyun Su Changshen Ye Limei Ren Ting Qiu Jie Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期106-116,共11页
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ... Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC. 展开更多
关键词 Poly(ionic liquid) cross-linking degree Dimethyl carbonate production Transesterification reaction Mechanism
下载PDF
In situ formed cross-linked polymer networks as dual-functional layers for high-stable lithium metal batteries 被引量:1
4
作者 Lei Shi Wanhui Wang +7 位作者 Chunjuan Wang Yang Zhou Yuezhan Feng Tiekun Jia Fang Wang Zhiyu Min Ji Hu Zhigang Xue 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期253-262,共10页
Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability drama... Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability dramatically hinder the transformation of LMAs from laboratory to industry.Herein,an in situ formed cross-linked polymer layer on LMAs is designed and constructed by a facile thiol-acrylate click chemistry reaction between poly(ethylene glycol)diacrylate(PEGDA)and the crosslinker containing multi thiol groups under UV irradiation.Owing to the hydrophobic nature of the layer,the treated LMAs demonstrate remarkable humid stability for more than 3 h in ambient air(70%relative humidity).The coating humid-resistant protective layer also possesses a dual-functional characterization as solid polymer electrolytes by introducing lithium bis(trifluoromethanesulfonyl)imide in the system in advance.The intimate contact between the polymer layer and LMAs reduces interfacial resistance in the assembled Li/LiFePO_(4)or Li/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)full cell effectively,and endows the cell with an outstanding cycle performance. 展开更多
关键词 Lithium-metal anode Humid-resistant protective film Solid-state polymer electrolytes cross-linked polymers
下载PDF
A UV cross-linked gel polymer electrolyte enabling high-rate and high voltage window for quasi-solid-state supercapacitors 被引量:1
5
作者 Yuge Bai Chao Yang +6 位作者 Boheng Yuan Hongjie Li Weimeng Chen Haosen Yin Bin Zhao Fei Shen Xiaogang Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期41-50,I0002,共11页
Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfie... Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices. 展开更多
关键词 Gel polymer electrolyte UV cross-linking Energy density High voltage window
下载PDF
Cross-linked polyelectrolyte reinforced SnO_(2)electron transport layer for robust flexible perovskite solar cells
6
作者 Zhihao Li Zhi Wan +7 位作者 Chunmei Jia Meng Zhang Meihe Zhang Jiayi Xue Jianghua Shen Can Li Chao Zhang Zhen Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期335-342,I0010,共9页
SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and ad... SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and adhesive polyelectrolyte with ethanolamine(EA)and poly-acrylic acid(PAA).The linear PAA was crosslinked by EA,forming a 3D network that stabilized the SnO_(2)nanoparticle dispersion.An organic–inorganic hybrid ETL is developed by introducing the cross-linked PAA-EA into SnO_(2)ETL,which prevents nano particle agglomeration and facilitates uniform SnO_(2)film formation with fewer defects.Additionally,the PAA-EA-modified SnO_(2)facilitated a uniform and compact perovskite film,enhancing the interface contact and carrier transport.Consequently,the PAA-EA-modified PSCs exhibited excellent PCE of 24.34%and 22.88%with high reproducibility for areas of 0.045 and 1.00 cm~2,respectively.Notably,owing to structure reinforce effect of PAA-EA in SnO_(2)ETL,flexible device demonstrated an impressive PCE of 23.34%while maintaining 90.1%of the initial PCE after 10,000 bending cycles with a bending radius of 5 mm.This successful approach of polyelectrolyte reinforced hybrid organic–inorganic ETL displays great potential for flexible,large-area PSCs application. 展开更多
关键词 POLYELECTROLYTE cross-link Tin oxide Electron transfer layer Flexible solar cells
下载PDF
A Self-Healing and Nonflammable Cross-Linked Network Polymer Electrolyte with the Combination of Hydrogen Bonds and Dynamic Disulfide Bonds for Lithium Metal Batteries
7
作者 Kai Chen Yuxue Sun +2 位作者 Xiaorong Zhang Jun Liu Haiming Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期106-113,共8页
The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycli... The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycling performance and extending service life of LIBs.Here,we report a novel cross-linked network SHSPE(PDDP)containing hydrogen bonds and dynamic disulfide bonds with excellent self-healing properties and nonflammability.The combination of hydrogen bonding between urea groups and the metathesis reaction of dynamic disulfide bonds endows PDDP with rapid self-healing capacity at 28°C without external stimulation.Furthermore,the addition of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(EMIMTFSI)improves the ionic conductivity(1.13×10^(−4)S cm^(−1)at 28°C)and non-flammability of PDDP.The assembled Li/PDDP/LiFePO_(4)cell exhibits excellent cycling performance with a discharge capacity of 137 mA h g^(−1)after 300 cycles at 0.2 C.More importantly,the self-healed PDDP can recover almost the same ionic conductivity and cycling performance as the original PDDP. 展开更多
关键词 cross-linked network dynamic disulfide bonds lithium-ion batteries NONFLAMMABLE self-healing solid polymer electrolytes
下载PDF
Self-Cross-Linked Tannin-Aminated Tannin Surface Coatings for Particleboard
8
作者 Bengang Zhang Antonio Pizzi +2 位作者 Mathieu Petrissans Anelie Petrissans Colin Baptiste 《Journal of Renewable Materials》 EI 2023年第12期4097-4121,共25页
Aminated tannins were prepared by reacting mimosa condensed tannin extract with ammonia yielding the substitution of many,if not all of the tannin hydroxyl groups with–NH_(2)groups.A tannin-aminated tannin(ATT)partic... Aminated tannins were prepared by reacting mimosa condensed tannin extract with ammonia yielding the substitution of many,if not all of the tannin hydroxyl groups with–NH_(2)groups.A tannin-aminated tannin(ATT)particleboard coating was then prepared by reacting raw tannin extract with aminated tannin extract and thus cross-linking the two by substituting tannin’s hydroxyl groups with the–NH_(2)groups on the aminated tannin to form–NH-bridges between the two.The resulting particleboard coating gave encouraging results when pressed at 180℃for 3 min.Conversely,the system in which tannin was reacted/cross-liked with urea(ATU)by a similar amination reaction did not perform as well as the ATT system,and this even when a higher curing temperature and longer hot press time were used.In particular its water repellence was worse probably due to the presence of urea and such a system with lower reactivity.Nonetheless,substituting the tannin–OHs with the urea–NH_(2)groups appeared to also take place.ATT gave better results than ATU as regards water repellence and mechanical resistance as shown by the cross cut test.The ATT system was shown to be between 95%and 98%biosourced.The difference appeared to be due,by TMA analysis,to the much faster formation of the ATT hardened network leading to a better cross-linked polymer coating.The chemical species formed for both the ATT and ATU system were studied by MALDI ToF and CP MAS^(13)C NMR. 展开更多
关键词 Biocoatings PARTICLEBOARD aminated tannin cross-linked tannin-aminated tannin tannin-urea cross links water repellence cross cut test MALDI ToF ^(13)C NMR
下载PDF
Study on Biocompatibility of Cross-linked Hyaluronic Acid Derivatives 被引量:2
9
作者 LIU Xin HU Guo-ying GU Han-qing 《Chinese Journal of Biomedical Engineering(English Edition)》 2009年第3期93-101,共9页
Objective:The cross-linked production,which was prepared by HA and cross-linking agent STMP,EDC,GP through cross-linking reaction,might be used in drug delivery system(DDS).To ensure the security of clinical applicati... Objective:The cross-linked production,which was prepared by HA and cross-linking agent STMP,EDC,GP through cross-linking reaction,might be used in drug delivery system(DDS).To ensure the security of clinical application,the excellent properties such as none cell toxicity,nonirritant,none general toxicity,none immunological rejection are necessary.Methods:In accordance with the request of GB/T 16886.1 on security evaluation of medical biomaterials,cell toxicity test,hemolysis test,intracutaneous stimulation test,acute toxicity test,and hypersensitive test were required.Results:Cell toxicity of HA-STMP,HA-EDC,HA-GP were all less than 1.All hypersensitive tests were eligible.But HA-EDC,HA-GP produced different degrees of slight thrill,slight toxicity,hemolysis rate,which were larger than the standard value.Conclusion:HA-STMP possesses favourable biocompatibility,which is a kind of ideal biomaterials and drug carriers. 展开更多
关键词 hyaluronan (HA) cross-linked production BIOcompatibilITY
下载PDF
Early changes in corneal densitometry after FS-LASIK combined with accelerated corneal cross-linking for correction of high myopia
10
作者 Qing-Bao Wang Hong-Sheng Bi +3 位作者 Xiao-Fan Wang Hua Fan Li Li Peng Ji 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1307-1312,共6页
AIM:To observe the effects of femtosecond laserassisted excimer laser in situ keratomileusis combined with accelerated corneal cross-linking(FS-LASIK Xtra)on corneal densitometry after correcting for high myopia.METHO... AIM:To observe the effects of femtosecond laserassisted excimer laser in situ keratomileusis combined with accelerated corneal cross-linking(FS-LASIK Xtra)on corneal densitometry after correcting for high myopia.METHODS:In this prospectively study,130 patients underwent FS-LASIK or FS-LASIK Xtra for high myopia.Their right eyes were selected for inclusion in the study,of which 65 cases of 65 eyes in the FS-LASIK group,65 patients with 65 eyes in the FS-LASIK Xtra group.Patients were evaluated for corneal densitometry at 1,3,and 6mo postoperatively using Pentacam Scheimpflug imaging.RESULTS:Preoperative differences in corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups in different ranges were not statistically significant(P>0.05).Layer-by-layer analysis revealed statistically significant differences in the anterior(120μm),central,and total layer corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups at 1 and 3mo postoperatively(all P<0.05),the FS-LASIK Xtra group is higher than that of the FS-LASIK group.Analysis of different diameter ranges showed statistically significant differences between the FS-LASIK group and the FS-LASIK Xtra group at 1mo postoperatively in the ranges of 0–2,2–6,and 6–10 mm(both P<0.05);At 3mo postoperatively,the FS-LASIK Xtra group is higher than that of the FS-LASIK group in the ranges of 0–2 and 2–6 mm(P<0.05).At 6mo postoperatively,there were no statistically significant differences in corneal densitometry between the FS-LASIK group and the FS-LASIK Xtra group in different diameter ranges(all P>0.05).CONCLUSION:There is an increase in internal corneal densitometry during the early postoperative period after FS-LASIK Xtra for correction of high myopia.However,the densitometry values decreased to the level of conventional FS-LASIK at 6mo after surgery,with the most significant changes observed in the superficial central zone. 展开更多
关键词 femtosecond laser accelerated corneal cross-linking corneal densitometry high myopia femtosecond laser in situ keratomileusis
原文传递
EFFECTS OF COMPATIBILIZERS ON THE MECHANICAL PROPERTIES OF LOW DENSITY POLYETHYLENE/LIGNIN BLENDS 被引量:2
11
作者 张琴 傅强 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2009年第6期833-842,共10页
Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA)... Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA) which is harder than LDPE were used to improve the interfacial adhesion.Scanning electron microscope(SEM) was used to investigate the dispersion of lignin in LDPE matrix.The results showed that both of the compatibilizers could improve the interaction between the low density polyethylene and l... 展开更多
关键词 Low density polyethylene(LDPE) LIGNIN compatibilizerS Mechanical properties BLENDS
下载PDF
Starch-g-poly (vinyl alcohol) as Compatibilizer for Reducing the Phase Separation Rates of Polyvinyl Alcohol/Cornstarch Pastes 被引量:2
12
作者 Zhu Zhifeng(祝志峰) ZhouYongyuan(周永元) 《Journal of Donghua University(English Edition)》 EI CAS 2001年第3期38-41,共4页
Starch- g-poly(vinyl alcohol) as a compatibilizing agent for reducing the phase separation rates of polyvinyl alcohol/starch pastes has been investigated by blending and dissolving the two polymers in distilled water.... Starch- g-poly(vinyl alcohol) as a compatibilizing agent for reducing the phase separation rates of polyvinyl alcohol/starch pastes has been investigated by blending and dissolving the two polymers in distilled water. The separation rates were quantitatively evaluated by the term of initiul demixing time. The grafted starches, with a series of grafting ratios, were prepared by grafting a number of vinyl acetate onto granular cornstarch in aqueous dispersion and then alcoholating in methanol. It was found that the addition of small amounts of starch- g poly (vinyl alcohol ) in the size compositions can effectively decrease the separation rates of the blended pastes in comparison to pure starch/PVA ones.Moreover, the influence of the grafting ratio, starch content, and PVA variety on the separation rates was also studied. 展开更多
关键词 WARP size compatibilizer phase separation starch polyvinyl alcohol.
下载PDF
Study on the Soy Protein-Based Adhesive Cross-Linked by Glyoxal 被引量:6
13
作者 Zhigang Wu Jiankun Liang +3 位作者 Hong Lei Bengang Zhang Xuedong Xi Lifen Li 《Journal of Renewable Materials》 SCIE EI 2021年第2期205-218,共14页
Based on the ESI-MS and ^(13)C-NMR analysis of the forms of glyoxal in acidic and alkaline solutions,the soy-based adhesive cross-linked by glyoxal was prepared in this work.The results showed that glyoxal existed in ... Based on the ESI-MS and ^(13)C-NMR analysis of the forms of glyoxal in acidic and alkaline solutions,the soy-based adhesive cross-linked by glyoxal was prepared in this work.The results showed that glyoxal existed in water in different forms at different pH levels.Under alkaline conditions,glyoxal transformed to glycolate through the intramolecular disproportionation reaction.Under acidic conditions,although some of glyoxal transformed to glycolate as what happened under alkaline conditions,most of glyoxal molecules existed in the form of fiveor six-membered cyclic ether structure.No ethylene tetraol or free aldehyde group was actually detected under these conditions.Although glyoxal reacted with soy protein under both acidic and alkaline conditions,alkaline conditions were more favorable for the improvement of mechanical performance and water resistance of soybased adhesives than acid conditions. 展开更多
关键词 GLYOXAL soy protein-based adhesive cross-link
下载PDF
Applications of Crown Ether Cross-Linked Chitosan for the Analysis of Lead and Cadmium in Environmental Water Samples 被引量:6
14
作者 Tang Yu-rong Zhang Shu-qin +1 位作者 Wang Yu-ting Feng Xue-song 《Wuhan University Journal of Natural Sciences》 CAS 2002年第2期217-221,共5页
A new type of crown ether cross-linked chitosan was synthesized by the reaction of chitosan with 4,4′-dibromodibenzo-18-crown-6 (Br-DBC). Its token structure was analyzed with FT-IR and NMR and the adsorption behavio... A new type of crown ether cross-linked chitosan was synthesized by the reaction of chitosan with 4,4′-dibromodibenzo-18-crown-6 (Br-DBC). Its token structure was analyzed with FT-IR and NMR and the adsorption behaviors for lead and cadmium in environmental water samples by FAAS were studied. In addition the best analysis conditions were discussed and the adsorption mechanism was explained. As the enrichment factor is above 100, both recoveries are 94%–106%, the detection limits of lead and cadmium are 0.5μg·L?1 and 0.04 μg·L?1 and the relatively standard deviations of lead and cadmium are 3.1% and 2.8% respectively, this new method was successfully applied to the determination of environmental water samples. This method is fast and simple and it greatly enhances the determination ability of FAAS for lead and cadmium. 展开更多
关键词 Crown ether cross-linked chitosan lead and cadmium ADSORPTION FAAS
下载PDF
Adsorptive Removal of Copper Ions from Aqueous Solution Using Cross-linked Magnetic Chitosan Beads 被引量:13
15
作者 黄国林 杨婥 +1 位作者 章凯 SHI Jeffrey 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第6期960-966,共7页
The performance of cross-linked magnetic chitosan, coated with magnetic fluids and cross-linked with ePichlorohydrin, was investigated for the adsorption of Copper (Ⅱ) from aqueous solutions. Infrared spectra of ch... The performance of cross-linked magnetic chitosan, coated with magnetic fluids and cross-linked with ePichlorohydrin, was investigated for the adsorption of Copper (Ⅱ) from aqueous solutions. Infrared spectra of chitosan before and after modification showed that the coating and cross-linking are effective. Experiments were performed at different pH of solution and contact time, and appropriate conditions for the adsorption of Cu(Ⅱ) were determined. Experimental equilibrium data were correlated with Langmuir and Freundlich isotherms for determination of the adsorption potential. The results showed that the Langmuir isotherm was better compared with the Freundlich isotherm, and the uptake of Cu(Ⅱ) was 78.13 mg·g^- 1. The kinetics of adsorption corresponded with the first-order Langergren rate equation, and Langergren rate constants were determined. 展开更多
关键词 adsorption of copper (Ⅱ) cross-linked magnetic chitosan Langmuir isotherm Langergren rate equation
下载PDF
Simultaneously enhanced moisture tolerance and defect passivation of perovskite solar cells with cross-linked grain encapsulation 被引量:3
16
作者 Ke Xiao Qiaolei Han +6 位作者 Yuan Gao Shuai Gu Xin Luo Renxing Lin Jia Zhu Jun Xu Hairen Tan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期455-462,共8页
The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achi... The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achieving simultaneously defect passivation and grain protection from moisture is crucial for the viability of perovskite solar cells.Here,an in situ cross-linked grain encapsulation(CLGE)strategy that improves both device stability and defect passivation is reported.Cross-linkable semiconducting small molecules are mixed into the antisolvent to uniformly form a compact and conducting cross-linked layer over the grain surfaces.This cross-linked coating layer not only passivates trap states and facilitates hole extraction,but also enhances the device stability by preventing moisture diffusion.Using the CLGE strategy,a high power conversion efficiency(PCE)of 22.7%is obtained in 1.55-eV bandgap planar perovskite solar cells.The unencapsulated devices with CLGE exhibit significantly enhanced device stability again moisture and maintain>90%of their initial PCE after shelf storage under ambient condition for over10,000 h. 展开更多
关键词 Perovskite solar cell cross-link Defect passivation Stability Moisture tolerance
下载PDF
Study of action mechanisms and properties of Cr^(3+) cross-linked polymer solution with high salinity 被引量:8
17
作者 Lu Xiangguo Liu Jinxiang +2 位作者 Wang Rongjian Liu Yigang Zhang Song 《Petroleum Science》 SCIE CAS CSCD 2012年第1期75-81,共7页
Performance characteristics of partially hydrolyzed polyacrylamide (HPAM) and cross- linked polymer (CLP, Cr^3+ as the cross linker) solutions have been investigated. A Brookfield viscometer, rheometer, dynamic l... Performance characteristics of partially hydrolyzed polyacrylamide (HPAM) and cross- linked polymer (CLP, Cr^3+ as the cross linker) solutions have been investigated. A Brookfield viscometer, rheometer, dynamic light scattering system, and core flow device have been used to measure the viscosity, viscoelasticity, polymer coil dimensions, molecular configuration, flow characteristics, and profile modification. The results show that, under conditions of high salinity and low HPAM and Cr^3+ concentrations, cross-linking mainly occurred between different chains of the same HPAM molecule in the presence of Cr^3+, and a cross-linked polymer (CLP) system with a local network structure was formed. Compared with an HPAM solution of the same concentration, the apparent viscosity of the CLP solution increased slightly or remained almost unchanged, but its viscoelasticity (namely storage modulus, loss modulus, and first normal stress difference) increased, and the resistance coefficient and residual resistance coefficient increased significantly. This indicates that the CLP solution exhibits a strong capability to divert the sequentially injected polymer flood from high-permeability zones to low- permeability zones in a reservoir. Under the same HPAM concentration conditions, the dimensions of polymer coils in the CLP solution increased slightly compared with the dimensions of polymer coils in HPAM solution, which were smaller than the rock pores, indicating that the cross-linked polymer solution was well adapted to reservoir rocks. Core flood experiments show that at the same cost of reagent, the oil recovery by CLP injection (HPAM-1, Cr^3+ as the cross linker) is 3.1% to 5.2% higher than that by HPAM- 2 injection. 展开更多
关键词 cross-linked polymer solution apparent viscosity VISCOELASTICITY polymer coil dimension molecular configuration flow characteristics profile modification
下载PDF
Cross-Linked Hollow Graphitic Carbon as Low-Cost and High-Performance Anode for Potassium Ion Batteries 被引量:5
18
作者 Yanhong Feng Suhua Chen +2 位作者 Dongyang Shen Jiang Zhou Bingan Lu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第3期451-457,共7页
Large-scale and low-cost preparation of carbon-based potassium anode with long life and high capacity is one of the footstones for the development of potassium ion batteries(PIBs).Herein,a low-cost carbon-based materi... Large-scale and low-cost preparation of carbon-based potassium anode with long life and high capacity is one of the footstones for the development of potassium ion batteries(PIBs).Herein,a low-cost carbon-based material,cross-linked hollow graphitic carbon(HGC),is large scale synthesized to apply for PIBs anode.Its hollow structure can afford sufficient space to overcome the damage caused by the volume expansion of graphitic carbon(GC).While the cross-linked structure forms a compact interconnection network that allows electrons to rapid transfer between different GC frameworks.Electrochemical measurements demonstrated that the HGC anode exhibited low charge/discharge plateau(about 0.25 V and 0.1 V)and excellent specific capacity as high as 298 m A h g^(-1)at the current density of 50 m A g^(-1).And more important,after 200 cycles the capacity of HGC anode still shows 269 m A h g^(-1)(the decay rate of per cycle is only 0.048%).Meanwhile,the use of commercial traditional electrolyte(KPF_(6))and cheap raw materials that provide new hope for trying and realizing the large-scale production of PIBs based on carbon anode materials. 展开更多
关键词 cross-linked hollow structure graphitic material high reversibility potassium ion battery
下载PDF
Study on the Structure of Peroxide Cross-Linked Polyethylene Pipes with Several Stabilizers 被引量:4
19
作者 Hideo Hirabayashi Akinori Iguchi +3 位作者 Kazushi Yamada Hiroyuki Nishimura Kazuhisa Ikawa Hidekazu Honma 《Materials Sciences and Applications》 2013年第9期497-503,共7页
Cross-linked polyethylene (PEX) pipes used in hot water supply are required for high mechanical strength and high creep resistance at high temperature. Especially PEX-a pipes which are made by peroxide cross-linking h... Cross-linked polyethylene (PEX) pipes used in hot water supply are required for high mechanical strength and high creep resistance at high temperature. Especially PEX-a pipes which are made by peroxide cross-linking have better performance, such as creep resistance and thermal shock resistance than the pipes made by the other cross-linking method. Because the PEX-a pipes indicate the higher cross-link degree as compared with the other PEX pipes. In this study, the PEX-a pipes which were mixed with several stabilizers were tested to evaluate the effects on cross-link degree and the oxygen induction time. And also they are evaluated with the chlorine aqueous solution by the performance of the long-term hydrostatic pressure test and the long-term hydro dynamic pressure test. As a result, it was found that the combination of antioxidants for PEX-a pipes plays an important role to prolong the oxygen induction time without inhibiting the cross-linking. From the results of the 1H pulsed NMR measurement over the melting point of polyethylene, it was found that each peroxide PEX pipe with different antioxidant combinations indicated the different proportion and crosslink density of cross-linked region, in addition, that these pipes had the effective structure of cross-linking for the hydrostatic and hydrodynamic pressure test with the chlorine aqueous solution. Therefore, it was considered to be useful results for studies of the stricture of cross-linking of polyethylene. 展开更多
关键词 cross-linked Polyethylene PEX-a PEROXIDE STRUCTURE of cross-linking
下载PDF
Effectiveness of Compatibilizer on Mechanical Properties of Recycled PET Blends with PE, PP, and PS 被引量:2
20
作者 Nobuyuki Imamura Hiroki Sakamoto +5 位作者 Yuji Higuchi Hiroyuki Yamamoto Shinichi Kawasaki Kazushi Yamada Hiroyuki Nishimura Takahiro Nishino 《Materials Sciences and Applications》 2014年第8期548-555,共8页
Recycled PET (R-PET) is well known to exhibit brittle behavior in the presence of notches and indicated the low heat distortion temperature. In addition, it is hard to prevent some impurities such as cap or label of t... Recycled PET (R-PET) is well known to exhibit brittle behavior in the presence of notches and indicated the low heat distortion temperature. In addition, it is hard to prevent some impurities such as cap or label of the bottle that mixed into R-PET during the recycling process. In this paper, the effect of the amounts and kinds of compatibilizers on the morphological characteristics and mechanical performance of recycled poly(ethylene terephthalate) (R-PET) compounded with polyethylene (PE), polypropylene (PP), and polystyrene (PS) was investigated. From the results, with an increase in the glycidyl methacrylate modified PE (EGMA) additive contents, in the increment of the Izod impact strength of Composite-G was obtained. In addition, it was found that the miscibility of Composite-G was improved with increasing the amount of EGMA, which indicated from the result of SEM images. 展开更多
关键词 Component Recycled PET Recycled POLYPROPYLENE Recycled POLYETHYLENE compatibilizer
下载PDF
上一页 1 2 92 下一页 到第
使用帮助 返回顶部