期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Achieving High Strength and Tensile Ductility in Pure Nickel by Cryorolling with Subsequent Low-Temperature Short-Time Annealing
1
作者 Zhide Li Hao Gu +2 位作者 Kaiguang Luo Charlie Kong Hailiang Yu 《Engineering》 SCIE EI CAS CSCD 2024年第2期190-203,共14页
Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel... Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel sheets combining high strength with good ductility.The results show that,for different cryorolling strains,the uniform elongation was greatly increased without sacrificing the strength after annealing.A yield strength of 607 MPa and a uniform elongation of 11.7%were obtained after annealing at a small cryorolling strain(ε=0.22),while annealing at a large cryorolling strain(ε=1.6)resulted in a yield strength of 990 MPa and a uniform elongation of 6.4%.X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),and electron backscattered diffraction(EBSD)were used to characterize the microstructure of the specimens and showed that the high strength could be attributed to strain hardening during cryorolling,with an additional contribution from grain refinement and the formation of dislocation walls.The high ductility could be attributed to annealing twins and micro-shear bands during stretching,which improved the strain hardening capacity.The results show that the synergistic effect of strength and ductility can be regulated through low-temperature short-time annealing with different cryorolling strains,which provides a new reference for the design of future thermo-mechanical processes. 展开更多
关键词 cryorolling ANNEALING NICKEL Strain hardening DUCTILITY
下载PDF
Microstructures and impact toughness behavior of Al 5083 alloy processed by cryorolling and afterwards annealing 被引量:12
2
作者 Dharmendra Singh P.Nageswara Rao R.Jayaganthan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第8期759-769,共11页
The influence of rolling at liquid nitrogen temperature and annealing on the microstructure and mechanical properties of Al 5083 alloy was studied in this paper. Cryorolled samples of Al 5083 show significant improvem... The influence of rolling at liquid nitrogen temperature and annealing on the microstructure and mechanical properties of Al 5083 alloy was studied in this paper. Cryorolled samples of Al 5083 show significant improvements in strength and hardness. The ultimate tensile strength increases up to 340 MPa and 390 MPa for the 30% and 50% cryorolled samples, respectively. The cryorolled samples, with 30% and 50% reduction, were subjected to Charpy impact testing at various temperatures from 190℃ to 100℃. It is observed that increasing the percentage of reduction of samples during cryorolling has significant effect on decreasing impact toughness at all temperatures by increasing yield strength and decreasing ductility. Annealing of samples after cryorolling shows remarkable increment in impact toughness through recovery and recrystallization. The average grain size of the 50% cryorolled sample (14 μm) after annealing at 350℃ for 1 h is found to be finer than that of the 30% cryorolled sample (25 μm). The scanning electron microscopy (SEM) analysis of fractured surfaces shows a large-size dimpled morphology, resembling the ductile fracture mechanism in the starting material and fibrous structure with very fine dimples in cryorolled samples corresponding to the brittle fracture mechanism. 展开更多
关键词 aluminum alloys cryorolling ANNEALING microstructure impact toughness recovery RECRYSTALLIZATION
下载PDF
Microstructure evolution and mechanical properties of Al−3.6Cu−1Li alloy via cryorolling and aging 被引量:10
3
作者 Chang LI Han-qing XIONG +5 位作者 Laxman BHATTA Lin WANG Zhao-yang ZHANG Hui WANG Charlie KONG Hai-liang YU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期2904-2914,共11页
An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the ro... An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the room temperature-rolled and the cryorolled alloys with 70%and 90%of thickness reductions were studied by microstructure analysis and mechanical tests.The samples subjected to cryorolling with 90%of thickness reduction have high strength and good toughness.This is mainly due to the inhibition of dynamic recovery and the accumulation of high-density dislocations in cryorolled samples.In addition,the artificial aging reveals that the temperature at which peak hardness is attained is inversely proportional to the deformation amount and directly proportional to the rolling temperature.Moreover,bright field images of cryorolled samples after aging indicate the existence of T1(Al2CuLi)precipitates.This suggests that the high stored strain energy enhances the aging kinetics of the alloy,which further promotes the nucleation of T1 phases. 展开更多
关键词 Al−Cu−Li alloy cryorolling AGING precipitation strengthening mechanical property
下载PDF
Fabrication of ultrafine-grained AA1060 sheets via accumulative roll bonding with subsequent cryorolling 被引量:7
4
作者 Qing-lin DU Chang LI +2 位作者 Xiao-hui CUI Charlie KONG Hai-liang YU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3370-3379,共10页
Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples wer... Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples were examined via transmission electron microscopy,and their mechanical properties were measured via tensile and microhardness testing.Results indicate that ultrafine grains in ARB-processed sheets were further refined by subsequent rolling,and the grain size became finer with reducing rolling temperature.The mean grain size of 666 nm in the sheets subjected to ARB was refined to 346 or 266 nm,respectively,via subsequent cold rolling or cryorolling(83 K).Subsequent cryorolling resulted in ultrafine-grained sheets of higher strength and ductility than those of the sheets subjected to cold rolling. 展开更多
关键词 microstructure AA1060 sheet ultrafine-grained materials cryorolling accumulative roll bonding
下载PDF
High strength and high electrical conductivity CuMg alloy prepared by cryorolling 被引量:6
5
作者 Yun-xiang TONG Si-yuan LI +2 位作者 Dian-tao ZHANG Li LI Yu-feng ZHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第3期595-600,共6页
The microstructure, mechanical properties and electrical conductivity of the room-temperature and cryogenically rolled Cu-0.2wt.%Mg alloy were investigated by transmission electron microscopy (TEM), electron backscatt... The microstructure, mechanical properties and electrical conductivity of the room-temperature and cryogenically rolled Cu-0.2wt.%Mg alloy were investigated by transmission electron microscopy (TEM), electron backscattered diffraction (EBSD), hardness measurement, tensile tests and electrical conductivity measurement. The results show that for the cryorolled sample, the grain size is decreased by 41% compared with the sample processed at room temperature. With increasing thickness reduction, the microhardness of the alloy continuously increases and the electrical conductivity decreases. For the sample with 90% thickness reduction rolled at cryogenic temperature, the tensile strength and the electrical conductivity are 726 MPa and 74.5% IACS, respectively. The improved tensile strength can be mainly attributed to the grain boundaries strengthening and dislocation strengthening. 展开更多
关键词 CuMg alloy cryorolling mechanical properties grain size TWIN
下载PDF
Effect of cryorolling on microstructure and property of high strength and high conductivity Cu−0.5wt.%Cr alloy 被引量:7
6
作者 Peng-chao ZHANG Jie-fu SHI +2 位作者 Ying-shui YU Jun-cai SUN Ting-ju LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第9期2472-2479,共8页
Cu−0.5wt.%Cr alloy with high strength and high conductivity was processed by cryorolling(CR)and room temperature rolling(RTR),respectively.The microstructure,mechanical property and electrical conductivity of Cu−0.5Cr... Cu−0.5wt.%Cr alloy with high strength and high conductivity was processed by cryorolling(CR)and room temperature rolling(RTR),respectively.The microstructure,mechanical property and electrical conductivity of Cu−0.5Cr alloy after CR/RTR and aging treatment were investigated.The results indicate that obvious dislocation entanglement can be observed in matrix of CR alloy.The Cr particles in the alloy after CR and aging treatment possess finer particle size and exhibit dispersive distribution.The peak hardness of CR alloy is HV 167.4,significantly higher than that of RTR alloy.The optimum mechanical property of CR alloy is obtained after aging at 450℃ for 120 min.The conductivity of CR Cu−0.5Cr alloy reaches 92.5%IACS after aging at 450℃ for 120 min,which is slightly higher than that of RTR alloy. 展开更多
关键词 Cu−Cr alloy cryorolling microstructure mechanical property electrical conductivity
下载PDF
Preparation of high-mechanical-property medium-entropy CrCoNi alloy by asymmetric cryorolling 被引量:3
7
作者 Yu-ze WU Zhao-yang ZHANG +5 位作者 Juan LIU Charlie KONG Yu WANG Puneet TANDON Alexander PESIN Hai-liang YU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第5期1559-1574,共16页
In order to obtain good strength−plasticity synergy for a medium entropy alloy(MEA)CrCoNi,cold rolling,asymmetric rolling,cryorolling and asymmetric-cryorolling with subsequent annealing at different temperatures were... In order to obtain good strength−plasticity synergy for a medium entropy alloy(MEA)CrCoNi,cold rolling,asymmetric rolling,cryorolling and asymmetric-cryorolling with subsequent annealing at different temperatures were conducted.The results showed that the asymmetric-cryorolled alloy achieved a high strength of over 1.6 GPa.After annealing at 1073 K,it retained a high strength of~1 GPa while the elongation reached nearly 60%.After annealing,the heterogeneous characteristics were formed in asymmetric-cryorolled samples,which were found to be more distinct than those of the samples subjected to asymmetric rolling.This resulted in the generation of high strength and ductility. 展开更多
关键词 medium entropy alloy heterogeneous structure ANNEALING mechanical properties asymmetric cryorolling
下载PDF
Corrosion behavior of ultrafine-grained AA2024 aluminum alloy produced by cryorolling 被引量:1
8
作者 P. Laxman Mani Kanta V.C. Srivastava +5 位作者 K. Venkateswarlu Sharma Paswan B. Mahato Goutam Das K. Sivaprasad K. Gopala Krishna 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第11期1293-1305,共13页
The objectives of this study were to produce ultrafine-grained(UFG) AA2024 aluminum alloy by cryorolling followed by aging and to evaluate its corrosion behavior. Solutionized samples were cryorolled to ~85% reduction... The objectives of this study were to produce ultrafine-grained(UFG) AA2024 aluminum alloy by cryorolling followed by aging and to evaluate its corrosion behavior. Solutionized samples were cryorolled to ~85% reduction in thickness. Subsequent aging resulted in a UFG structure with finer precipitates of Al_2CuMg in the cryorolled alloy. The(1) solutionized and(2) solutionized and cryorolled samples were uniformly aged at 160°C/24 h and were designated as CGPA and CRPA, respectively; these samples were subsequently subjected to corrosion studies. Potentiodynamic polarization studies in 3.5 wt% NaCl solution indicated an increase in corrosion potential and a decrease in corrosion current density for CRPA compared to CGPA. In the case of CRPA, electrochemical impedance spectroscopic studies indicated the presence of two complex passive oxide layers with a higher charge transfer resistance and lower mass loss during intergranular corrosion tests. The improved corrosion resistance of CRPA was mainly attributed to its UFG structure, uniform distribution of fine precipitates, and absence of coarse grain-boundary precipitation and associated precipitate-free zones as compared with the CGPA alloy. 展开更多
关键词 AA2024 alloy cryorolling ULTRAFINE grains precipitation corrosion behavior
下载PDF
Microstructure and texture evolution of Cu-Cr-Co-Ti alloys during the two-stage cryorolling
9
作者 Jia-Jun Zhang Long-Jian Li +5 位作者 Zhi-Feng Liu Zong-Ning Chen En-Yu Guo Hui-Jun Kang Ren-Geng Li Tong-Min Wang 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4535-4547,共13页
This study entailed an investigation of the mechanical properties,microstructural and texture orientation evolutions of Cu-Cr-Co-Ti alloys prepared via twostage cryorolling and intermediate aging treatment.To this end... This study entailed an investigation of the mechanical properties,microstructural and texture orientation evolutions of Cu-Cr-Co-Ti alloys prepared via twostage cryorolling and intermediate aging treatment.To this end,X-ray diffraction and electron backscatter diffraction were employed.The results indicate that the two-stage cryorolling and intermediate aging treatments led to the development of profuse twin bundles and significantly enhanced the mechanical properties.The initial cryorolling led to coplanar slip and developed a strong Y({111}<112>)orientation,accelerating the formation of Goss({011}<100>)orientation and a Brass-type texture.The intermediate aging treatment relieved the restriction on dislocation slip and reoriented the grains toward the Copper({112}<111>)and Z({111}<110>)orientations.The Z orientation,with a relatively high volume fraction,dominated the macrotexture.Secondary cryorolling intensified twinning and shear banding,transforming the Copper-type shear bands into Brass-type shear bands with rhomboidal prism morphology.The areas inside the Brasstype shear bands exhibited a Y orientation,and the areas outside the shear bands exhibited a stable Brass-type texture.The evident decrease in the weighted Schmid factors demonstrated that the two-stage cryorolling and intermediate aging treatment can modify the texture evolution and aid the design of high-performance Cu alloys. 展开更多
关键词 Copper alloys Two-stage cryorolling Macrotexture evolution Electron backscatter diffraction Schmid factor
原文传递
Effect of Post Cryorolling Treatments on Microstructural and Mechanical Behaviour of Ultrafine Grained Al-Mg-Si Alloy 被引量:8
10
作者 P.Nageswara rao Dharmendra Singh R.Jayaganthan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第10期998-1005,共8页
To investigate the effect of post cryorolling treatments on simultaneous enhancement in strength and ductility of ultrafine grained material (UFG), AI 6061 alloy was subjected to cryorolling followed by warm rolling... To investigate the effect of post cryorolling treatments on simultaneous enhancement in strength and ductility of ultrafine grained material (UFG), AI 6061 alloy was subjected to cryorolling followed by warm rolling (CR + WR) and compared with cryorolling followed by short annealing (CR + SA) at the same temperature. Transmission electron microscopy (TEM) was used to characterize the microstructural features of the processed material. The mechanical properties were investigated through Vickers hardness testing and tensile testing at room temperature. TEM, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were used to investigate the precipitation evolution in UFG material. Results indicated that the alloy subjected to CR + WR has shown improved mechanical properties (114 HV, ultimate tensile strength (UTS): 350 MPa) as compared to that in the case of CR + SA (105 HV, UTS: 285 MPa). The size of the precipitates observed in CR + WR sample after peak ageing treatment is finer than that of peak aged CR + SA sample. The UTS of peak aged CR + WR sample (UTS: 390 MPa) was found to be higher than that of peak aged CR + SA sample (UTS: 355 MPa), without decrease in ductility. 展开更多
关键词 Aluminium alloy cryorolling Warm rolling Short annealing Mechanical properties Differential scanning calorimetry (DSC)
原文传递
Fabrication and Characterization of High-Bonding-Strength Al/Ti/Al-Laminated Composites via Cryorolling 被引量:2
11
作者 Juan Liu Yuze Wu +5 位作者 Lin Wang Hui Wang Charlie Kong Alexander Pesin Alexander PZhilyaev Hailiang Yu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第6期871-880,共10页
Sandwich-like Al/Ti/Al-laminated composites have many advantages such as low density and high specific strength with value in mechanical manufacturing and aerospace engineering. Here, Al/Ti/Al-laminated composites wer... Sandwich-like Al/Ti/Al-laminated composites have many advantages such as low density and high specific strength with value in mechanical manufacturing and aerospace engineering. Here, Al/Ti/Al-laminated composites were fabricated by hot roll bonding and subsequent processes: cryorolling(-190 ℃ and-100 ℃), cold rolling(25 ℃), and hot rolling(300 ℃). Their bonding strength and mechanical properties were then studied by an Autograph AGS-X universal electronic testing machine. The results show that cryorolling can improve the interface bonding strength and tensile strength of Al/Ti/Allaminated composites. For the Al/Ti/Al-laminated composites subjected to cryorolling at-100 ℃, they have the highest strength near 260 MPa—this is 48 MPa and 41 MPa higher than the laminated composites subjected to cold and hot rolling, respectively. These results also show the strongest peeling strength. Finally, the mechanisms of the enhancement of bonding strength and mechanical properties of Al/Ti/Al-laminated composites subjected to cryorolling were mainly discussed. 展开更多
关键词 Laminated composites cryorolling Bonding strength Peeling strength Mechanical property Bonding mechanism
原文传递
Enhanced Mechanical Properties of AA5083 Matrix Composite via Introducing Al_(0.5)CoCrFeNi Particles and Cryorolling 被引量:1
12
作者 Hao Gu Zhide Li +5 位作者 Kaiguang Luo Laxman Bhatta Hanqing Xiong Yun Zhang Charlie Kong Hailiang Yu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第6期879-889,共11页
High-entropy alloy particles(HEAPs)can markedly enhance the mechanical properties of metal matrix composites(MMCs).In this study,AA5083/Al_(0.5) CoCrFeNi HEAPs MMCs with diff erent HEAPs contents(0,1,and 3 wt%)were pr... High-entropy alloy particles(HEAPs)can markedly enhance the mechanical properties of metal matrix composites(MMCs).In this study,AA5083/Al_(0.5) CoCrFeNi HEAPs MMCs with diff erent HEAPs contents(0,1,and 3 wt%)were prepared via a stir-casting,and then these MMCs sheets were hot rolled(573 K)and cryorolled(77 K),respectively.The mechanical properties of the MMCs sheets were measured by tensile testing and microhardness test.Additionally,their microstructures were analyzed by scanning electron microscopy and transmission electron microscopy.Results revealed that the ultimate tensile strength(UTS)of the as-cast AA5083/Al_(0.5) CoC rF eN i HEAPs MMCs were improved from 203 to 257 MPa by adding 3 wt%HEAPs.And the mechanical properties of the MMCs sheets were improved after cryorolling.After cryorolling with 50%rolling reduction ratio,the MMCs with 1 wt%HEAPs had an UTS of 382 MPa,which was 1.9 times that of the MMCs before rolling.Finally,the strengthening mechanisms of HEAPs and cryorolling on the AA5083/HEAPs MMCs were discussed. 展开更多
关键词 Metal matrix composite cryorolling Mechanical properties High-entropy alloy particle
原文传递
Effect of deformation temperature on precipitation, microstructural evolution, mechanical and corrosion behavior of 6082 Al alloy 被引量:5
13
作者 NikhilKUMAR R.JAYAGANTHAN Heinz-GünterBROKMEIER 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第3期475-492,共18页
The influence of cryorolling(CR),room temperature rolling(RTR)and post annealing on precipitation,microstructuralevolution(recovery,recrystallisation and grain growth),mechanical and corrosion behavior,was investigate... The influence of cryorolling(CR),room temperature rolling(RTR)and post annealing on precipitation,microstructuralevolution(recovery,recrystallisation and grain growth),mechanical and corrosion behavior,was investigated in the present work.The precipitation kinetics and microstructural morphology of CR,RTR,and post annealed samples were investigated by differentialscanning calorimetry(DSC),transmission electron microscopy(TEM),and electron back scattered diffraction(EBSD)to elucidatethe observed mechanical properties.After annealing at200°C,UTS and hardness of CR samples(345MPa and HV127)wereimproved as compared to RTR samples(320MPa and HV115).The increase in hardness and UTS of CR samples after annealing at200°C was due to precipitation ofβ''from Al matrix,which imparted higher Zener drag effect as compared to RTR samples.Theimprovement in corrosion and pitting potentials was observed for CR samples(?1.321V and?700mV)as compared to RTRsamples(?1.335V and?710mV).In CR samples,heavy dislocation density and dissolution of Mg4Al3Si4-precipitates in the Almatrix have improved corrosion resistance of the alloy through formation of protective passive layer and suppression of galvanic cell,respectively. 展开更多
关键词 aluminum alloy cryorolling mechanical property corrosion potential PRECIPITATION
下载PDF
Mechanical properties and microstructure evolution of an Al-Cu-Li alloy subjected to rolling and aging 被引量:5
14
作者 WANG Lin BHATTA Laxman +4 位作者 XIONG Han-qing LI Chang CUI Xiao-hui KONG Charlie YU Hai-liang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3800-3817,共18页
The mechanical properties and microstructure of Al-Cu-Li alloy sheets subjected to cryorolling(-100 ° C,-190 ℃) or hot rolling(400 ℃) and subsequent aging at 160 ℃ for different times were investigated. The dy... The mechanical properties and microstructure of Al-Cu-Li alloy sheets subjected to cryorolling(-100 ° C,-190 ℃) or hot rolling(400 ℃) and subsequent aging at 160 ℃ for different times were investigated. The dynamic precipitation and dislocation characterizations were examined via transmission electron microscopy and X-ray diffraction. The grain morphologies and the fracture-surface morphologies were studied via optical microscopy and scanning electron microscopy. Samples subjected to cryorolling followed by aging exhibited relatively high dislocation densities and a large number of precipitates compared with hot-rolled samples. The samples cryorolled at-190 ℃ and then aged for 15 h presented the highest ultimate tensile strength(586 MPa), while the alloy processed via hot rolling followed by 10 h aging exhibited the highest uniform elongation rate(11.5%). The size of precipitates increased with the aging time, which has significant effects on the interaction mechanism between dislocations and precipitates. Bowing is the main interaction method between the deformation-induced dislocations and coarsened precipitates during tensile tests, leading to the decline of the mechanical properties of the alloy during overaging. These interesting findings can provide significant insights into the development of materials possessing both excellent strength and high ductility. 展开更多
关键词 Al-Cu-Li alloy cryorolling artificial aging dynamic precipitation dislocation density mechanical property
下载PDF
Strengthening contributions in ultra-high strength cryorolled Al-4%Cu-3%TiB_2 in situ composite 被引量:5
15
作者 N.NAGA KRISHNA K.SIVAPRASAD P.SUSILA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期641-647,共7页
Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in sit... Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in situ composite followed by short annealing at 175 ℃ and ageing at 125℃ resulted in an ultra-high yield strength of about 800 MPa with 9%total elongation. The strengthening contributions form solid solution strengthening, grain refinement, dislocation strengthening, precipitation hardening and dispersion strengthening were evaluated using standard equations. It was estimated that the maximum contribution was from grain refinement due to cryorolling followed by precipitation and dispersion strengthening. 展开更多
关键词 Al alloy cryorolling metal matrix composites ultrafine grained microstructure strengthening mechanisms
下载PDF
Characterization of mechanical and corrosion properties of cryorolled Al 1100 alloy:Effect of annealing and solution treatment 被引量:1
16
作者 S.A.ZAKARIA A.S.ANASYIDA +3 位作者 H.ZUHAILAWATI B.K.DHINDAW N.A.JABIT A.ISMAIL 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期2949-2961,共13页
Effect of annealing and solution treatment prior to cryorolling on the formation of initial structure influencing microstructure formation from nano to micron scale and resultant mechanical and corrosion properties in... Effect of annealing and solution treatment prior to cryorolling on the formation of initial structure influencing microstructure formation from nano to micron scale and resultant mechanical and corrosion properties in Al 1100 alloy has been studied in detail.Before subjecting to 50%cryorolling,samples were pre-annealed at 250℃ for 2 h and pre-solution treated at 540℃ for 1 h.X-ray diffraction and HRTEM techniques were used to understand the crystallite size,lattice strain and dislocation configuration in the processed alloy.The results indicate that the pre-annealed sample has the highest grain aspect ratio(4.43),the smallest crystallite size(37.53 nm),the highest lattice strain(9.12×10^(−3))and the highest dislocation density(45.16×10^(13) m^(−2))among the tested sample.The pre-annealed sample shows a significant improvement of 43.44%,24.64%and 20.33%in hardness,ultimate tensile strength and yield strength.Both pre-annealed and pre-solution treated samples show improved corrosion resistance when compared to cryorolled samples without any pre-treatment,with the pre-annealed sample showing the best corrosion resistance. 展开更多
关键词 cryorolling Al 1100 alloy pre-heat treatment NANOSTRUCTURE ultrafine-grain mechanical properties corrosion resistance
下载PDF
Microstructure and mechanical properties of cryorolled AZ31 magnesium alloy sheets with different initial textures 被引量:2
17
作者 Jin-ru Luo Ya-qiong Yan +1 位作者 Ji-shan Zhang Lin-zhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第7期827-834,共8页
AZ31 magnesium alloy sheets with different strong textures were cryorolled at the liquid-nitrogen temperature to the strain of 4% and 8%. The microstructure and texture of the rolled sheets were investigated via scann... AZ31 magnesium alloy sheets with different strong textures were cryorolled at the liquid-nitrogen temperature to the strain of 4% and 8%. The microstructure and texture of the rolled sheets were investigated via scanning electron microscopy(SEM), electron backscatter diffraction(EBSD), and X-ray diffraction(XRD). The mechanical properties of the sheets were tested through in-plane uniaxial tensile tests at ambient temperature. The tensile stress was exerted in the rolling direction(RD) and transverse directions(TD). The microstructural and textural evolutions of the alloy during cryorolling were investigated. Due to active twining during rolling, the initial texture significantly influenced the microstructural and textural evolutions of the rolled sheets. A {10 12} extension twin was found as the dominated twin-type in the cryorolled samples. After cryogenic rolling, the ductility of the samples decreased while the strength increased. Twinning also played an important role in explaining the mechanical differences between the rolled samples with different initial textures. The samples were significantly strengthened by the high stored energy accumulated from cryorolling. 展开更多
关键词 magnesium alloy cryorolling microstructure mechanical properties twinning
下载PDF
Effect of annealing time on microstructure and mechanical properties of cryorolled AISI 310S stainless steel 被引量:2
18
作者 Xue-kui Lian Yong Li +5 位作者 Yi Xiong Yong-li Wu Shun Han Tian-tian He Chun-xu Wang Feng-zhang Ren 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第3期548-556,共9页
AISI 310S stable austenitic stainless steel was subjected to 90%cryorolling and then annealed at 800 ℃ for 2-60 min.The effect of annealing time on the microstructure and mechanical properties was studied by optical ... AISI 310S stable austenitic stainless steel was subjected to 90%cryorolling and then annealed at 800 ℃ for 2-60 min.The effect of annealing time on the microstructure and mechanical properties was studied by optical microscopy,scanning electron microscopy,transmission electron microscopy,microhardness and tensile test.The results show that the grain size of AISI 310S stainless steel is refined to the nanometer level after 90%cryorolling,and the grain size is approximately 20 nm.With the increase in annealing time,the degree of grain recrystallization occurs more fully and completely,as the grain begins to grow and then tends to stabilize.The strength and hardness of the annealed specimens decrease with increasing annealing time,while elongation tends to increase.When the annealing time is 10 min,the yield strength increases by about 2 times compared to that of the original austenite(unrolled),and the elongation is also above 20%,which is the best preparation process for ultra-fine grain austenitic stainless steel under this experimental condition.As the annealing time treatment increases,the fracture morphology changes from mixed quasi-cleavage and ductile fracture(after cryorolling)to ductile fracture(after annealing). 展开更多
关键词 Austenitic stainless steel cryorolling Annealing time MICROSTRUCTURE Mechanical property
原文传递
Low-temperature superplasticity of cryorolled Ti-6Al-4V titanium alloy sheets 被引量:1
19
作者 Fei-Long Yu Charlie Kong Hai-Liang Yu 《Tungsten》 EI CSCD 2023年第4期522-530,共9页
To investigate the superplastic deformation behavior of cryorolled Ti-6Al-4V titanium alloy,tensile tests were carried out at760℃and 830℃with different strain rate.The evolution of grain and micro structure has been... To investigate the superplastic deformation behavior of cryorolled Ti-6Al-4V titanium alloy,tensile tests were carried out at760℃and 830℃with different strain rate.The evolution of grain and micro structure has been studied using transmission electron microscopy and electron backscatter diffraction.When the tensile temperature was 760℃(<0.5T_(m),T_(m)is absolute melting point of alloy.)and the strain rate was 5×10^(-4)s^(-1),the fracture elongation of the sample reached 385%,showing good low-temperature superplasticity.Compared with the tensile temperature of 760℃,the fracture elongation of the s ample at 830℃was lower due to grain coarsening and oxidation.The strain rate sensitivity value m of all samples was larger than0.3,which confirmed that the cryorolled Ti-6A1-4V titanium alloy with a non-equiaxed grains structure can achieve high superplasticity at a temperature lower than 0.5T_(m),and indicated that the main deformation mechanisms in the tensile test at760-830℃were grain rotation and grain boundary sliding.After the tensile test,the average grain size of all samples was less than 5μm,in which significant dynamic recrystallization and recovery occurred. 展开更多
关键词 Ti-6Al-4V alloy cryorolling Non-equiaxed grains structure SUPERPLASTICITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部