Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any mod...In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any modern company. A companys operational and historical data contains strategic and operational knowledge of ever-increasing added value. The emergence of a new paradigm: big data. Today, the value of the data scattered throughout this mother of knowledge is calculated in billions of dollars, depending on its size, scope and area of intervention. With the rise of computer networks and distributed systems, the threats to these sensitive resources have steadily increased, jeopardizing the existence of the company itself by drying up production and losing the interest of customers and suppliers. These threats range from sabotage to bankruptcy. For several decades now, most companies have been using encryption algorithms to protect and secure their information systems against the threats and dangers posed by the inherent vulnerabilities of their infrastructure and the current economic climate. This vulnerability requires companies to make the right choice of algorithms to implement in their management systems. For this reason, the present work aims to carry out a comparative study of the reliability and effectiveness of symmetrical and asymmetrical cryptosystems, in order to identify one or more suitable for securing academic data in the DRC. The analysis of the robustness of commonly used symmetric and asymmetric cryptosystems will be the subject of simulations in this article.展开更多
In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with...In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with a capsule-shaped equilibrium curve.The proposed chaotic system has two quadratic,two cubic and two quartic nonlinear terms.It is noted that the proposed chaotic system has a hidden attractor since it has an infinite number of equilibrium points.It is also established that the proposed chaotic system exhibits multi-stability with two coexisting chaotic attractors for the same parameter values but differential initial states.A detailed bifurcation analysis with respect to variations in the system parameters is portrayed for the new chaotic system with capsule equilibrium curve.We have shown MATLAB plots to illustrate the capsule equilibrium curve,phase orbits of the new chaotic system,bifurcation diagrams and multi-stability.As an engineering application,we have proposed a speech cryptosystem with a numerical algorithm,which is based on our novel 3-D chaotic system with a capsule-shaped equilibrium curve.The proposed speech cryptosystem follows its security evolution and implementation on Field Programmable Gate Array(FPGA)platform.Experimental results show that the proposed encryption system utilizes 33%of the FPGA,while the maximum clock frequency is 178.28 MHz.展开更多
Image encryption has attracted much interest as a robust security solution for preventing unauthorized access to critical image data.Medical picture encryption is a crucial step in many cloud-based and healthcare appl...Image encryption has attracted much interest as a robust security solution for preventing unauthorized access to critical image data.Medical picture encryption is a crucial step in many cloud-based and healthcare applications.In this study,a strong cryptosystem based on a 2D chaotic map and Jigsaw transformation is presented for the encryption of medical photos in private Internet of Medical Things(IoMT)and cloud storage.A disorganized three-dimensional map is the foundation of the proposed cipher.The dispersion of pixel values and the permutation of their places in this map are accomplished using a nonlinear encoding process.The suggested cryptosystem enhances the security of the delivered medical images by performing many operations.To validate the efficiency of the recommended cryptosystem,various medical image kinds are used,each with its unique characteristics.Several measures are used to evaluate the proposed cryptosystem,which all support its robust security.The simulation results confirm the supplied cryptosystem’s secrecy.Furthermore,it provides strong robustness and suggested protection standards for cloud service applications,healthcare,and IoMT.It is seen that the proposed 3D chaotic cryptosystem obtains an average entropy of 7.9998,which is near its most excellent value of 8,and a typical NPCR value of 99.62%,which is also near its extreme value of 99.60%.Moreover,the recommended cryptosystem outperforms conventional security systems across the test assessment criteria.展开更多
The main purpose of this paper is to introduce the LWE public key cryptosystem with its security. In the first section, we introduce the LWE public key cryptosystem by Regev with its applications and some previous res...The main purpose of this paper is to introduce the LWE public key cryptosystem with its security. In the first section, we introduce the LWE public key cryptosystem by Regev with its applications and some previous research results. Then we prove the security of LWE public key cryptosystem by Regev in detail. For not only independent identical Gaussian disturbances but also any general independent identical disturbances, we give a more accurate estimation probability of decryption error of general LWE cryptosystem. This guarantees high security and widespread applications of the LWE public key cryptosystem.展开更多
The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the...The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the anti-plane strain problem of Love wave propagation.By introducing three shape functions,the wave equations and electric balance equations are decoupled into three uncorrelated problems.Satisfying the boundary conditions of the top surface on the covering layer,the interlayer interface,and the matrix,a dispersive equation with the influence of multi-physical field coupling is provided.A surface PQC model is developed to investigate the surface effects on the propagation behaviors of Love waves in quasicrystal(QC)multilayered structures with nanoscale thicknesses.A novel dispersion relation for the PQC structure is derived in an explicit closed form according to the non-classical mechanical and electric boundary conditions.Numerical examples are given to reveal the effects of the boundary conditions,stacking sequence,characteristic scale,and phason fluctuation characteristics on the dispersion curves of Love waves propagating in PQC nanoplates with surface effects.展开更多
2030 is projected as the year for the launch of the 6G (sixth generation) telecommunication technology. It is also the year predicted to introduce quantum computers powerful enough to break current cryptography algori...2030 is projected as the year for the launch of the 6G (sixth generation) telecommunication technology. It is also the year predicted to introduce quantum computers powerful enough to break current cryptography algorithms. Cryptography remains the mainstay of securing the Internet and the 6G networks. Post quantum cryptography (PQC) algorithms are currently under development and standardization by the NIST (National Institute of Standards and Technology) and other regulatory agencies. PQC deployment will make the 6G goals of very low latency and low cost almost unachievable, as most PQC algorithms rely on keys much larger than those in classical RSA (Rivest, Shamir, and Adleman) algorithms. The large PQC keys consume more storage space and processing power, increasing the latency and costs of their implementation. Thus, PQC deployment may compromise the latency and pricing goals of 6G networks. Moreover, all the PQC candidates under NIST evaluation have so far failed, seriously jeopardizing their standardization and placing the security of 6G against the Q-Day threat in a catch-22 situation. This report formulates a research question and builds and supports a research hypothesis to explore an alternate absolute zero trust (AZT) security strategy for securing 6G networks. AZT is autonomous, fast, and low-cost.展开更多
Quantum Computing (QC) is hailed as the future of computers. After Google’s claim of achieving Quantum Supremacy in 2019, several groups challenged the claim. Some QC experts attribute catastrophic risks that unrestr...Quantum Computing (QC) is hailed as the future of computers. After Google’s claim of achieving Quantum Supremacy in 2019, several groups challenged the claim. Some QC experts attribute catastrophic risks that unrestrained QC may cause in the future by collapsing the current cryptographic cybersecurity infrastructure. These predictions are relevant only if QC becomes commercially viable and sustainable in the future. No technology can be a one-way ticket to catastrophe, and neither can the definition of superiority of that technology be. If there are catastrophic risks, large-scale QC can never enter the public domain as a minimum viable product (MVP) unless there are safeguards in place. Those safeguards should obviously become an integral part of the definition of its superiority over the legacy systems. NIST (National Institute of Standards & Technology) is pursuing the standardization of Post Quantum Cryptography (PQC) as that safeguard. However, with all the 82 candidate PQCs failing and companies already offering QC as a service, there’s an urgent need for an alternate strategy to mitigate the impending Q-Day threat and render QC sustainable. Our research proposes a novel encryption-agnostic cybersecurity approach to safeguard QC. It articulates a comprehensive definition of an MVP that can potentially set a sustainable gold standard for defining commercially viable quantum advantage over classical computing.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
文摘In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any modern company. A companys operational and historical data contains strategic and operational knowledge of ever-increasing added value. The emergence of a new paradigm: big data. Today, the value of the data scattered throughout this mother of knowledge is calculated in billions of dollars, depending on its size, scope and area of intervention. With the rise of computer networks and distributed systems, the threats to these sensitive resources have steadily increased, jeopardizing the existence of the company itself by drying up production and losing the interest of customers and suppliers. These threats range from sabotage to bankruptcy. For several decades now, most companies have been using encryption algorithms to protect and secure their information systems against the threats and dangers posed by the inherent vulnerabilities of their infrastructure and the current economic climate. This vulnerability requires companies to make the right choice of algorithms to implement in their management systems. For this reason, the present work aims to carry out a comparative study of the reliability and effectiveness of symmetrical and asymmetrical cryptosystems, in order to identify one or more suitable for securing academic data in the DRC. The analysis of the robustness of commonly used symmetric and asymmetric cryptosystems will be the subject of simulations in this article.
基金funded by the Center for Research Excellence,Incubation Management Center,Universiti Sultan Zainal Abidin via an internal grant UniSZA/2021/SRGSIC/07.
文摘In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with a capsule-shaped equilibrium curve.The proposed chaotic system has two quadratic,two cubic and two quartic nonlinear terms.It is noted that the proposed chaotic system has a hidden attractor since it has an infinite number of equilibrium points.It is also established that the proposed chaotic system exhibits multi-stability with two coexisting chaotic attractors for the same parameter values but differential initial states.A detailed bifurcation analysis with respect to variations in the system parameters is portrayed for the new chaotic system with capsule equilibrium curve.We have shown MATLAB plots to illustrate the capsule equilibrium curve,phase orbits of the new chaotic system,bifurcation diagrams and multi-stability.As an engineering application,we have proposed a speech cryptosystem with a numerical algorithm,which is based on our novel 3-D chaotic system with a capsule-shaped equilibrium curve.The proposed speech cryptosystem follows its security evolution and implementation on Field Programmable Gate Array(FPGA)platform.Experimental results show that the proposed encryption system utilizes 33%of the FPGA,while the maximum clock frequency is 178.28 MHz.
基金The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code(NU/RC/SERC/11/5).
文摘Image encryption has attracted much interest as a robust security solution for preventing unauthorized access to critical image data.Medical picture encryption is a crucial step in many cloud-based and healthcare applications.In this study,a strong cryptosystem based on a 2D chaotic map and Jigsaw transformation is presented for the encryption of medical photos in private Internet of Medical Things(IoMT)and cloud storage.A disorganized three-dimensional map is the foundation of the proposed cipher.The dispersion of pixel values and the permutation of their places in this map are accomplished using a nonlinear encoding process.The suggested cryptosystem enhances the security of the delivered medical images by performing many operations.To validate the efficiency of the recommended cryptosystem,various medical image kinds are used,each with its unique characteristics.Several measures are used to evaluate the proposed cryptosystem,which all support its robust security.The simulation results confirm the supplied cryptosystem’s secrecy.Furthermore,it provides strong robustness and suggested protection standards for cloud service applications,healthcare,and IoMT.It is seen that the proposed 3D chaotic cryptosystem obtains an average entropy of 7.9998,which is near its most excellent value of 8,and a typical NPCR value of 99.62%,which is also near its extreme value of 99.60%.Moreover,the recommended cryptosystem outperforms conventional security systems across the test assessment criteria.
文摘The main purpose of this paper is to introduce the LWE public key cryptosystem with its security. In the first section, we introduce the LWE public key cryptosystem by Regev with its applications and some previous research results. Then we prove the security of LWE public key cryptosystem by Regev in detail. For not only independent identical Gaussian disturbances but also any general independent identical disturbances, we give a more accurate estimation probability of decryption error of general LWE cryptosystem. This guarantees high security and widespread applications of the LWE public key cryptosystem.
基金Project supported by the National Natural Science Foundation of China(Nos.12272402 and11972365)the China Agricultural University Education Foundation(No.1101-2412001)。
文摘The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the anti-plane strain problem of Love wave propagation.By introducing three shape functions,the wave equations and electric balance equations are decoupled into three uncorrelated problems.Satisfying the boundary conditions of the top surface on the covering layer,the interlayer interface,and the matrix,a dispersive equation with the influence of multi-physical field coupling is provided.A surface PQC model is developed to investigate the surface effects on the propagation behaviors of Love waves in quasicrystal(QC)multilayered structures with nanoscale thicknesses.A novel dispersion relation for the PQC structure is derived in an explicit closed form according to the non-classical mechanical and electric boundary conditions.Numerical examples are given to reveal the effects of the boundary conditions,stacking sequence,characteristic scale,and phason fluctuation characteristics on the dispersion curves of Love waves propagating in PQC nanoplates with surface effects.
文摘2030 is projected as the year for the launch of the 6G (sixth generation) telecommunication technology. It is also the year predicted to introduce quantum computers powerful enough to break current cryptography algorithms. Cryptography remains the mainstay of securing the Internet and the 6G networks. Post quantum cryptography (PQC) algorithms are currently under development and standardization by the NIST (National Institute of Standards and Technology) and other regulatory agencies. PQC deployment will make the 6G goals of very low latency and low cost almost unachievable, as most PQC algorithms rely on keys much larger than those in classical RSA (Rivest, Shamir, and Adleman) algorithms. The large PQC keys consume more storage space and processing power, increasing the latency and costs of their implementation. Thus, PQC deployment may compromise the latency and pricing goals of 6G networks. Moreover, all the PQC candidates under NIST evaluation have so far failed, seriously jeopardizing their standardization and placing the security of 6G against the Q-Day threat in a catch-22 situation. This report formulates a research question and builds and supports a research hypothesis to explore an alternate absolute zero trust (AZT) security strategy for securing 6G networks. AZT is autonomous, fast, and low-cost.
文摘Quantum Computing (QC) is hailed as the future of computers. After Google’s claim of achieving Quantum Supremacy in 2019, several groups challenged the claim. Some QC experts attribute catastrophic risks that unrestrained QC may cause in the future by collapsing the current cryptographic cybersecurity infrastructure. These predictions are relevant only if QC becomes commercially viable and sustainable in the future. No technology can be a one-way ticket to catastrophe, and neither can the definition of superiority of that technology be. If there are catastrophic risks, large-scale QC can never enter the public domain as a minimum viable product (MVP) unless there are safeguards in place. Those safeguards should obviously become an integral part of the definition of its superiority over the legacy systems. NIST (National Institute of Standards & Technology) is pursuing the standardization of Post Quantum Cryptography (PQC) as that safeguard. However, with all the 82 candidate PQCs failing and companies already offering QC as a service, there’s an urgent need for an alternate strategy to mitigate the impending Q-Day threat and render QC sustainable. Our research proposes a novel encryption-agnostic cybersecurity approach to safeguard QC. It articulates a comprehensive definition of an MVP that can potentially set a sustainable gold standard for defining commercially viable quantum advantage over classical computing.