A method for obtaining the small current quark mass dependence of the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach the small current quark mass effects on...A method for obtaining the small current quark mass dependence of the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach the small current quark mass effects on dressed-quark propagator have been studied. A comparison with previous results is given.展开更多
The current quark mass model is adopted to study the phase transition of two-flavor quark matter to more stable three-flavor quark matter in the whole core of a supernova. It shows that the timescale of the process is...The current quark mass model is adopted to study the phase transition of two-flavor quark matter to more stable three-flavor quark matter in the whole core of a supernova. It shows that the timescale of the process is shorter than 10^-8 seconds, that'the u-and d-quark masses can be neglected completely in this model, and that the temperature and the total neutrino energies in the core after the conversion increase nearly by 40% and 20% on the average compared with former results, respectively. The last result can further enhance the probability of success for a supernova explosion significantly.展开更多
Using the Schwinger Dyson equation and perturbation theory,we calculate the two-quark condensates forthe light quarks u,d,strange quark s and a heavy quark c with their current masses respectively.The results show tha...Using the Schwinger Dyson equation and perturbation theory,we calculate the two-quark condensates forthe light quarks u,d,strange quark s and a heavy quark c with their current masses respectively.The results show thatthe two-quark condensate will decrease when the quark mass increases,which hints the chiral symmetry may be restoredfor the heavy quarks.展开更多
Based on the fully dressed confining quark propagator, the pion decay constant fπ, local quark vacuum condensate, and the masses of light quarks and in-medlum Goldstone bosons are investigated. The pion decay constan...Based on the fully dressed confining quark propagator, the pion decay constant fπ, local quark vacuum condensate, and the masses of light quarks and in-medlum Goldstone bosons are investigated. The pion decay constant fπ is predicted and compared with its value of experimental measurement. A great agreement is obtained. With the predicted fπ and values of Goldstone boson masses measured by experiments in free configuration the current masses of light quarks and the masses of in-medium Goldstone bosons are obtained.展开更多
We study the quark loop effects on the dressed gluon propagator and also on the quark propagator itself.We find that the gluon propagators are different in two phases.The quark mass effects on the gluon propagator are...We study the quark loop effects on the dressed gluon propagator and also on the quark propagator itself.We find that the gluon propagators are different in two phases.The quark mass effects on the gluon propagator aresmall but not negligible.We also study the current quark mass dependence on the bag constant.展开更多
Using the Dyson-Schwinger equation and perturbation theory, we calculate the mixed quark-gluon condensates in the chiral limit and in the case of nonzero quark current mass for the light quark u/d and strange quark s....Using the Dyson-Schwinger equation and perturbation theory, we calculate the mixed quark-gluon condensates in the chiral limit and in the case of nonzero quark current mass for the light quark u/d and strange quark s. The results show that the mixed quark-gluon condensate will decrease when the quark mass increases. For the quark with zero mass, we obtain mo2 = g(qσuvGuvq)/(qq) 0.68 GeV2, which is in good agreement with the QCD sum rules estimate mo2=(0.8± 0.2) GeV2.展开更多
We show how the Koide relationships and associated triplet mass matrices can be generalized to derive the observed sum of the free neutron and proton rest masses in terms of the up and down current quark masses and th...We show how the Koide relationships and associated triplet mass matrices can be generalized to derive the observed sum of the free neutron and proton rest masses in terms of the up and down current quark masses and the Fermi vev to six parts in 10,000. This sum can then be solved for the separate neutron and proton masses using the neutron minus proton mass difference derived by the author in a recent, separate paper. The oppositely-signed charges of the up and down quarks are responsible for the appearance of a complex phase exp(iδ) and real rotation angle θ which leads on an independent basis to mass and mixing matrices similar to that of Cabibbo, Kobayashi and Maskawa (CKM). These can then be used to specify the neutron and proton mass relationships to unlimited accuracy using θ as a nucleon fitting angle deduced from empirical data. This fitting angle is then shown to be related to an invariant of the CKM mixing angles within experimental errors. Also developed is a master mass and mixing matrix which may help to interconnect all baryon and quark masses and mixing angles. The Koide generalizations developed here enable these neutron and proton mass relationships to be given a Lagrangian formulation based on neutron and proton field strength tensors that contain vacuum-amplified and current quark wavefunctions and masses. In the course of development, we also uncover new Koide relationships for the neutrinos, the up quarks, and the down quarks.展开更多
文摘A method for obtaining the small current quark mass dependence of the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach the small current quark mass effects on dressed-quark propagator have been studied. A comparison with previous results is given.
基金National Natural Science Foundation of China(10347008)Key Scientific Research Fund of Sichuan Provincial Education Department(2006A079)Science and Technology Foundation of China West Normal University
文摘The current quark mass model is adopted to study the phase transition of two-flavor quark matter to more stable three-flavor quark matter in the whole core of a supernova. It shows that the timescale of the process is shorter than 10^-8 seconds, that'the u-and d-quark masses can be neglected completely in this model, and that the temperature and the total neutrino energies in the core after the conversion increase nearly by 40% and 20% on the average compared with former results, respectively. The last result can further enhance the probability of success for a supernova explosion significantly.
基金Supported in part by the Key Research Plan of Theoretical Physics and Cross Science of China under Grant No.90503011National Natural Science Foundation under Grant No.10775012
文摘Using the Schwinger Dyson equation and perturbation theory,we calculate the two-quark condensates forthe light quarks u,d,strange quark s and a heavy quark c with their current masses respectively.The results show thatthe two-quark condensate will decrease when the quark mass increases,which hints the chiral symmetry may be restoredfor the heavy quarks.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10247004, 10565001, and the Natural Science Foundation of Guangxi Province of China undcr Grant Nos. 0481030, 0575020, and 0542042
文摘Based on the fully dressed confining quark propagator, the pion decay constant fπ, local quark vacuum condensate, and the masses of light quarks and in-medlum Goldstone bosons are investigated. The pion decay constant fπ is predicted and compared with its value of experimental measurement. A great agreement is obtained. With the predicted fπ and values of Goldstone boson masses measured by experiments in free configuration the current masses of light quarks and the masses of in-medium Goldstone bosons are obtained.
文摘We study the quark loop effects on the dressed gluon propagator and also on the quark propagator itself.We find that the gluon propagators are different in two phases.The quark mass effects on the gluon propagator aresmall but not negligible.We also study the current quark mass dependence on the bag constant.
基金Supported in part by the Key Research Plan of Theoretical Physics and Cross Science of China under Grant No. 90503011National Science Foundation under Grant No. 10775012
文摘Using the Dyson-Schwinger equation and perturbation theory, we calculate the mixed quark-gluon condensates in the chiral limit and in the case of nonzero quark current mass for the light quark u/d and strange quark s. The results show that the mixed quark-gluon condensate will decrease when the quark mass increases. For the quark with zero mass, we obtain mo2 = g(qσuvGuvq)/(qq) 0.68 GeV2, which is in good agreement with the QCD sum rules estimate mo2=(0.8± 0.2) GeV2.
文摘We show how the Koide relationships and associated triplet mass matrices can be generalized to derive the observed sum of the free neutron and proton rest masses in terms of the up and down current quark masses and the Fermi vev to six parts in 10,000. This sum can then be solved for the separate neutron and proton masses using the neutron minus proton mass difference derived by the author in a recent, separate paper. The oppositely-signed charges of the up and down quarks are responsible for the appearance of a complex phase exp(iδ) and real rotation angle θ which leads on an independent basis to mass and mixing matrices similar to that of Cabibbo, Kobayashi and Maskawa (CKM). These can then be used to specify the neutron and proton mass relationships to unlimited accuracy using θ as a nucleon fitting angle deduced from empirical data. This fitting angle is then shown to be related to an invariant of the CKM mixing angles within experimental errors. Also developed is a master mass and mixing matrix which may help to interconnect all baryon and quark masses and mixing angles. The Koide generalizations developed here enable these neutron and proton mass relationships to be given a Lagrangian formulation based on neutron and proton field strength tensors that contain vacuum-amplified and current quark wavefunctions and masses. In the course of development, we also uncover new Koide relationships for the neutrinos, the up quarks, and the down quarks.
文摘利用强子物质的相对论平均场理论和夸克物质的有效质量口袋模型,研究流夸克质量的选取对混合星性质的影响.结果表明,随着流夸克质量的增大,强子-夸克相变使密度变大,超子种类变多,混合相区域的状态方程变硬,中子星的最大质量及半径变大.当奇异流夸克质量由90 MeV增到200 MeV时,混合星最大质量由1.4M⊙增至1.63M⊙(M⊙=1.99×1030kg为太阳质量),半径由10.24 km增至11.64 km.