The free vibration analysis of simply supported box-girder bridges is carried out using the finite element method.The fundamental frequency is determined in straight,skew,curved and skew-curved box-girder bridges.It i...The free vibration analysis of simply supported box-girder bridges is carried out using the finite element method.The fundamental frequency is determined in straight,skew,curved and skew-curved box-girder bridges.It is important to analyse the combined effect of skewness and curvature because skew-curved box-girder bridge behaviour cannot be predicted by simply adding the individual effects of skewness and curvature.At first,an existing model is considered to validate the present approach.A convergence study is carried out to decide the mesh size in the finite element method.An exhaustive parametric study is conducted to determine the fundamental frequency of box-girder bridges with varying skew angle,curve angle,span,span-depth ratio and cell number.The skew angle is varied from 0°to 60°,curve angle is varied from 0°to 60°,span is changed from 25 to 50 m,span-depth ratio is varied from 10 to 16,and single cell&double cell are used in the present study.A total of 420 bridge models are used for parametric study in the investigation.Mode shapes of the skew-curved bridge are also presented.The fundamental frequency of the skew-curved box-girder bridge is found to be more than the straight bridge,so,the skew-curved box-girder bridge is preferable.The present study may be useful in the design of box-girder bridges.展开更多
The maximum seismic response of curved bridge is significantly related to the input angle of designated earthquake. Owing to structure irregularities, bridge reactions result from the interaction between the moment an...The maximum seismic response of curved bridge is significantly related to the input angle of designated earthquake. Owing to structure irregularities, bridge reactions result from the interaction between the moment and torsion forces. Based on the solving of the seismic response of structure excited by a one-way earthquake input, a uniform expression of the unfavorable angle of the earthquake input was derived, and the corresponding maximum response of structure was determined. Considering the orthotropic and skewed dual- directional earthquake input manners, the most unfavorable angles for the two cases were also derived, respectively. Furthermore, a series finite element models were built to analyze the multi-component seismic responses by examining an example of curved girder bridge considering the variation of curvature radius and the bearings arrangement. The seismic responses of the case bridges, were excited by earthquakes at different input angles, and were calculated and analyzed using a response spectrum method. The input angles of earthquake excitation were progressively increased. From the analysis and comparison based on the calculation results mentioned above, the most unfavorable angle of earthquake excitation corresponding to the maximum seismic response of the curved bridge could be determined. It was shown that the most unfavorable angles of earthquake input resulted from the different response combination methods were essentially coherent.展开更多
The transient stability of a single machine to infinite-busbar power system with resistortype superconducting fault current limiters (SFCL) is analyzed under asymmetrical short-circuit fault conditions. The SFCL is ...The transient stability of a single machine to infinite-busbar power system with resistortype superconducting fault current limiters (SFCL) is analyzed under asymmetrical short-circuit fault conditions. The SFCL is considered to introduce a resistance into the three-phase circuits when faults occur. Based on the power-angle curves for different short-circuit conditions of the single-line to ground, double-line to ground and line to line short-circuit faults, the influences of the SFCLs on transient stability are analyzed in detail. The time-domain simulation of transient stability is carried out to verify the analytical results.展开更多
Rayleigh wave dispersion signals are significant to underground investigation.Tradition-ally,uniformed trace spacing is employed in surface wave surveys.In some cases,however,uneven trace spacing is often encountered ...Rayleigh wave dispersion signals are significant to underground investigation.Tradition-ally,uniformed trace spacing is employed in surface wave surveys.In some cases,however,uneven trace spacing is often encountered because of the limitations of the site condition.In order to study the influence of uneven trace spacing on the dispersion data construction of Rayleigh waves,data acquisi-tion is performed based on a 2.5D field layout with a linear array of geophones fixed and a mobile source.The observation direction controls the trace spacing of the measurement.The final results demonstrate that the trace nonuniformity has significant influence on the Rayleigh wave dispersion feature constructed.When the observation angle is over 45o,the dispersion image will be too distorted to extract dispersion data correctly.展开更多
文摘The free vibration analysis of simply supported box-girder bridges is carried out using the finite element method.The fundamental frequency is determined in straight,skew,curved and skew-curved box-girder bridges.It is important to analyse the combined effect of skewness and curvature because skew-curved box-girder bridge behaviour cannot be predicted by simply adding the individual effects of skewness and curvature.At first,an existing model is considered to validate the present approach.A convergence study is carried out to decide the mesh size in the finite element method.An exhaustive parametric study is conducted to determine the fundamental frequency of box-girder bridges with varying skew angle,curve angle,span,span-depth ratio and cell number.The skew angle is varied from 0°to 60°,curve angle is varied from 0°to 60°,span is changed from 25 to 50 m,span-depth ratio is varied from 10 to 16,and single cell&double cell are used in the present study.A total of 420 bridge models are used for parametric study in the investigation.Mode shapes of the skew-curved bridge are also presented.The fundamental frequency of the skew-curved box-girder bridge is found to be more than the straight bridge,so,the skew-curved box-girder bridge is preferable.The present study may be useful in the design of box-girder bridges.
基金supported by the National Natural Science Foundation of China(No.51378050)China Scholarship Council(No.201307095008)
文摘The maximum seismic response of curved bridge is significantly related to the input angle of designated earthquake. Owing to structure irregularities, bridge reactions result from the interaction between the moment and torsion forces. Based on the solving of the seismic response of structure excited by a one-way earthquake input, a uniform expression of the unfavorable angle of the earthquake input was derived, and the corresponding maximum response of structure was determined. Considering the orthotropic and skewed dual- directional earthquake input manners, the most unfavorable angles for the two cases were also derived, respectively. Furthermore, a series finite element models were built to analyze the multi-component seismic responses by examining an example of curved girder bridge considering the variation of curvature radius and the bearings arrangement. The seismic responses of the case bridges, were excited by earthquakes at different input angles, and were calculated and analyzed using a response spectrum method. The input angles of earthquake excitation were progressively increased. From the analysis and comparison based on the calculation results mentioned above, the most unfavorable angle of earthquake excitation corresponding to the maximum seismic response of the curved bridge could be determined. It was shown that the most unfavorable angles of earthquake input resulted from the different response combination methods were essentially coherent.
文摘The transient stability of a single machine to infinite-busbar power system with resistortype superconducting fault current limiters (SFCL) is analyzed under asymmetrical short-circuit fault conditions. The SFCL is considered to introduce a resistance into the three-phase circuits when faults occur. Based on the power-angle curves for different short-circuit conditions of the single-line to ground, double-line to ground and line to line short-circuit faults, the influences of the SFCLs on transient stability are analyzed in detail. The time-domain simulation of transient stability is carried out to verify the analytical results.
基金supported by the "973-Project" (No. 2007CB714405)LIESMARS Special Research Funding,LOGEG Research Founding (No. 2008-02-08)the Key Laboratory of Precision Engineering & Industry Surveying,State Bureau of Surveying and Mapping
文摘Rayleigh wave dispersion signals are significant to underground investigation.Tradition-ally,uniformed trace spacing is employed in surface wave surveys.In some cases,however,uneven trace spacing is often encountered because of the limitations of the site condition.In order to study the influence of uneven trace spacing on the dispersion data construction of Rayleigh waves,data acquisi-tion is performed based on a 2.5D field layout with a linear array of geophones fixed and a mobile source.The observation direction controls the trace spacing of the measurement.The final results demonstrate that the trace nonuniformity has significant influence on the Rayleigh wave dispersion feature constructed.When the observation angle is over 45o,the dispersion image will be too distorted to extract dispersion data correctly.