The success of a tunnel-boring machine (TBM) in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part ...The success of a tunnel-boring machine (TBM) in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part of the machine plays a more crucial role in the efficient operation of the machine than its cutterhead. The design of the cutterhead impacts the efficiency of cutting, the balance of the head, the life of the cutters, the maintenance of the main bearing/gearbox, and the effectiveness of the mucking along with its effects on the wear of the face and gage cutters/muck buckets. Overall, cutterhead design heavily impacts the rate of penetration (ROP), rate of machine utilization (U), and daffy advance rate (AR). Although there has been some discussion in commonly available publications regarding disk cutters, cutting forces, and some design features of the head, there is limited literature on this subject because the design of cutter- heads is mainly handled by machine manufacturers. Most of the design process involves proprietary algorithms by the manufacturers, and despite recent attention on the subject, the design of rock TBMs has been somewhat of a mystery to most end-users. This paper is an attempt to demystify the basic concepts in design. Although it may not be sufficient for a full-fledged design by the readers, this paper allows engineers and contractors to understand the thought process in the design steps, what to Look for in a proper design, and the implications of the head design on machine operation and life cycle.展开更多
In the process of tunneling of tunnel boring machine (TBM), different geological conditions often correspond to different working conditions, and the randomness of geological conditions also causes the order of occurr...In the process of tunneling of tunnel boring machine (TBM), different geological conditions often correspond to different working conditions, and the randomness of geological conditions also causes the order of occurrence of each working condition to be different. Under the conversion of different working conditions, this makes the vibration of different types of cutterheads different. How to choose the appropriate type of cutterhead according to different geological conditions is very important for saving engineering cost and increasing cutterhead life. In view of the above situation, this paper proposes a stability evaluation method during the TBM tunneling process to select the appropriate cutterhead type. Firstly, the corresponding relationship between geology and working conditions is established according to different geological conditions, and the input loads corresponding to geological conditions are obtained. Then, it is substituted into the dynamic model of the cutterhead system, the vibration response boundaries of each degree of freedom are obtained by solving. And the average value of the maximum boundary amplitude of each degree of freedom is taken to represent the extreme vibration of the cutterhead under the corresponding working conditions. Finally, by comparing the fluctuation of the ultimate vibration amplitude of each type of cutterhead in the process of working condition conversion, the results are as follows: when the transition between homogeneous strata and composite strata is normal and there is no large turning and deviation correction, the vibration response of the two-part cutterhead is the smallest, and the two-part cutterhead is the best choice. Otherwise, the five-part cutterhead is the best choice, while the stability of the integrated cutterhead is the worst.展开更多
A shield machine with freezing function is proposed in order to realize tool change operation at atmospheric pressure. Furthermore, the transformation project of freezing cutterhead and tool change maintenance method ...A shield machine with freezing function is proposed in order to realize tool change operation at atmospheric pressure. Furthermore, the transformation project of freezing cutterhead and tool change maintenance method are put forward. Taking the shield construction of Huanxi Power Tunnel as an example, a numerical analysis of the freezing cutter head of the project was carried out. The results show that when the brine temperature is-25 °C, after 30 d of freezing, the thickness of the frozen wall can reach 0.67 m and the average temperature drops to-9.9 °C. When the brine temperature is-30 °C, after 50 d of freezing, the thickness of the frozen wall can reach 1.01 m and the average temperature drops to-12.4 °C. If the thickness of the frozen wall is 0.5 m and the average temperature is-10 °C, as the design index of the frozen wall, the brine temperature should be lower than-28 °C to meet the excavation requirements in 30 d. Analyzing the frozen wall stress under 0.5 m thickness and-10 °C average temperature condition, the tensile safety factor and compressive safety factor are both greater than 2 at the most dangerous position, which can meet the tool change requirements for shield construction.展开更多
An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated rec...An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling.展开更多
Cutterhead loads are the key mechanical parameters for the strength design of the full face hard rock tunnel boring machine(TBM).Due to the brittle rock-breaking mechanism,the excavation loads acting on cutters fluctu...Cutterhead loads are the key mechanical parameters for the strength design of the full face hard rock tunnel boring machine(TBM).Due to the brittle rock-breaking mechanism,the excavation loads acting on cutters fluctuate strongly and show some randomness.The conventional method that using combinations of some special static loads to perform the strength design of TBM cutterhead may lead to strength failure during working practice.In this paper,a three-dimensional finite element model for coupled Cutterhead–Rock is developed to determine the cutterhead loads.Then the distribution characteristics and the influence factors of cutterhead loads are analyzed based on the numerical results.It is found that,as time changes,the normal and tangential forces acting on cutters and the total torque acting on the cutterhead approximately distribute log normally,while the total thrusts acting on the cutterhead approximately show a normal distribution.Furthermore,the statistical average values of cutterhead loads are proportional to the uniaxial compressive strength(UCS)of cutting rocks.The values also change with the penetration and the diameter of cutterhead following a power function.Based on these findings,we propose a three-parameter model for the mean of cutterhead loads and a method of generating the random cutter forces.Then the strength properties of a typical cutterhead are analyzed in detail using loads generated by the new method.The optimized cutterhead has been successfully applied in engineering.The method in this paper may provide a useful reference for the strength design of TBM cutterhead.展开更多
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ...In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.展开更多
The accurate performance evaluation of a cutterhead is essential to improving cutterhead structure design and predicting project cost. Through extensive research, this paper evaluates the performance of a tunnel borin...The accurate performance evaluation of a cutterhead is essential to improving cutterhead structure design and predicting project cost. Through extensive research, this paper evaluates the performance of a tunnel boring machine(TBM) cutterhead for cutting ability and slagging ability. This paper propose cutting efficiency, stability, and continuity of slagging as the evaluation indexes of comprehensive cutterhead performance. On the basis of research of true TBM engineering applications, this paper proposes a calculation method for each index. A slagging efficiency index with a ratio of the maximum di erence between the slagging amount and average slagging is established. And a slagging stability index with a ratio of the maximum slagging fluctuation and average slagging is presented. Meanwhile, a cutting efficiency index by the weighed average value of multistage rock fragmentation of a cutter’s specific energy is established. The Robbins and China Railway Construction Corporation(CRCC) cutterheads are evaluated. The results show that under the same thrust and torque, the slagging stability of the CRCC scheme is worse, but the slagging continuity of the CRCC scheme is better. The cutting ability index shows that the CRCC cutterhead is more efficient.展开更多
A comprehensive performance evaluation method for the tunnel boring machine(TBM)cutterhead is proposed in this paper.The evaluation system is established on strength and vibration.Based on fracture mechanics theory,fa...A comprehensive performance evaluation method for the tunnel boring machine(TBM)cutterhead is proposed in this paper.The evaluation system is established on strength and vibration.Based on fracture mechanics theory,fatigue strength evaluation indices are determined under critical crack length.The concept of crack regions division is proposed to evaluate fatigue strength more accurately and specifically.In addition,the velocities in three directions of critical locations are obtained with dynamics equations.Then,the root-mean-square values of velocities are taken as the vibration severity indices.Taking the cutterhead of Jilin diversion engineering as an example,the evaluations of each index are completed;then,the vibration of the TBM cutterhead is measured and compared with the theoretical calculation results.There are similar change laws between the theoretical calculation results and the testing results of the cutterhead acceleration,which proves that the method of calculation of the vibration index is effective,the reliability of the cutter saddle welding should be paid attention to when the TBM is working,and the condition of vibration severity of the TBM cutterhead meets the requirements but needs to be improved.展开更多
The cutterhead system is a core component of TBM equipment,which works in the extremely severe environment,and the strong impact loads result in severe vibration,crack,damage failure and other engineering failures.Acc...The cutterhead system is a core component of TBM equipment,which works in the extremely severe environment,and the strong impact loads result in severe vibration,crack,damage failure and other engineering failures.Accordingly,the key for cutterhead system structure design and parameter matching is to evaluate and predict cutterhead tunneling per-formance reasonably.In this paper,a prediction method for TBM cutterhead dynamic tunneling performance is pro-posed under the typical composite geological conditions,based on the CSM model of multi-cutters and cutter loads field test data.Then an actual TBM cutterhead of a water conservancy project is taken as an example,a spatial three-dimensional separation zone model for cutterhead tunneling is established under the typical geological condition,and the parameters influence rules of cutterhead tunneling performance are analyzed.The results show that,the cutter-head loads and specific energy change rules with different parameters are basically similar.Moreover,under the condi-tion of penetration p=10mm,the cutterhead bending moment coefficient of variation magnitude exceeds 20%,which is the maximum,and the normal cutter spacing optimal value is 95mm.Also,when the normal cutter spacing is kept constant in 85mm,the penetration has a greater influence on the torque and specific energy coefficient of variations,which is increased from 2mm to 10mm,and the two indexes decrease by about 73%.It is indicated that proper increase of pene-tration is beneficial to reduce the vibration fluctuation degree of torque and specific energy.The proposed method of TBM cutterhead dynamic tunneling performance and the analysis results can provide theoretical basis and design refer-ence for TBM cutterhead layout and tunneling parameters matching.展开更多
Tunnelling has increasingly become an essential tool in the exploration of underground space.A typical construction problem is the face instability during tunnelling,posing a great threat to associated infrastructures...Tunnelling has increasingly become an essential tool in the exploration of underground space.A typical construction problem is the face instability during tunnelling,posing a great threat to associated infrastructures.Tunnel face instability often occurs with the soil arching collapse.This study investigates the combined effect of cutterhead opening ratio and soil non-uniformity on soil arching effect and face stability,via conducting random finite-element analysis coupled with Monte–Carlo simulations.The results underscore that the face stability is strongly associated with the evolution of stress arch.The obtained stability factors in the uniform soils can serve as a reference for the design of support pressure in practical tunnelling engineering.In addition,non-uniform soils exhibit a lower stability factor than uniform soils,which implies that the latter likely yields an underestimated probability of face failure.The tunnel face is found to have a probability of failure more than 50%if the spatial non-uniformity of soil is ignored.In the end,a practical framework is established to determine factor of safety(FOS)corresponding to different levels of probability of face failure considering various opening ratios in non-uniform soils.The required FOS is 1.70 to limit the probability of face instability no more than 0.1%.Our findings can facilitate the prediction of probability of instability in the conventionally deterministic design of face pressure.展开更多
When tunnelling in difficult ground conditions,shield machine would inevitably produce significant ground loss and vibration,which may disturb the ground ahead of the tunnel face.In this paper,discrete element models ...When tunnelling in difficult ground conditions,shield machine would inevitably produce significant ground loss and vibration,which may disturb the ground ahead of the tunnel face.In this paper,discrete element models calibrated by model tests were established to investigate the response of tunnel face under the coupling effects of unloading and cutterhead vibrations.The results show that the friction angle reduction under cyclic loading and vibration attenuation in the sandy ground are significant and can be estimated by the fitted exponential functions.Under cutterhead vibration,the tunnel face stability is undermined and the limit support pressure(LSP)increases to 1.4 times as that in the static case with the growth of frequency and amplitude.Meanwhile,the loosening zone becomes wider and the arching effect is weakened with the reduction of peak horizontal stress and the increase of vertical stress above the tunnel.Based on the numerical results,a pseudo-static method was introduced into the limit equilibrium analysis of the wedge-prism model for calculating the LSP under vibration.With an error rate less than 5.2%,the proposed analytical method is well validated.Further analytical calculation reveals that the LSP would increase with the growth of vibration amplitude,vibration frequency and covered depth but decrease with the increase of friction angle.This study can not only lay a solid foundation for the further investigation of ground loss,ground water and soft-hard heterogeneous ground under cutterhead vibration,but also provide meaningful references for the control of environmental disturbance in practice.展开更多
Shield tunneling machines are paramount underground engineering equipment and play a key role in tunnel construction.During the shield construction process,the“mud cake”formed by the difficult-to-remove clay attache...Shield tunneling machines are paramount underground engineering equipment and play a key role in tunnel construction.During the shield construction process,the“mud cake”formed by the difficult-to-remove clay attached to the cutterhead severely affects the shield construction efficiency and is harmful to the healthy operation of a shield tunneling machine.In this study,we propose an enhanced transformer-based detection model for detecting the cutterhead clogging status of shield tunneling machines.First,the working state data of shield machines are selected from historical excavation data,and a long short-term memory-autoencoder neural network module is constructed to remove outliers.Next,variational mode decomposition and wavelet transform are employed to denoise the data.After the preprocessing,nonoverlapping rectangular windows are used to intercept the working state data to obtain the time slices used for analysis,and several time-domain features of these periods are extracted.Owing to the data imbalance in the original dataset,the k-means-synthetic minority oversampling technique algorithm is adopted to oversample the extracted time-domain features of the clogging data in the training set to balance the dataset and improve the model performance.Finally,an enhanced transformer-based neural network is constructed to extract essential implicit features and detect cutterhead clogging status.Data collected from actual tunnel construction projects are used to verify the proposed model.The results show that the proposed model achieves accurate detection of shield machine cutterhead clogging status,with 98.85%accuracy and a 0.9786 F1 score.Moreover,the proposed model significantly outperforms the comparison models.展开更多
Owing to long-distance advancement or obstacles,shield tunneling machines are typically shut down for maintenance.Engineering safety during maintenance outages is determined by the stability of the tunnel face.Pressur...Owing to long-distance advancement or obstacles,shield tunneling machines are typically shut down for maintenance.Engineering safety during maintenance outages is determined by the stability of the tunnel face.Pressure maintenance openings are typically used under complicated hydrogeological conditions.The tunnel face is supported by a medium at the bottom of the excavation chamber and compressed air at the top.Owing to the high risk of face failure,the necessity of support pressure when cutterhead support is implemented and a method for determining the value of compressed air pressure using different support ratios must to be determined.In this study,a non-fully chamber supported rotational failure model considering cutterhead support is developed based on the upper-bound theorem of limit analysis.Numerical simulation is conducted to verify the accuracy of the proposed model.The results indicate that appropriately increasing the specific gravity of the supporting medium can reduce the risk of collapse.The required compressed air pressure increases significantly as the support ratio decreases.Disregarding the supporting effect of the cutterhead will result in a tunnel face with underestimated stability.To satisfy the requirement of chamber openings at atmospheric pressure,the stratum reinforcement strength and range at the shield end are provided based on different cutterhead aperture ratios.展开更多
Cutterhead torque is a crucial parameter for the design and operation of earth pressure balance (EPB) shield tunneling machine. However, the traditional calculation models of cutterhead torque are too rough or exist...Cutterhead torque is a crucial parameter for the design and operation of earth pressure balance (EPB) shield tunneling machine. However, the traditional calculation models of cutterhead torque are too rough or exist gross errors under variable geological conditions. In order to improve the precision of the calculation model of cutterhead torque, dynamic operation parameters are considered and a new model is proposed. Experiment is carried out on a ~1.8 m shield machine test rig and the calculating re- sult with the new model is compared with the experimental data to verify the validity of the new model. The relative error of the new model is as low as 4% at smooth stage and is reduced to 5% at the end of trembling stage. Based on the results of the new model and the test data obtained from the 001.8 m test rig and the construction site, the inner relationships between several operation parameters and cutterhead torque are investigated and some quantitative conclusions are obtained.展开更多
文摘The success of a tunnel-boring machine (TBM) in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part of the machine plays a more crucial role in the efficient operation of the machine than its cutterhead. The design of the cutterhead impacts the efficiency of cutting, the balance of the head, the life of the cutters, the maintenance of the main bearing/gearbox, and the effectiveness of the mucking along with its effects on the wear of the face and gage cutters/muck buckets. Overall, cutterhead design heavily impacts the rate of penetration (ROP), rate of machine utilization (U), and daffy advance rate (AR). Although there has been some discussion in commonly available publications regarding disk cutters, cutting forces, and some design features of the head, there is limited literature on this subject because the design of cutter- heads is mainly handled by machine manufacturers. Most of the design process involves proprietary algorithms by the manufacturers, and despite recent attention on the subject, the design of rock TBMs has been somewhat of a mystery to most end-users. This paper is an attempt to demystify the basic concepts in design. Although it may not be sufficient for a full-fledged design by the readers, this paper allows engineers and contractors to understand the thought process in the design steps, what to Look for in a proper design, and the implications of the head design on machine operation and life cycle.
基金National Natural Science Foundation of China(Grant No. 51875076) NSFC-Liaoning United Key fund (Grant No. U1708255).
文摘In the process of tunneling of tunnel boring machine (TBM), different geological conditions often correspond to different working conditions, and the randomness of geological conditions also causes the order of occurrence of each working condition to be different. Under the conversion of different working conditions, this makes the vibration of different types of cutterheads different. How to choose the appropriate type of cutterhead according to different geological conditions is very important for saving engineering cost and increasing cutterhead life. In view of the above situation, this paper proposes a stability evaluation method during the TBM tunneling process to select the appropriate cutterhead type. Firstly, the corresponding relationship between geology and working conditions is established according to different geological conditions, and the input loads corresponding to geological conditions are obtained. Then, it is substituted into the dynamic model of the cutterhead system, the vibration response boundaries of each degree of freedom are obtained by solving. And the average value of the maximum boundary amplitude of each degree of freedom is taken to represent the extreme vibration of the cutterhead under the corresponding working conditions. Finally, by comparing the fluctuation of the ultimate vibration amplitude of each type of cutterhead in the process of working condition conversion, the results are as follows: when the transition between homogeneous strata and composite strata is normal and there is no large turning and deviation correction, the vibration response of the two-part cutterhead is the smallest, and the two-part cutterhead is the best choice. Otherwise, the five-part cutterhead is the best choice, while the stability of the integrated cutterhead is the worst.
基金Project(2014FJ1002)supported by the Science and Technology Major Project of Hunan Province,ChinaProject(2012AA041803)supported by National High Technology Research and Development Program of China。
文摘A shield machine with freezing function is proposed in order to realize tool change operation at atmospheric pressure. Furthermore, the transformation project of freezing cutterhead and tool change maintenance method are put forward. Taking the shield construction of Huanxi Power Tunnel as an example, a numerical analysis of the freezing cutter head of the project was carried out. The results show that when the brine temperature is-25 °C, after 30 d of freezing, the thickness of the frozen wall can reach 0.67 m and the average temperature drops to-9.9 °C. When the brine temperature is-30 °C, after 50 d of freezing, the thickness of the frozen wall can reach 1.01 m and the average temperature drops to-12.4 °C. If the thickness of the frozen wall is 0.5 m and the average temperature is-10 °C, as the design index of the frozen wall, the brine temperature should be lower than-28 °C to meet the excavation requirements in 30 d. Analyzing the frozen wall stress under 0.5 m thickness and-10 °C average temperature condition, the tensile safety factor and compressive safety factor are both greater than 2 at the most dangerous position, which can meet the tool change requirements for shield construction.
基金funded by“The Pearl River Talent Recruitment Program”of Guangdong Province in 2019(Grant No.2019CX01G338)the Research Funding of Shantou University for New Faculty Member(Grant No.NTF19024-2019).
文摘An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035042)the National Natural Science Foundation of China(Grant No.11672202)
文摘Cutterhead loads are the key mechanical parameters for the strength design of the full face hard rock tunnel boring machine(TBM).Due to the brittle rock-breaking mechanism,the excavation loads acting on cutters fluctuate strongly and show some randomness.The conventional method that using combinations of some special static loads to perform the strength design of TBM cutterhead may lead to strength failure during working practice.In this paper,a three-dimensional finite element model for coupled Cutterhead–Rock is developed to determine the cutterhead loads.Then the distribution characteristics and the influence factors of cutterhead loads are analyzed based on the numerical results.It is found that,as time changes,the normal and tangential forces acting on cutters and the total torque acting on the cutterhead approximately distribute log normally,while the total thrusts acting on the cutterhead approximately show a normal distribution.Furthermore,the statistical average values of cutterhead loads are proportional to the uniaxial compressive strength(UCS)of cutting rocks.The values also change with the penetration and the diameter of cutterhead following a power function.Based on these findings,we propose a three-parameter model for the mean of cutterhead loads and a method of generating the random cutter forces.Then the strength properties of a typical cutterhead are analyzed in detail using loads generated by the new method.The optimized cutterhead has been successfully applied in engineering.The method in this paper may provide a useful reference for the strength design of TBM cutterhead.
基金Project(51074180) supported by the National Natural Science Foundation of ChinaProject(2012AA041801) supported by the National High Technology Research and Development Program of China+2 种基金Project(2007CB714002) supported by the National Basic Research Program of ChinaProject(2013GK3003) supported by the Technology Support Plan of Hunan Province,ChinaProject(2010FJ1002) supported by Hunan Science and Technology Major Program,China
文摘In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.
基金Supported by National basic research program of China(973 Project,Grant No.2013CB035400)National Natural Science Foundation of China(Grant No.51375001)+1 种基金Major Projects of Liaoning Science and Technology Plan(Grant No.2015106016)Basic Research Project of Central University(Grant No.DUT16QY11)
文摘The accurate performance evaluation of a cutterhead is essential to improving cutterhead structure design and predicting project cost. Through extensive research, this paper evaluates the performance of a tunnel boring machine(TBM) cutterhead for cutting ability and slagging ability. This paper propose cutting efficiency, stability, and continuity of slagging as the evaluation indexes of comprehensive cutterhead performance. On the basis of research of true TBM engineering applications, this paper proposes a calculation method for each index. A slagging efficiency index with a ratio of the maximum di erence between the slagging amount and average slagging is established. And a slagging stability index with a ratio of the maximum slagging fluctuation and average slagging is presented. Meanwhile, a cutting efficiency index by the weighed average value of multistage rock fragmentation of a cutter’s specific energy is established. The Robbins and China Railway Construction Corporation(CRCC) cutterheads are evaluated. The results show that under the same thrust and torque, the slagging stability of the CRCC scheme is worse, but the slagging continuity of the CRCC scheme is better. The cutting ability index shows that the CRCC cutterhead is more efficient.
基金Supported by the National Natural Science Foundation of China(51375001)。
文摘A comprehensive performance evaluation method for the tunnel boring machine(TBM)cutterhead is proposed in this paper.The evaluation system is established on strength and vibration.Based on fracture mechanics theory,fatigue strength evaluation indices are determined under critical crack length.The concept of crack regions division is proposed to evaluate fatigue strength more accurately and specifically.In addition,the velocities in three directions of critical locations are obtained with dynamics equations.Then,the root-mean-square values of velocities are taken as the vibration severity indices.Taking the cutterhead of Jilin diversion engineering as an example,the evaluations of each index are completed;then,the vibration of the TBM cutterhead is measured and compared with the theoretical calculation results.There are similar change laws between the theoretical calculation results and the testing results of the cutterhead acceleration,which proves that the method of calculation of the vibration index is effective,the reliability of the cutter saddle welding should be paid attention to when the TBM is working,and the condition of vibration severity of the TBM cutterhead meets the requirements but needs to be improved.
基金This work is financially supported by the National Natural Science Foundation of China(51775113)the Natural Science Foundation of Fujian Province,China(2017J01675)Scientific Research Foundation of Fujian University of Technology(GY-Z160048).
文摘The cutterhead system is a core component of TBM equipment,which works in the extremely severe environment,and the strong impact loads result in severe vibration,crack,damage failure and other engineering failures.Accordingly,the key for cutterhead system structure design and parameter matching is to evaluate and predict cutterhead tunneling per-formance reasonably.In this paper,a prediction method for TBM cutterhead dynamic tunneling performance is pro-posed under the typical composite geological conditions,based on the CSM model of multi-cutters and cutter loads field test data.Then an actual TBM cutterhead of a water conservancy project is taken as an example,a spatial three-dimensional separation zone model for cutterhead tunneling is established under the typical geological condition,and the parameters influence rules of cutterhead tunneling performance are analyzed.The results show that,the cutter-head loads and specific energy change rules with different parameters are basically similar.Moreover,under the condi-tion of penetration p=10mm,the cutterhead bending moment coefficient of variation magnitude exceeds 20%,which is the maximum,and the normal cutter spacing optimal value is 95mm.Also,when the normal cutter spacing is kept constant in 85mm,the penetration has a greater influence on the torque and specific energy coefficient of variations,which is increased from 2mm to 10mm,and the two indexes decrease by about 73%.It is indicated that proper increase of pene-tration is beneficial to reduce the vibration fluctuation degree of torque and specific energy.The proposed method of TBM cutterhead dynamic tunneling performance and the analysis results can provide theoretical basis and design refer-ence for TBM cutterhead layout and tunneling parameters matching.
基金supported by the Natural Science Foundation Innovation Group Project of Hubei Province,China(Grant No.2023AFA017)the NRF-NSFC 3rd Joint Research Grant(Earth Science)(Grant No.41861144022).
文摘Tunnelling has increasingly become an essential tool in the exploration of underground space.A typical construction problem is the face instability during tunnelling,posing a great threat to associated infrastructures.Tunnel face instability often occurs with the soil arching collapse.This study investigates the combined effect of cutterhead opening ratio and soil non-uniformity on soil arching effect and face stability,via conducting random finite-element analysis coupled with Monte–Carlo simulations.The results underscore that the face stability is strongly associated with the evolution of stress arch.The obtained stability factors in the uniform soils can serve as a reference for the design of support pressure in practical tunnelling engineering.In addition,non-uniform soils exhibit a lower stability factor than uniform soils,which implies that the latter likely yields an underestimated probability of face failure.The tunnel face is found to have a probability of failure more than 50%if the spatial non-uniformity of soil is ignored.In the end,a practical framework is established to determine factor of safety(FOS)corresponding to different levels of probability of face failure considering various opening ratios in non-uniform soils.The required FOS is 1.70 to limit the probability of face instability no more than 0.1%.Our findings can facilitate the prediction of probability of instability in the conventionally deterministic design of face pressure.
基金National Key R&D Program of China(Grant No.2022YFB2602200)China Scholarship Council(Grant No.202106260179)+1 种基金National Natural Science Foundation of China(Grant No.52308412)China Postdoctoral Science Foundation(Grant No.2023M732668)for their financial support.
文摘When tunnelling in difficult ground conditions,shield machine would inevitably produce significant ground loss and vibration,which may disturb the ground ahead of the tunnel face.In this paper,discrete element models calibrated by model tests were established to investigate the response of tunnel face under the coupling effects of unloading and cutterhead vibrations.The results show that the friction angle reduction under cyclic loading and vibration attenuation in the sandy ground are significant and can be estimated by the fitted exponential functions.Under cutterhead vibration,the tunnel face stability is undermined and the limit support pressure(LSP)increases to 1.4 times as that in the static case with the growth of frequency and amplitude.Meanwhile,the loosening zone becomes wider and the arching effect is weakened with the reduction of peak horizontal stress and the increase of vertical stress above the tunnel.Based on the numerical results,a pseudo-static method was introduced into the limit equilibrium analysis of the wedge-prism model for calculating the LSP under vibration.With an error rate less than 5.2%,the proposed analytical method is well validated.Further analytical calculation reveals that the LSP would increase with the growth of vibration amplitude,vibration frequency and covered depth but decrease with the increase of friction angle.This study can not only lay a solid foundation for the further investigation of ground loss,ground water and soft-hard heterogeneous ground under cutterhead vibration,but also provide meaningful references for the control of environmental disturbance in practice.
基金supported by the National Key R&D Program of China (Grant No.2018YFB1702503)Shanghai Municipal Science and Technology Major Project (Grant No.2021SHZDZX0102)the State Key Laboratory of Mechanical System and Vibration (Grant No.MSVZD202103)。
文摘Shield tunneling machines are paramount underground engineering equipment and play a key role in tunnel construction.During the shield construction process,the“mud cake”formed by the difficult-to-remove clay attached to the cutterhead severely affects the shield construction efficiency and is harmful to the healthy operation of a shield tunneling machine.In this study,we propose an enhanced transformer-based detection model for detecting the cutterhead clogging status of shield tunneling machines.First,the working state data of shield machines are selected from historical excavation data,and a long short-term memory-autoencoder neural network module is constructed to remove outliers.Next,variational mode decomposition and wavelet transform are employed to denoise the data.After the preprocessing,nonoverlapping rectangular windows are used to intercept the working state data to obtain the time slices used for analysis,and several time-domain features of these periods are extracted.Owing to the data imbalance in the original dataset,the k-means-synthetic minority oversampling technique algorithm is adopted to oversample the extracted time-domain features of the clogging data in the training set to balance the dataset and improve the model performance.Finally,an enhanced transformer-based neural network is constructed to extract essential implicit features and detect cutterhead clogging status.Data collected from actual tunnel construction projects are used to verify the proposed model.The results show that the proposed model achieves accurate detection of shield machine cutterhead clogging status,with 98.85%accuracy and a 0.9786 F1 score.Moreover,the proposed model significantly outperforms the comparison models.
基金The authors gratefully acknowledge financial support from the Joint Funds of the National Natural Science Foundation of China(Grant No.U1830208)the National Natural Science Foundation of China(Grant No.52008021).
文摘Owing to long-distance advancement or obstacles,shield tunneling machines are typically shut down for maintenance.Engineering safety during maintenance outages is determined by the stability of the tunnel face.Pressure maintenance openings are typically used under complicated hydrogeological conditions.The tunnel face is supported by a medium at the bottom of the excavation chamber and compressed air at the top.Owing to the high risk of face failure,the necessity of support pressure when cutterhead support is implemented and a method for determining the value of compressed air pressure using different support ratios must to be determined.In this study,a non-fully chamber supported rotational failure model considering cutterhead support is developed based on the upper-bound theorem of limit analysis.Numerical simulation is conducted to verify the accuracy of the proposed model.The results indicate that appropriately increasing the specific gravity of the supporting medium can reduce the risk of collapse.The required compressed air pressure increases significantly as the support ratio decreases.Disregarding the supporting effect of the cutterhead will result in a tunnel face with underestimated stability.To satisfy the requirement of chamber openings at atmospheric pressure,the stratum reinforcement strength and range at the shield end are provided based on different cutterhead aperture ratios.
基金supported by the National Basic Research Program ("973"Program) of China (Grant No. 2007CB714004)
文摘Cutterhead torque is a crucial parameter for the design and operation of earth pressure balance (EPB) shield tunneling machine. However, the traditional calculation models of cutterhead torque are too rough or exist gross errors under variable geological conditions. In order to improve the precision of the calculation model of cutterhead torque, dynamic operation parameters are considered and a new model is proposed. Experiment is carried out on a ~1.8 m shield machine test rig and the calculating re- sult with the new model is compared with the experimental data to verify the validity of the new model. The relative error of the new model is as low as 4% at smooth stage and is reduced to 5% at the end of trembling stage. Based on the results of the new model and the test data obtained from the 001.8 m test rig and the construction site, the inner relationships between several operation parameters and cutterhead torque are investigated and some quantitative conclusions are obtained.