期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Crosswind stability of high-speed trains in special cuts 被引量:3
1
作者 张洁 高广军 +1 位作者 刘堂红 李志伟 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2849-2856,共8页
Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work w... Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains. 展开更多
关键词 high-speed train crosswind stability cut pressure distribution numerical simulation
下载PDF
A cortical bone milling force model based on orthogonal cutting distribution method 被引量:6
2
作者 Qi-Sen Chen Li Dai +1 位作者 Yu Liu Qiu-Xiang Shi 《Advances in Manufacturing》 SCIE CAS CSCD 2020年第2期204-215,共12页
In orthopedic surgery,the bone milling force has attracted attention owing to its significant influence on bone cracks and the breaking of tools.It is necessary to build a milling force model to improve the process of... In orthopedic surgery,the bone milling force has attracted attention owing to its significant influence on bone cracks and the breaking of tools.It is necessary to build a milling force model to improve the process of bone milling.This paper proposes a cortical bone milling force model based on the orthogonal cutting distribution method(OCDM),explaining the effect of anisotropic bone materials on milling force.According to the model,the bone milling force could be represented by the equivalent effect of a transient cutting force in a rotating period,and the transient milling force could be calculated by the transient milling force coefficients,cutting thickness,and cutting width.Based on the OCDM,the change in transient cutting force coefficients during slotting can be described by using a quadratic polynomial.Subsequently,the force model is updated for robotic bone milling,considering the low stiffness of the robot arm.Next,an experimental platform for robotic bone milling is built to simulate the milling process in clinical operation,and the machining signal is employed to calculate the milling force.Finally,according to the experimental result,the rationality of the force model is verified by the contrast between the measured and predicted forces.The milling force model can satisfy the accuracy requirement for predicting the milling force in the different processing directions,and it could promote the development of force control in orthopedic surgery. 展开更多
关键词 Robotic milling force Cortical bone Cutting force coefficient Orthogonal cutting distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部