Manganese oxide(MnO_(2))exhibits excellent activity for volatile organic compound oxidation.However,it is currently unknown whether lattice oxygen or adsorbed oxygen is more conducive to the progress of the catalytic ...Manganese oxide(MnO_(2))exhibits excellent activity for volatile organic compound oxidation.However,it is currently unknown whether lattice oxygen or adsorbed oxygen is more conducive to the progress of the catalytic reaction.In this study,novel hollow highly dispersed Pt/Copper modified-MnO_(2)catalysts were fabricated.Cu^(2+)was stabilized into theδ-MnO_(2)cladding substituting original K+,which produced lattice defects and enhance the content of adsorbed oxygen.The 2.03 wt%Pt Cu_(0.050)-MnO_(2)catalyst exhibited the highest catalytic activity and excellent stability for toluene and benzene oxidation,with T_(100)=160℃under high space velocity(36,000 mL g^(-1)h^(-1)).The excellent performance of catalytic oxidation of VOCs is attributed to the abundant adsorbed oxygen content,excellent low-temperature reducibility and the synergistic catalytic effect between the Pt nanoparticles and Cu_(0.050)-MnO_(2).This study provides a comprehensive understanding of the Langmuir-Hinshelwood(L-H)mechanism occurring on the catalysts.展开更多
基金financial support provided by the National Key R&D Program of China(2020YFC1808401)National Natural Science Foundation of China(22078213,21938006,51973148,21776190)+1 种基金cuttingedge technology basic research project of Jiangsu(BK20202012)the project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Manganese oxide(MnO_(2))exhibits excellent activity for volatile organic compound oxidation.However,it is currently unknown whether lattice oxygen or adsorbed oxygen is more conducive to the progress of the catalytic reaction.In this study,novel hollow highly dispersed Pt/Copper modified-MnO_(2)catalysts were fabricated.Cu^(2+)was stabilized into theδ-MnO_(2)cladding substituting original K+,which produced lattice defects and enhance the content of adsorbed oxygen.The 2.03 wt%Pt Cu_(0.050)-MnO_(2)catalyst exhibited the highest catalytic activity and excellent stability for toluene and benzene oxidation,with T_(100)=160℃under high space velocity(36,000 mL g^(-1)h^(-1)).The excellent performance of catalytic oxidation of VOCs is attributed to the abundant adsorbed oxygen content,excellent low-temperature reducibility and the synergistic catalytic effect between the Pt nanoparticles and Cu_(0.050)-MnO_(2).This study provides a comprehensive understanding of the Langmuir-Hinshelwood(L-H)mechanism occurring on the catalysts.