This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from t...This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .展开更多
Target detection is always an important application in hyperspectral image processing field. In this paper, a spectral-spatial target detection algorithm for hyperspectral data is proposed.The spatial feature and spec...Target detection is always an important application in hyperspectral image processing field. In this paper, a spectral-spatial target detection algorithm for hyperspectral data is proposed.The spatial feature and spectral feature were unified based on the data filed theory and extracted by weighted manifold embedding. The novelties of the proposed method lie in two aspects. One is the way in which the spatial features and spectral features were fused as a new feature based on the data field theory, and the other is that local information was introduced to describe the decision boundary and explore the discriminative features for target detection. The extracted features based on data field modeling and manifold embedding techniques were considered for a target detection task.Three standard hyperspectral datasets were considered in the analysis. The effectiveness of the proposed target detection algorithm based on data field theory was proved by the higher detection rates with lower False Alarm Rates(FARs) with respect to those achieved by conventional hyperspectral target detectors.展开更多
The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When thi...The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When this function happens to be conservative, it is projection of the true score function onto a class of estimation functions. By constructing, the potential function for the projected score with aggregated data is obtained, which have some properties of log-likelihood function.展开更多
The simulation performance over complex building clusters of a wind simulation model(Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system(Urban Microscale Air Po...The simulation performance over complex building clusters of a wind simulation model(Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system(Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL(Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data(Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier–Stokes equations, and can produce very high-resolution(1–5 m) wind fields of a complex neighborhood scale urban building canopy(~ 1 km ×1km) in less than 3 min when run on a personal computer.展开更多
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcast...This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the cross-calibrated multi-platform (CCMP) reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.展开更多
In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the...In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the conventional back propagation (BP) model, an improved BP model was proposed, with main modifications of back propagation of error, self-adapting algorithm, and activation function, also a prediction program was developed. The improved BP model was successfully applied to predicting the lithology of formations to be drilled in the Kela-2 gas field.展开更多
The impact of ERS-1 altimeter significant wave height on analysis of wave field and wave pre- dictions is tested through analysis of selected cases. Application of the altimeter data may modifg initial tield and thus ...The impact of ERS-1 altimeter significant wave height on analysis of wave field and wave pre- dictions is tested through analysis of selected cases. Application of the altimeter data may modifg initial tield and thus 24-hour prediction of significant wave height. However the variations in initial wave field almost make no effect on 48-hour predictions.展开更多
文摘This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .
文摘Target detection is always an important application in hyperspectral image processing field. In this paper, a spectral-spatial target detection algorithm for hyperspectral data is proposed.The spatial feature and spectral feature were unified based on the data filed theory and extracted by weighted manifold embedding. The novelties of the proposed method lie in two aspects. One is the way in which the spatial features and spectral features were fused as a new feature based on the data field theory, and the other is that local information was introduced to describe the decision boundary and explore the discriminative features for target detection. The extracted features based on data field modeling and manifold embedding techniques were considered for a target detection task.Three standard hyperspectral datasets were considered in the analysis. The effectiveness of the proposed target detection algorithm based on data field theory was proved by the higher detection rates with lower False Alarm Rates(FARs) with respect to those achieved by conventional hyperspectral target detectors.
文摘The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When this function happens to be conservative, it is projection of the true score function onto a class of estimation functions. By constructing, the potential function for the projected score with aggregated data is obtained, which have some properties of log-likelihood function.
基金supported by the China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201106049)the National Natural Science Foundation of China(Grant Nos.51538005 and 41375014)the Jiangsu Collaborative Innovation Center for Climate Change,China
文摘The simulation performance over complex building clusters of a wind simulation model(Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system(Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL(Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data(Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier–Stokes equations, and can produce very high-resolution(1–5 m) wind fields of a complex neighborhood scale urban building canopy(~ 1 km ×1km) in less than 3 min when run on a personal computer.
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
基金supported by the National Natural Science Foundation of China(Grants No.51309092 and 51379072)the Special Fund for Public Welfare Industry of the Ministry of Water Resources of China(Grant No.201201045)+1 种基金the Natural Science Fund for Colleges and Universities in Jiangsu Province(Grant No.BK20130833)the Fundamental Research Funds for the Central Universities(Grants No.2015B16014 and 2013B03414)
文摘This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the cross-calibrated multi-platform (CCMP) reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.
文摘In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the conventional back propagation (BP) model, an improved BP model was proposed, with main modifications of back propagation of error, self-adapting algorithm, and activation function, also a prediction program was developed. The improved BP model was successfully applied to predicting the lithology of formations to be drilled in the Kela-2 gas field.
文摘The impact of ERS-1 altimeter significant wave height on analysis of wave field and wave pre- dictions is tested through analysis of selected cases. Application of the altimeter data may modifg initial tield and thus 24-hour prediction of significant wave height. However the variations in initial wave field almost make no effect on 48-hour predictions.