Objectives: We introduce a special form of the Generalized Poisson Distribution. The distribution has one parameter, yet it has a variance that is larger than the mean a phenomenon known as “over dispersion”. We dis...Objectives: We introduce a special form of the Generalized Poisson Distribution. The distribution has one parameter, yet it has a variance that is larger than the mean a phenomenon known as “over dispersion”. We discuss potential applications of the distribution as a model of counts, and under the assumption of independence we will perform statistical inference on the ratio of two means, with generalization to testing the homogeneity of several means. Methods: Bayesian methods depend on the choice of the prior distributions of the population parameters. In this paper, we describe a Bayesian approach for estimation and inference on the parameters of several independent Inflated Poisson (IPD) distributions with two possible priors, the first is the reciprocal of the square root of the Poisson parameter and the other is a conjugate Gamma prior. The parameters of Gamma distribution are estimated in the empirical Bayesian framework using the maximum likelihood (ML) solution using nonlinear mixed model (NLMIXED) in SAS. With these priors we construct the highest posterior confidence intervals on the ratio of two IPD parameters and test the homogeneity of several populations. Results: We encountered convergence problem in estimating the hyperparameters of the posterior distribution using the NLMIXED. However, direct maximization of the predictive density produced solutions to the maximum likelihood equations. We apply the methodologies to RNA-SEQ read count data of gene expression values.展开更多
文摘Objectives: We introduce a special form of the Generalized Poisson Distribution. The distribution has one parameter, yet it has a variance that is larger than the mean a phenomenon known as “over dispersion”. We discuss potential applications of the distribution as a model of counts, and under the assumption of independence we will perform statistical inference on the ratio of two means, with generalization to testing the homogeneity of several means. Methods: Bayesian methods depend on the choice of the prior distributions of the population parameters. In this paper, we describe a Bayesian approach for estimation and inference on the parameters of several independent Inflated Poisson (IPD) distributions with two possible priors, the first is the reciprocal of the square root of the Poisson parameter and the other is a conjugate Gamma prior. The parameters of Gamma distribution are estimated in the empirical Bayesian framework using the maximum likelihood (ML) solution using nonlinear mixed model (NLMIXED) in SAS. With these priors we construct the highest posterior confidence intervals on the ratio of two IPD parameters and test the homogeneity of several populations. Results: We encountered convergence problem in estimating the hyperparameters of the posterior distribution using the NLMIXED. However, direct maximization of the predictive density produced solutions to the maximum likelihood equations. We apply the methodologies to RNA-SEQ read count data of gene expression values.