期刊文献+
共找到144篇文章
< 1 2 8 >
每页显示 20 50 100
Comparison of Missing Data Imputation Methods in Time Series Forecasting 被引量:2
1
作者 Hyun Ahn Kyunghee Sun Kwanghoon Pio Kim 《Computers, Materials & Continua》 SCIE EI 2022年第1期767-779,共13页
Time series forecasting has become an important aspect of data analysis and has many real-world applications.However,undesirable missing values are often encountered,which may adversely affect many forecasting tasks.I... Time series forecasting has become an important aspect of data analysis and has many real-world applications.However,undesirable missing values are often encountered,which may adversely affect many forecasting tasks.In this study,we evaluate and compare the effects of imputationmethods for estimating missing values in a time series.Our approach does not include a simulation to generate pseudo-missing data,but instead perform imputation on actual missing data and measure the performance of the forecasting model created therefrom.In an experiment,therefore,several time series forecasting models are trained using different training datasets prepared using each imputation method.Subsequently,the performance of the imputation methods is evaluated by comparing the accuracy of the forecasting models.The results obtained from a total of four experimental cases show that the k-nearest neighbor technique is the most effective in reconstructing missing data and contributes positively to time series forecasting compared with other imputation methods. 展开更多
关键词 Missing data imputation method time series forecasting LSTM
下载PDF
Adaptive Modeling and Forecasting of Time Series by Combining the Methods of Temporal Differences with Neural Networks
2
作者 杨璐 洪家荣 黄梯云 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第1期94-98,共5页
This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differen... This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differences methods with back-propagation algorithm for updating the parameters continuously on the basis of recent data. This method can make the neural network model fit the recent characteristic of the time series as close as possible, therefore improves the prediction accuracy. We built models and made predictions for the sunspot series. The prediction results of adaptive modeling method are better than that of non-adaptive modeling methods. 展开更多
关键词 ss: NEURAL network time series forecasting TEMPORAL DIFFERENCES methods
下载PDF
A New Multidimensional Time Series Forecasting Method Based on the EOF Iteration Scheme 被引量:3
3
作者 张邦林 刘洁 孙照渤 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第2期243-247,共5页
In this paper a new .mnultidimensional time series forecasting scheme based on the empirical orthogonal function (EOF) stepwise iteration process is introduced. The scheme is tested in a series of forecast experiments... In this paper a new .mnultidimensional time series forecasting scheme based on the empirical orthogonal function (EOF) stepwise iteration process is introduced. The scheme is tested in a series of forecast experiments of Nino3 SST anomalies and Tahiti-Darwin SO index. The results show that the scheme is feasible and ENSO predictable. 展开更多
关键词 SST A New Multidimensional time series forecasting method Based on the EOF Iteration Scheme Nino EOF
下载PDF
A Type of Combination Forecasting Method Based on Time Series Method and PLS
4
作者 Liang Wan Biao Luo +1 位作者 Hong-Mei Ji Wei-Wei Yan 《American Journal of Operations Research》 2012年第4期467-472,共6页
This paper depends on the panel data of Anhui province and its 17 cities’ cigarette sales. First we established three single forecasting models (Holter-Wintel Season product model, Time series model decomposing model... This paper depends on the panel data of Anhui province and its 17 cities’ cigarette sales. First we established three single forecasting models (Holter-Wintel Season product model, Time series model decomposing model and Partial least square regression model), after getting the predicted value of cigarette sales from these single models, we then employ the combination forecasting method based on Time Series method and PLS to predict the province and its 17 cities’ cigarette sales of the next year. The results show that the accuracy of prediction is good which could provide a reliable reference to cigarette sales forecasting in Anhui province and its 17 cities. 展开更多
关键词 PLS time series method COMBINATION forecast method SALES forecasts
下载PDF
The Group Method of Data Handling (GMDH) and Artificial Neural Networks (ANN)in Time-Series Forecasting of Rice Yield
5
作者 Nadira Mohamed Isa Shabri Ani Samsudin Ruhaidah 《材料科学与工程(中英文B版)》 2011年第3期378-387,共10页
关键词 时间序列预测模型 人工神经网络 GMDH 水稻产量 数据处理 ANN 多项式函数 双曲线
下载PDF
A New Type of Combination Forecasting Method Based on PLS——The Application of It in Cigarette Sales Forecasting 被引量:1
6
作者 Biao Luo Liang Wan +1 位作者 Wei-Wei Yan Jie-Jie Yu 《American Journal of Operations Research》 2012年第3期408-416,共9页
Cigarette market is a kind of monopoly market which is closed loop running, it depends on the plan mechanism to schedule producing, supplying and selling, but the “bullwhip effect” still exists. So it has a fundamen... Cigarette market is a kind of monopoly market which is closed loop running, it depends on the plan mechanism to schedule producing, supplying and selling, but the “bullwhip effect” still exists. So it has a fundamental significance to do sales forecasting work. It needs to considerate the double trend characteristics, history sales data and other main factors that affect cigarette sales. This paper depends on the panel data of A province’s cigarette sales, first we established three single forecasting models, after getting the predicted value of these single models, then using the combination forecasting method which based on PLS to predict the province’s cigarette sales of the next year. The results show that the prediction accuracy is good, which could provide a certain reference to cigarette sales forecasting in A province. 展开更多
关键词 PLS ARMA time series method Combination forecasting method SALES forecast
下载PDF
FORECASTING TIME SERIES WITH GENETIC PROGRAMMING BASED ON LEAST SQUARE METHOD 被引量:3
7
作者 YANG Fengmei LI Meng +1 位作者 HUANG Anqiang LI Jian 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第1期117-129,共13页
Although time series are frequently nonlinear in reality, people tend to use linear models to fit them under some assumptJLons unnecessarily in accordance with the truth, which unsurprisingly leads to unsatisfactory p... Although time series are frequently nonlinear in reality, people tend to use linear models to fit them under some assumptJLons unnecessarily in accordance with the truth, which unsurprisingly leads to unsatisfactory performance. This paper proposes a forecast method: Genetic programming based on least square method (GP-LSM). Inheriting the advantages of genetic algorithm (GA), without relying on the particular distribution of the data, this method can improve the prediction accuracy because of its ability of fitting nonlinear models, and raise the convergence speed benefitting from the least square method (LSM). In order to verify the vMidity of this method, the authors compare this method with seasonal auto regression integrated moving average (SARIMA) and back propagation artificial neural networks (BP-ANN). The results of empirical analysis show that forecast accuracy and direction prediction accuracy of GP-LSM are obviously better than those of the others. 展开更多
关键词 forecast genetic programming least square method time series.
原文传递
Time-Series Forecasting Using Autoregression Enhanced k-Nearest Neighbors Method 被引量:1
8
作者 潘峰 赵海波 刘华山 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第4期434-442,共9页
This study proposes two metrics using the nearest neighbors method to improve the accuracy of time-series forecasting. These two metrics can be treated as a hybrid forecasting approach to combine linear and non-linear... This study proposes two metrics using the nearest neighbors method to improve the accuracy of time-series forecasting. These two metrics can be treated as a hybrid forecasting approach to combine linear and non-linear forecasting techniques. One metric redefines the distance in k-nearest neighbors based on the coefficients of autoregression (AR) in time series. Meanwhile, an improvement to Kulesh's adaptive metrics in the nearest neighbors is also presented. To evaluate the performance of the two proposed metrics, three types of time-series data, namely deterministic synthetic data, chaotic time-series data and real time-series data, are predicted. Experimental results show the superiority of the proposed AR-enhanced k-nearest neighbors methods to the traditional k-nearest neighbors metric and Kulesh's adaptive metrics. 展开更多
关键词 time series forecasting nearest neighbors method autoregression (AR) metrics
原文传递
Nonlinear combined forecasting model based on fuzzy adaptive variable weight and its application 被引量:1
9
作者 蒋爱华 梅炽 +1 位作者 鄂加强 时章明 《Journal of Central South University》 SCIE EI CAS 2010年第4期863-867,共5页
In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using concept... In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using conceptions of the relative error,the change tendency of the forecasted object,gray basic weight and adaptive control coefficient on the basis of the method of fuzzy variable weight.Based on Visual Basic 6.0 platform,a fuzzy adaptive variable weight combined forecasting and management system was developed.The application results reveal that the forecasting precisions from the new nonlinear combined forecasting model are higher than those of other single combined forecasting models and the combined forecasting and management system is very powerful tool for the required decision in complex industry system. 展开更多
关键词 nonlinear combined forecasting nonlinear time series method of fuzzy adaptive variable weight relative error adaptive control coefficient
下载PDF
Individual and combination approaches to forecasting hierarchical time series with correlated data:an empirical study
10
作者 Hakeem-Ur Rehman Guohua Wan +1 位作者 Azmat Ullah Badiea Shaukat Antai 《Journal of Management Analytics》 EI 2019年第3期231-249,共19页
Hierarchical time series arise in manufacturing and service industries when the products or services have the hierarchical structure,and top-down and bottomup methods are commonly used to forecast the hierarchical tim... Hierarchical time series arise in manufacturing and service industries when the products or services have the hierarchical structure,and top-down and bottomup methods are commonly used to forecast the hierarchical time series.One of the critical factors that affect the performance of the two methods is the correlation between the data series.This study attempts to resolve the problem and shows that the top-down method performs better when data have high positive correlation compared to high negative correlation and combination of forecasting methods may be the best solution when there is no evidence of the correlationship.We conduct the computational experiments using 240 monthly data series from the‘Industrial’category of the M3-Competition and test twelve combination methods for the hierarchical data series.The results show that the regression-based,VAR-COV and the Rank-based methods perform better compared to the other methods. 展开更多
关键词 hierarchical time series individual forecasting methods combination forecasting methods CORRELATION
原文传递
基于TOPSIS模型对小批量物料的生产安排研究
11
作者 祝福 张雨曦 张理涛 《襄阳职业技术学院学报》 2024年第3期97-101,共5页
在企业小批量物料的生产安排中,逐渐出现因事先无法知道物料的实际需求导致生产安排有误等现象。针对这一情况,为帮助企业进行更合理的物料生产,通过分析某工厂2019-2022年的历史数据,基于Topsis算法建立模型,选出需要重点关注的物料,... 在企业小批量物料的生产安排中,逐渐出现因事先无法知道物料的实际需求导致生产安排有误等现象。针对这一情况,为帮助企业进行更合理的物料生产,通过分析某工厂2019-2022年的历史数据,基于Topsis算法建立模型,选出需要重点关注的物料,使用时序预测建立关于物料预测模型,通过最小二乘法验证模型的准确性。物料预测为企业解决了小批量物料的生产安排问题,该模型具有一定的推广价值。 展开更多
关键词 生产计划 TOPSIS模型 时序预测 最小二乘法 小批量物料
下载PDF
基于LightGBM-Informer的盾构隧道管片上浮长时间序列预测模型 被引量:1
12
作者 真嘉捷 赖丰文 +2 位作者 黄明 李爽 许凯 《岩土力学》 EI CAS CSCD 北大核心 2024年第12期3791-3801,共11页
基于机器学习预测施工期盾构刀盘前方管片上浮值,有助于及时调整盾构控制参数以缓解管片上浮病害。然而,已有模型在长时间序列预测问题上的性能不佳,难以精确预测盾构刀盘前方多环管片上浮值。通过考虑盾构控制、姿态参数及地层信息的影... 基于机器学习预测施工期盾构刀盘前方管片上浮值,有助于及时调整盾构控制参数以缓解管片上浮病害。然而,已有模型在长时间序列预测问题上的性能不佳,难以精确预测盾构刀盘前方多环管片上浮值。通过考虑盾构控制、姿态参数及地层信息的影响,结合Boruta算法,确定模型输入特征;利用小波变换滤波器、完备自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法消除时间序列数据噪声,构建了一种基于LightBGM-Informer的盾构隧道施工期管片上浮预测模型。通过南京和厦门地区某地铁盾构隧道监测数据,验证了所提模型的准确性和适用性。结果表明,所提模型预测精度较循环神经网络(recurrent neural network,RNN)、长短时记忆网络(long short-term memory,LSTM)、门控循环单元(gated recurrent unit,GRU)、Transformer等模型有所提升,且在地质条件不同的数据集上具有良好的泛化性;随着预测序列长度的增加,该模型的性能优势更突出,可准确预测盾构刀盘前方1~2环未施工管片的上浮值。基于沙普利加和解释(Shapley additive explanations,SHAP)方法的特征重要性分析指出,土舱压力及盾头、盾尾垂直位移对管片上浮影响显著。所提模型可为复杂环境下富水地层盾构隧道管片施工智能化控制提供理论指导。 展开更多
关键词 盾构隧道 管片上浮 长时间序列预测问题 Informer模型 SHAP方法
原文传递
A self-adaptive,data-driven method to predict the cycling life of lithium-ion batteries 被引量:3
13
作者 Chao Han Yu-Chen Gao +5 位作者 Xiang Chen Xinyan Liu Nan Yao Legeng Yu Long Kong Qiang Zhang 《InfoMat》 SCIE CSCD 2024年第4期47-55,共9页
Accurately forecasting the nonlinear degradation of lithium-ion batteries(LIBs)using early-cycle data can obviously shorten the battery test time,which accelerates battery optimization and production.In this work,a se... Accurately forecasting the nonlinear degradation of lithium-ion batteries(LIBs)using early-cycle data can obviously shorten the battery test time,which accelerates battery optimization and production.In this work,a self-adaptive long short-term memory(SA-LSTM)method has been proposed to predict the battery degradation trajectory and battery lifespan with only early cycling data.Specifically,two features were extracted from discharge voltage curves by a time-series-based approach and forecasted to further cycles using SA-LSTM model.The as-obtained features were correlated with the capacity to predict the capacity degradation trajectory by generalized multiple linear regression model.The proposed method achieved an average online prediction error of 6.00%and 6.74%for discharge capacity and end of life,respectively,when using the early-cycle discharge information until 90%capacity retention.Fur-thermore,the importance of temperature control was highlighted by correlat-ing the features with the average temperature in each cycle.This work develops a self-adaptive data-driven method to accurately predict the cycling life of LIBs,and unveils the underlying degradation mechanism and the impor-tance of controlling environmental temperature. 展开更多
关键词 cycling lifespan prediction lithium-ion batteries long short-term memory method machine learning time series forecasting
原文传递
Short-term wind power forecasting using hybrid method based on enhanced boosting algorithm 被引量:16
14
作者 Yu JIANG Xingying CHEN +1 位作者 Kun YU Yingchen LIAO 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第1期126-133,共8页
Day-ahead wind power forecasting plays an essential role in the safe and economic use of wind energy,the comprehending-intrinsic complexity of the behavior of wind is considered as the main challenge faced in improvin... Day-ahead wind power forecasting plays an essential role in the safe and economic use of wind energy,the comprehending-intrinsic complexity of the behavior of wind is considered as the main challenge faced in improving forecasting accuracy.To improve forecasting accuracy,this paper focuses on two aspects:①proposing a novel hybrid method using Boosting algorithm and a multistep forecast approach to improve the forecasting capacity of traditional ARMA model;②calculating the existing error bounds of the proposed method.To validate the effectiveness of the novel hybrid method,one-year period of real data are used for test,which were collected from three operating wind farms in the east coast of Jiangsu Province,China.Meanwhile conventional ARMA model and persistence model are both used as benchmarks with which the proposed method is compared.Test results show that the proposed method achieves a more accurate forecast. 展开更多
关键词 Hybrid method Multi-step-ahead prediction Wind power forecast Boosting algorithm time series model
原文传递
基于ARIMA模型对定西天气数据的分析与预测 被引量:1
15
作者 赵子鹏 魏新奇 +2 位作者 唐龙 高丙翻 康亮河 《现代信息科技》 2024年第9期140-143,共4页
由于天气对农业生产、水资源管理和自然灾害预防等具有重要影响,文章采用ARIMA模型来实现对天气的有效预测。通过利用ACF和PACF图粗略确定ARIMA模型的参数,最终确定最优模型:ARIMA(1,1,1)为日最低气温模型,其残差序列自相关函数与偏自... 由于天气对农业生产、水资源管理和自然灾害预防等具有重要影响,文章采用ARIMA模型来实现对天气的有效预测。通过利用ACF和PACF图粗略确定ARIMA模型的参数,最终确定最优模型:ARIMA(1,1,1)为日最低气温模型,其残差序列自相关函数与偏自相关函数基本落在95%置信区间内;同时Ljung-Box Q统计结果表明残差不存在相关关系(P>0.05),即残差为白噪声,满足随机性假设;最终计算误差(日最低气温)RMSE、MAPE、MAE分别为2.63、1.22%、2.06,预测结果良好,为定西天气的预测提供了可行的方案。 展开更多
关键词 天气预测 时间序列插值法 ARIMA模型
下载PDF
2011-2021年浙江省肺结核发病率预测:基于三体模型和三体预测法
16
作者 楼润平 潘依菲 +1 位作者 王棣楠 张允馨 《中国感染控制杂志》 CAS CSCD 北大核心 2024年第7期806-811,共6页
目的研究三体模型和三体预测法在预测肺结核发病趋势中的应用。方法使用浙江省2011—2021年肺结核月度发病率数据,基于三体模型和三体预测法构建预测模型,并评估该预测模型的预测性能。结果基于三体模型和三体预测法获得的预测模型1和... 目的研究三体模型和三体预测法在预测肺结核发病趋势中的应用。方法使用浙江省2011—2021年肺结核月度发病率数据,基于三体模型和三体预测法构建预测模型,并评估该预测模型的预测性能。结果基于三体模型和三体预测法获得的预测模型1和预测模型2的平均相对预测误差分别为7.94%、8.43%,而使用自回归移动平均(ARIMA)模型获得的平均相对预测误差为8.87%,以上平均相对预测误差均处于区间(7.9%~8.9%),显示预测模型表现优秀。结论三体模型是表现优秀的时间序列预测模型,三体预测法是表现优秀的时间序列预测方法,具有较高的应用价值。 展开更多
关键词 肺结核发病率 三体模型 三体预测法 时间序列 预测误差
下载PDF
基于MCMC方法的贝叶斯统计模型应用研究
17
作者 张宗宇 徐军 +1 位作者 姜奎 陈士超 《景德镇学院学报》 2024年第3期70-74,共5页
为验证贝叶斯统计后验分布计算的收敛性,文章研究并构建了线性回归和时间序列两类经典的贝叶斯统计模型。基于马尔可夫链蒙特卡罗方法,运用birdextinct数据集验证了贝叶斯线性回归模型,并分析鸟类的平均灭绝时间与平均筑巢数、种群规模... 为验证贝叶斯统计后验分布计算的收敛性,文章研究并构建了线性回归和时间序列两类经典的贝叶斯统计模型。基于马尔可夫链蒙特卡罗方法,运用birdextinct数据集验证了贝叶斯线性回归模型,并分析鸟类的平均灭绝时间与平均筑巢数、种群规模、栖息状态三个量之间的关系。此外,根据1982-2021年居民消费指数(CPI)的序列,结合差分处理数据,建立了AR(p)时间序列预测模型。结果表明,贝叶斯线性回归模型和贝叶斯时间序列预测模型的马尔可夫链均收敛,且贝叶斯时间序列预测模型的预测误差仅为0.78%。MCMC方法能有效应用于贝叶斯统计模型分析。 展开更多
关键词 MCMC方法 贝叶斯统计 收敛性诊断 时间序列预测
下载PDF
基于时间序列分析的某地区中长期负荷预测研究
18
作者 李校良 李梓萍 刘家正 《现代工业经济和信息化》 2024年第7期282-283,287,共3页
随着我国经济蓬勃增长,城市不断扩张,用电需求迅速攀升,电力已成为各领域不可或缺的关键要素。精确的负荷预测可以最大化资源的有效利用,确保电力供应的可靠性,有助于促进电力体系的可持续发展。介绍了对时间序列分析方法,根据某地区电... 随着我国经济蓬勃增长,城市不断扩张,用电需求迅速攀升,电力已成为各领域不可或缺的关键要素。精确的负荷预测可以最大化资源的有效利用,确保电力供应的可靠性,有助于促进电力体系的可持续发展。介绍了对时间序列分析方法,根据某地区电量负荷增长情况,提出了以时间序列分析为基础的负荷预测模型。基于某地区2003—2022年供电量作为历史数据,在时间序列法中采用ARIMA模型与指数平滑法这两种方法,对2023—2028年负荷量进行预测,为某地区未来电网规划提供数据基础。 展开更多
关键词 中长期负荷预测 时间序列分析 指数平滑法 ARIMA模型
下载PDF
电力短期负荷的多变量时间序列线性回归预测方法研究 被引量:94
19
作者 雷绍兰 孙才新 +1 位作者 周湶 张晓星 《中国电机工程学报》 EI CSCD 北大核心 2006年第2期25-29,共5页
根据单变量时间序列的相空间重构思想,提出了一种电力短期负荷的多变量时间序列相空间重构方案,同时针对每一分量时间序列采用互信息法进行最佳延迟时间的选择,最优嵌入维数则采用最小预测误差法进行确定。根据相点间的欧氏距离和关联度... 根据单变量时间序列的相空间重构思想,提出了一种电力短期负荷的多变量时间序列相空间重构方案,同时针对每一分量时间序列采用互信息法进行最佳延迟时间的选择,最优嵌入维数则采用最小预测误差法进行确定。根据相点间的欧氏距离和关联度,提出了最近邻域点的优化选择方法,建立了多变量时间序列的一阶局域线性预测模型。通过重庆某地区电力系统短期负荷预测的计算实例表明,基于多变量时间序列的负荷预测方法与单变量负荷预测方法相比,具有较强的自适应能力和较好的预测效果。 展开更多
关键词 电力系统 短期负荷预测 混沌时间序列 多变量时间序列 一阶局域线性法 关联度 相空间重构
下载PDF
基于小波分析法与滚动式时间序列法的风电场风速短期预测优化算法 被引量:35
20
作者 刘辉 田红旗 李燕飞 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第1期370-375,共6页
为实现风电场风速的超前多步高精度预测,提出一种基于小波分析法与滚动式时间序列法混合建模的优化算法。该优化算法引入小波分析法对风电场实测非平稳风速序列进行分解重构计算,将非平稳性原始风速序列转化为多层较平稳分解风速序列,... 为实现风电场风速的超前多步高精度预测,提出一种基于小波分析法与滚动式时间序列法混合建模的优化算法。该优化算法引入小波分析法对风电场实测非平稳风速序列进行分解重构计算,将非平稳性原始风速序列转化为多层较平稳分解风速序列,利用对传统时间序列分析法改进后的滚动式时间序列法对各分解层风速序列建立非平稳时序预测模型,并通过模型方程实现超前多步滚动式预测计算。仿真结果表明:该优化算法实现了风速的高精度短期多步预测,将传统时间序列分析法对应超前1步、3步、5步的预测精度分别提高了54.22%,26.44%和19.38%,其预测的平均相对误差分别为1.14%,3.06%和4.41%;优化算法具有较强的细分与自学习能力。 展开更多
关键词 风速预测 滚动式时间序列法 小波分析法 时间序列分析法 优化算法
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部