The completion of the Human Genome Project lays a foundation for systematically studying the human genome from evolutionary history to precision medicine against diseases.With the explosive growth of biological data, ...The completion of the Human Genome Project lays a foundation for systematically studying the human genome from evolutionary history to precision medicine against diseases.With the explosive growth of biological data, there is an increasing number of biological databases that have been developed in aid of human-related research. Here we present a collection of humanrelated biological databases and provide a mini-review by classifying them into different categories according to their data types. As human-related databases continue to grow not only in count but also in volume, challenges are ahead in big data storage, processing, exchange and curation.展开更多
The rapid growth of structured data has presented new technological challenges in the research fields of big data and relational database. In this paper, we present an efficient system for managing and analyzing PB le...The rapid growth of structured data has presented new technological challenges in the research fields of big data and relational database. In this paper, we present an efficient system for managing and analyzing PB level structured data called Banian. Banian overcomes the storage structure limitation of relational database and effectively integrates interactive query with large-scale storage management. It provides a uniform query interface for cross-platform datasets and thus shows favorable compatibility and scalability. Banian's system architecture mainly includes three layers:(1) a storage layer using HDFS for the distributed storage of massive data;(2) a scheduling and execution layer employing the splitting and scheduling technology of parallel database; and(3)an application layer providing a cross-platform query interface and supporting standard SQL. We evaluate Banian using PB level Internet data and the TPC-H benchmark. The results show that when compared with Hive, Banian improves the query performance to a maximum of 30 times and achieves better scalability and concurrency.展开更多
基金supported by the‘‘100-Talent Program’’of Chinese Academy of Sciencesthe Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB13040500)+1 种基金the National High-tech R&D Program(863 ProgramGrant No.2012AA020409)by the Ministry of Science and Technology of China awarded to ZZ
文摘The completion of the Human Genome Project lays a foundation for systematically studying the human genome from evolutionary history to precision medicine against diseases.With the explosive growth of biological data, there is an increasing number of biological databases that have been developed in aid of human-related research. Here we present a collection of humanrelated biological databases and provide a mini-review by classifying them into different categories according to their data types. As human-related databases continue to grow not only in count but also in volume, challenges are ahead in big data storage, processing, exchange and curation.
基金supported by the National High-Tech Research and Development (863) Program of China (No. 2012AA012609)
文摘The rapid growth of structured data has presented new technological challenges in the research fields of big data and relational database. In this paper, we present an efficient system for managing and analyzing PB level structured data called Banian. Banian overcomes the storage structure limitation of relational database and effectively integrates interactive query with large-scale storage management. It provides a uniform query interface for cross-platform datasets and thus shows favorable compatibility and scalability. Banian's system architecture mainly includes three layers:(1) a storage layer using HDFS for the distributed storage of massive data;(2) a scheduling and execution layer employing the splitting and scheduling technology of parallel database; and(3)an application layer providing a cross-platform query interface and supporting standard SQL. We evaluate Banian using PB level Internet data and the TPC-H benchmark. The results show that when compared with Hive, Banian improves the query performance to a maximum of 30 times and achieves better scalability and concurrency.