In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The ...In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.展开更多
The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adapt...The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
In this paper, a novel control law is presented, which uses neural-network techniques to approximate the affine class nonlinear system having unknown or uncertain dynamics and noise disturbances. It adopts an adaptive...In this paper, a novel control law is presented, which uses neural-network techniques to approximate the affine class nonlinear system having unknown or uncertain dynamics and noise disturbances. It adopts an adaptive control law to adjust the network parameters online and adds another control component according to H-infinity control theory to attenuate the disturbance. This control law is applied to the position tracking control of pneumatic servo systems. Simulation and experimental results show that the tracking precision and convergence speed is obviously superior to the results by using the basic BP-network controller and self-tuning adaptive controller.展开更多
In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and...In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and adaptive fuzzy control is studied,and a robot CNF controller based on adaptive fuzzy compensation is proposed.The key of this strategy is to use adaptive fuzzy control to approach the uncertainty of the system online,as the compensation term of the CNF controller,and make full use of the advantages of the two control methods to reduce the influence of uncertain factors on the performance of the system.The convergence of the closed-loop system is proved by feedback linearization and Lyapunov theory.The final simulation results confirm the effectiveness of this plan.展开更多
This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and a...This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results.展开更多
A robust adaptive control scheme is proposed for a class of uncertain nonlinear systems in strict feedback form with both unknown control directions and non-symmetric dead-zone nonlinearity based on backstepping desig...A robust adaptive control scheme is proposed for a class of uncertain nonlinear systems in strict feedback form with both unknown control directions and non-symmetric dead-zone nonlinearity based on backstepping design. The conditions that the dead-zone slopes and the boundaries are equal and symmetric are removed by simplifying nonlinear dead-zone input model, the assumption that the priori knowledge of the control directions to be known is eliminated by utilizing Nussbaum-type gain technique and neural networks (NN) approximation capability. The possible controller singularity problem and the effect of dead-zone input nonlinearity are avoided perfectly by combining integral Lyapunov design with sliding mode control strategy. All the signals in the closed-loop system are guaranteed to be semi-globally uniformly ultimately bounded and the tracking error of the system is proven to be converged to a small neighborhood of the origin. Simulation results demonstrate the effectiveness of the proposed control scheme.展开更多
滤波-x最小均方(Filtered-x Least Mean Square,FxLMS)算法是主动噪声控制系统中常用的算法,对中低频噪声有较好的控制作用,但在某些环境噪声中传统的算法可能达不到期望的抑制效果。提出一种基于sigmoid变换的滤波-x四元数最小均方算法...滤波-x最小均方(Filtered-x Least Mean Square,FxLMS)算法是主动噪声控制系统中常用的算法,对中低频噪声有较好的控制作用,但在某些环境噪声中传统的算法可能达不到期望的抑制效果。提出一种基于sigmoid变换的滤波-x四元数最小均方算法,该算法利用四元数的空间特性使噪声信号在超复数域内部相互耦合和关联,并通过sigmoid函数对误差信号进行非线性变换来约束噪声信号以减低对权值更新的影响力度,避免权值在更新过程中发散,从而实现优异的收敛性能以及增强的鲁棒性。同时通过研究步长分析该算法的稳态特性,并在汽车、工厂噪声环境下验证提出算法性能的优越性,仿真结果支持了该结论。展开更多
An efficient model of nonlinear stochastic systems that can use on initial batch of data is developed using orthogonal estimation including the error reduction test and other monitoring modifications. A recursive iden...An efficient model of nonlinear stochastic systems that can use on initial batch of data is developed using orthogonal estimation including the error reduction test and other monitoring modifications. A recursive identification on line algorithm is implemented to track the nonlinear time variable process. The ELS algorithm is proposed for the parameters, and the nonlinear adaptive controller is designed by the ELS algorithm. The convergence rate of the parameter estimation and the adaptive tracking are established.展开更多
The learning control law for the general MIMO nonlinear systems with white noise distrubance is presented in the paper,it has extremely simple, recursive, incremental form,and strong robustness,it can also deal with t...The learning control law for the general MIMO nonlinear systems with white noise distrubance is presented in the paper,it has extremely simple, recursive, incremental form,and strong robustness,it can also deal with the ill-conditioned systems.The new adaptive control scheme is presented when the parameters of the MIMO nonlinear systems are unknown.The convergence,BIBO stability,and robustness of learning adaptive control scheme are also discussed in this paper.展开更多
基金supported by National Natural Science Foundationof China (No. 60774017 and No. 60874045)
文摘In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.
基金This project was supported by the National Natural Science Foundation of China (60074013)the Foundation of New Era Talent Engineering of Yangzhou University.
文摘The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.
基金Guangdong-Hong Kong Technology Cooperation Funding Scheme (No.2005A10207005, IID 2004-0005)the Research Grants Council of Hong Kong (No.9040407)
文摘In this paper, a novel control law is presented, which uses neural-network techniques to approximate the affine class nonlinear system having unknown or uncertain dynamics and noise disturbances. It adopts an adaptive control law to adjust the network parameters online and adds another control component according to H-infinity control theory to attenuate the disturbance. This control law is applied to the position tracking control of pneumatic servo systems. Simulation and experimental results show that the tracking precision and convergence speed is obviously superior to the results by using the basic BP-network controller and self-tuning adaptive controller.
基金Supported by the National Natural Science Foundation of China(No.61663030,61663032)Natural Science Foundation of Jiangxi Province(No.20142BAB207021)+4 种基金the Foundation of Jiangxi Educational Committee(No.GJJ150753)the Innovation Fund Designated for Graduate Students of Nanchang Hangkong University(No.YC2017027)the Open Fund of Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province(Nanchang Hangkong University)(No.TX201404003)Key Laboratory of Nondestructive Testing(Nanchang Hangkong University),Ministry of Education(No.ZD29529005)the Reform Project of Degree and Postgraduate Education in Jiangxi(No.JXYJG-2017-131)
文摘In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and adaptive fuzzy control is studied,and a robot CNF controller based on adaptive fuzzy compensation is proposed.The key of this strategy is to use adaptive fuzzy control to approach the uncertainty of the system online,as the compensation term of the CNF controller,and make full use of the advantages of the two control methods to reduce the influence of uncertain factors on the performance of the system.The convergence of the closed-loop system is proved by feedback linearization and Lyapunov theory.The final simulation results confirm the effectiveness of this plan.
基金supported by the National Natural Science Foundation of China(61873013,61922007)。
文摘This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results.
基金supported by the Scientific Innovation Foundation of Air Force Engineering University(No.XS0901008)Shanghai Leading Academic Discipline Project(No.J50103)
文摘A robust adaptive control scheme is proposed for a class of uncertain nonlinear systems in strict feedback form with both unknown control directions and non-symmetric dead-zone nonlinearity based on backstepping design. The conditions that the dead-zone slopes and the boundaries are equal and symmetric are removed by simplifying nonlinear dead-zone input model, the assumption that the priori knowledge of the control directions to be known is eliminated by utilizing Nussbaum-type gain technique and neural networks (NN) approximation capability. The possible controller singularity problem and the effect of dead-zone input nonlinearity are avoided perfectly by combining integral Lyapunov design with sliding mode control strategy. All the signals in the closed-loop system are guaranteed to be semi-globally uniformly ultimately bounded and the tracking error of the system is proven to be converged to a small neighborhood of the origin. Simulation results demonstrate the effectiveness of the proposed control scheme.
文摘滤波-x最小均方(Filtered-x Least Mean Square,FxLMS)算法是主动噪声控制系统中常用的算法,对中低频噪声有较好的控制作用,但在某些环境噪声中传统的算法可能达不到期望的抑制效果。提出一种基于sigmoid变换的滤波-x四元数最小均方算法,该算法利用四元数的空间特性使噪声信号在超复数域内部相互耦合和关联,并通过sigmoid函数对误差信号进行非线性变换来约束噪声信号以减低对权值更新的影响力度,避免权值在更新过程中发散,从而实现优异的收敛性能以及增强的鲁棒性。同时通过研究步长分析该算法的稳态特性,并在汽车、工厂噪声环境下验证提出算法性能的优越性,仿真结果支持了该结论。
文摘An efficient model of nonlinear stochastic systems that can use on initial batch of data is developed using orthogonal estimation including the error reduction test and other monitoring modifications. A recursive identification on line algorithm is implemented to track the nonlinear time variable process. The ELS algorithm is proposed for the parameters, and the nonlinear adaptive controller is designed by the ELS algorithm. The convergence rate of the parameter estimation and the adaptive tracking are established.
文摘The learning control law for the general MIMO nonlinear systems with white noise distrubance is presented in the paper,it has extremely simple, recursive, incremental form,and strong robustness,it can also deal with the ill-conditioned systems.The new adaptive control scheme is presented when the parameters of the MIMO nonlinear systems are unknown.The convergence,BIBO stability,and robustness of learning adaptive control scheme are also discussed in this paper.
基金supported by the National Natural Science Foundation of China(Nos.61075092,61104009)the Natural Science Foundation of Shandong Province(Nos.ZR2011FM011,ZR2010AM007)