Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production ...Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production efciency,the traditional blasting design is no longer suitable for deep hole blasting.In this paper,a disperse charge cut blasting method was proposed to address the issues of low excavation depth and high block rate in deep hole undercut blasting.First,a blasting model was used to illustrate the mechanism of the deep hole dispersive charge cut blasting process.Then,continuous charge and dispersed charge blasting models were developed using the smooth particle hydrodynamics-fnite element method(SPHFEM).The cutting parameters were determined theoretically,and the cutting efciency was introduced to evaluate the cutting efect.The blasting efects of the two charging models were analyzed utilizing the evolution law of rock damage,the number of rock particles thrown,and the cutting efciency.The results show that using a dispersed charge improves the cutting efciency by about 20%and the rock breakage for the deep hole cut blasting compared to the traditional continuous charge.In addition,important parameters such as cutting hole spacing,cutting hole depth and upper charge proportion also have a signifcant impact on the cutting efect.Finally,the deep hole dispersed charge cut blasting technology is combined with the digital electronic detonator through the feld engineering practice.It provides a reference for the subsequent deep hole cutting blasting and the use of electronic detonators in rock roadways.展开更多
Deep holes are very important in the decoding of generalized RS codes, and deep holes of RS codes have been widely studied, but there are few works on constructing general linear codes based on deep holes. Therefore, ...Deep holes are very important in the decoding of generalized RS codes, and deep holes of RS codes have been widely studied, but there are few works on constructing general linear codes based on deep holes. Therefore, we consider constructing binary linear codes by combining deep holes with binary BCH codes. In this article, we consider the 2-error-correcting binary primitive BCH codes and the extended codes to construct new binary linear codes by combining them with deep holes, respectively. Furthermore, three classes of binary linear codes are constructed, and then we determine the parameters and the weight distributions of these new binary linear codes.展开更多
The stability and nonlinear dynamic behavior of drilling shaft system in copper stave deep hole drilling were analyzed. The effects of the fluctuation of the cutting force, the mass eccentricity and the hydrodynamic f...The stability and nonlinear dynamic behavior of drilling shaft system in copper stave deep hole drilling were analyzed. The effects of the fluctuation of the cutting force, the mass eccentricity and the hydrodynamic forces of cutting fluid could be taken into consideration in the model of drilling shaft system. Based on the isoparametric finite element method, the variational form of Reynolds equation in hydrodynamic fluid was used to calculate nonlinear hydrodynamic forces and their Jacobian matrices simultaneously. In the stability analysis, a new shooting method for rapidly determining the periodic orbit of the nonlinear drilling shaft system and its period was presented by rebuilding the traditional shooting method and changing the time scale. Through the combination of theories with experiment, the correctness and effectiveness of the above methods are verified by using the Floquet theory. The results show that the mass eccentricity can inhibit the whirling motion of drilling shaft to some extent.展开更多
In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer u...In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer under two deep hole hydraulic fracturing in tectonic stress areas is studied using seepage-stress coupling models with RFPA simulation software. In addition, the effects of rock burst control are tested using multiple methods, either in the stress field or in the energy field. The research findings show that with two deep holes hydraulic fracturing in tectonic stress areas, the direction of the main crack propagation under shear-tensile stress is parallel to the greatest principal stress direction. High-pressure hydraulic fracturing water seepage can result in the destruction of the coal structure, while also weakening the physical and mechanical properties of coal and rock. Therefore the impact of high stress concentration in hazardous areas will level off, which has an effect on rock burst prevention and control in the region.展开更多
Silicon infiltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are difficult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030...Silicon infiltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are difficult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030 nm) with Si-SiC ceramics was investigated. Variations of the diameter and depth of circular holes with the growth of the laser energy density were obtained. The results indicate that the increase of machining depth follows a nonlinear relation with the increasing of laser energy density, while the diameter has little change with that. Moreover, it is found that some debris and particles are deposited around and inside the holes and waviness is in the entrance and at walls of the holes after laser processing.展开更多
Projective Reed-Solomon code is an important class of maximal distance separable codes in reliable communication and deep holes play important roles in its decoding.In this paper,we obtain two classes of deep holes of...Projective Reed-Solomon code is an important class of maximal distance separable codes in reliable communication and deep holes play important roles in its decoding.In this paper,we obtain two classes of deep holes of projective Reed-Solomon codes over finite fields with even characteristic.That is,let F_(q) be finite field with even characteristic,k∈{2,q-2},and let u(x)be the Lagrange interpolation polynomial of the first q components of the received vector u∈F_(q)+1 q Suppose that the(q+1)-th component of u is 0,and u(x)=λx^(k)+f_(≤k-2)(x),λx^(q-2)+f_(≤k-2)(x),where λ∈F^(*)_(q) and f_(≤k-2)(x)is a polynomial over F_(q) with degree no more than k-2.Then the received vector u is a deep hole of projective Reed-Solomon codes PRS(F_(q),k).In fact,our result partially solved an open problem on deep holes of projective Reed-Solomon codes proposed by Wan in 2020.展开更多
Determining deep holes is an important open problem in decoding Reed-Solomon codes. It is well known that the received word is trivially a deep hole if the degree of its Lagrange interpolation polynomial equals the di...Determining deep holes is an important open problem in decoding Reed-Solomon codes. It is well known that the received word is trivially a deep hole if the degree of its Lagrange interpolation polynomial equals the dimension of the Reed-Solomon code. For the standard Reed-Solomon codes [p-1, k]p with p a prime, Cheng and Murray conjectured in 2007 that there is no other deep holes except the trivial ones. In this paper, we show that this conjecture is not true. In fact, we find a new class of deep holes for standard Reed-Solomon codes [q-1, k]q with q a power of the prime p. Let q≥4 and 2≤k≤q-2. We show that the received word u is a deep hole if its Lagrange interpolation polynomial is the sum of monomial of degree q-2 and a polynomial of degree at most k-1. So there are at least 2(q-1)qk deep holes if k q-3.展开更多
An experimental analysis regarding the distribution of the cutting fluid is very difficult due to the inaccessibility of the contact zone within the bore hole.Therefore,suitable simulation models are necessary to eval...An experimental analysis regarding the distribution of the cutting fluid is very difficult due to the inaccessibility of the contact zone within the bore hole.Therefore,suitable simulation models are necessary to evaluate new tool designs and optimize drilling processes.In this paper the coolant distribution during helical deep hole drilling is analyzed with high-speed microscopy.Micro particles are added to the cutting fluid circuit bya developed high-pressure mixing vessel.After the evaluation of suitable particle size,particle concentration and coolant pressure,a computational fluid dynamics(CFD)simulation is validated with the experimental results.The comparison shows a very good model quality with a marginal difference for the flow velocity of 1.57%between simulation and experiment.The simulation considers the kinematic viscosity of the fluid.The results show that the fluid velocity in the chip flutes is low compared to the fluid velocity at the exit of the coolant channels of the tool and drops even further between theguidechamfers.Theflow velocity and the flow pressure directly at the cutting edge decrease to such an extent that the fluid cannot generate a sufficient cooling or lubrication.With the CFD simulation a deeper understanding of the behavior and interactions of the cutting fluid is achieved.Based on these results further research activities to improve the coolant supply can be carried out with great potential to evaluate new tool geometries and optimize the machining process.展开更多
In this paper, we first propose the maximum arc problem, normal rational curve conjecture, and extensions of normal rational curves over finite local rings, analogously to the finite geometry over finite fields. We th...In this paper, we first propose the maximum arc problem, normal rational curve conjecture, and extensions of normal rational curves over finite local rings, analogously to the finite geometry over finite fields. We then study the deep hole problem of generalized Reed-Solomon (RS) codes over finite local rings. Several different classes of deep holes are constructed. The relationship between finite geometry and deep holes of RS codes over finite local rings are also studied.展开更多
Due to the slim hole at the lower part of the ultra-deep and deep wells, the eccentricity and rotation of drill string and drilling fluid properties have great effects on the annular pressure drop. This leads to the f...Due to the slim hole at the lower part of the ultra-deep and deep wells, the eccentricity and rotation of drill string and drilling fluid properties have great effects on the annular pressure drop. This leads to the fact that conventional computational models for predicting circulating pressure drop are inapplicable to hydraulics design of deep wells. With the adoption of helical flow theory and H-B rheological model, a computational model of velocity and pressure drop of non-Newtonian fluid flow in the eccentric annulus was established for the cases where the drill string rotates. The effects of eccentricity, rotation of the drill string and the dimensions of annulus on pressure drop in the annulus were analyzed. Drilling hydraulics was given for an ultra-deep well. The results show that the annular pressure drop decreases with an increase in eccentricity and rotary speed, and increases with a decrease in annular flow area. There is a great difference between static mud density and equivalent circulating density during deep well drilling.展开更多
Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pr...Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.展开更多
We report a heptad vortex array structure in the wave fields in an extremely deep Fresnel diffraction region by asymmetrical subwavelength holes in a metal film illuminated with linearly polarized light. A Mach Zehnde...We report a heptad vortex array structure in the wave fields in an extremely deep Fresnel diffraction region by asymmetrical subwavelength holes in a metal film illuminated with linearly polarized light. A Mach Zehnder interferometer with a microscopic objective is used to record the wave fields at different distance& and the phase maps are extracted by Fourier transform of the interference intensities. We study the evolutions of the heptad vortex array with distance from the sample to the object plane. To explain the formations and the evolutions of the vortex array, we calculate the diffracted wave fields with Kirchhoff's diffraction theory. The calculations are basically consistent with the experimental results, and the properties of the heptad vortex array structure are reasonably explained.展开更多
采用随机方法分析了蕴含轴向流动流体的BTA(boring and trepanning association)深孔镗杆在随机力下的横向随机动力行为。建模时考察了流固耦合镗杆承受的弯曲、拉伸和扭转变形;经Galerkin Method离散化处理,分析了BTA镗杆在有、无随机...采用随机方法分析了蕴含轴向流动流体的BTA(boring and trepanning association)深孔镗杆在随机力下的横向随机动力行为。建模时考察了流固耦合镗杆承受的弯曲、拉伸和扭转变形;经Galerkin Method离散化处理,分析了BTA镗杆在有、无随机激励两种情况的特征值和特征频率对振动特性的影响;利用响应方差最大值和谱密度解析了BTA镗杆横向振动的临界转速与临界失稳频率;明确了镗杆随转速、刚度、初始轴向总力和剪切模量等参数变化对系统振动特性的影响机制:镗杆转速变化对系统稳定性不再具有单调性,随BTA镗杆转速持续增加,系统可历经两次转速的临界失稳,相继出现二次失稳和二次稳定;增加系统等效刚度和等效剪切模量会促进工作过程的稳定,改变轴向力对工作过程稳定的影响不明显;并以随机振动物理试验信号的功率谱分析,验证了理论仿真结果与试验结果的一致性。该研究在一定程度上揭示了BTA深孔工艺系统运动状态的复杂性,这种研究模式为进一步分析在复杂状态下的运动演化提供了更多的可能。研究结论为更好地理解BTA深孔镗杆工作时的随机动力行为提供了依据,也为BTA深孔工艺过程的振动控制和参数优化奠定了理论基础。展开更多
基金the State Key Development Program for Basic Research of China(2016YFC0600903)the National Natural Science Foundation of China(51934001).
文摘Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production efciency,the traditional blasting design is no longer suitable for deep hole blasting.In this paper,a disperse charge cut blasting method was proposed to address the issues of low excavation depth and high block rate in deep hole undercut blasting.First,a blasting model was used to illustrate the mechanism of the deep hole dispersive charge cut blasting process.Then,continuous charge and dispersed charge blasting models were developed using the smooth particle hydrodynamics-fnite element method(SPHFEM).The cutting parameters were determined theoretically,and the cutting efciency was introduced to evaluate the cutting efect.The blasting efects of the two charging models were analyzed utilizing the evolution law of rock damage,the number of rock particles thrown,and the cutting efciency.The results show that using a dispersed charge improves the cutting efciency by about 20%and the rock breakage for the deep hole cut blasting compared to the traditional continuous charge.In addition,important parameters such as cutting hole spacing,cutting hole depth and upper charge proportion also have a signifcant impact on the cutting efect.Finally,the deep hole dispersed charge cut blasting technology is combined with the digital electronic detonator through the feld engineering practice.It provides a reference for the subsequent deep hole cutting blasting and the use of electronic detonators in rock roadways.
文摘Deep holes are very important in the decoding of generalized RS codes, and deep holes of RS codes have been widely studied, but there are few works on constructing general linear codes based on deep holes. Therefore, we consider constructing binary linear codes by combining deep holes with binary BCH codes. In this article, we consider the 2-error-correcting binary primitive BCH codes and the extended codes to construct new binary linear codes by combining them with deep holes, respectively. Furthermore, three classes of binary linear codes are constructed, and then we determine the parameters and the weight distributions of these new binary linear codes.
基金Project(2007CB707706) supported by the Major State Basic Research Development Program of ChinaProjects(2007E213,2007E203) supported by the Natural Science Foundation of Shaanxi Province,China
文摘The stability and nonlinear dynamic behavior of drilling shaft system in copper stave deep hole drilling were analyzed. The effects of the fluctuation of the cutting force, the mass eccentricity and the hydrodynamic forces of cutting fluid could be taken into consideration in the model of drilling shaft system. Based on the isoparametric finite element method, the variational form of Reynolds equation in hydrodynamic fluid was used to calculate nonlinear hydrodynamic forces and their Jacobian matrices simultaneously. In the stability analysis, a new shooting method for rapidly determining the periodic orbit of the nonlinear drilling shaft system and its period was presented by rebuilding the traditional shooting method and changing the time scale. Through the combination of theories with experiment, the correctness and effectiveness of the above methods are verified by using the Floquet theory. The results show that the mass eccentricity can inhibit the whirling motion of drilling shaft to some extent.
基金Supported by the State Key Development Program for Basic Research of China (2010CB22686) the National Natural Science Foundation of China (51174112, 51174272)
文摘In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer under two deep hole hydraulic fracturing in tectonic stress areas is studied using seepage-stress coupling models with RFPA simulation software. In addition, the effects of rock burst control are tested using multiple methods, either in the stress field or in the energy field. The research findings show that with two deep holes hydraulic fracturing in tectonic stress areas, the direction of the main crack propagation under shear-tensile stress is parallel to the greatest principal stress direction. High-pressure hydraulic fracturing water seepage can result in the destruction of the coal structure, while also weakening the physical and mechanical properties of coal and rock. Therefore the impact of high stress concentration in hazardous areas will level off, which has an effect on rock burst prevention and control in the region.
基金Funded by National Natural Science Foundation of China(Nos.51332004,51302220,51472201)the Major National Scientific Instrument and Equipment Development Project(No.2011YQ12007504)+1 种基金Natural Science Foundation of Shaanxi Province(No.2014JQ6197)the Foundation Research of Northwestern Polytechnical University(No.JC20120204)
文摘Silicon infiltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are difficult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030 nm) with Si-SiC ceramics was investigated. Variations of the diameter and depth of circular holes with the growth of the laser energy density were obtained. The results indicate that the increase of machining depth follows a nonlinear relation with the increasing of laser energy density, while the diameter has little change with that. Moreover, it is found that some debris and particles are deposited around and inside the holes and waviness is in the entrance and at walls of the holes after laser processing.
基金Supported by Foundation of Sichuan Tourism University(20SCTUTY01)Initial Scientific Research Fund of Doctors in Sichuan Tourism University。
文摘Projective Reed-Solomon code is an important class of maximal distance separable codes in reliable communication and deep holes play important roles in its decoding.In this paper,we obtain two classes of deep holes of projective Reed-Solomon codes over finite fields with even characteristic.That is,let F_(q) be finite field with even characteristic,k∈{2,q-2},and let u(x)be the Lagrange interpolation polynomial of the first q components of the received vector u∈F_(q)+1 q Suppose that the(q+1)-th component of u is 0,and u(x)=λx^(k)+f_(≤k-2)(x),λx^(q-2)+f_(≤k-2)(x),where λ∈F^(*)_(q) and f_(≤k-2)(x)is a polynomial over F_(q) with degree no more than k-2.Then the received vector u is a deep hole of projective Reed-Solomon codes PRS(F_(q),k).In fact,our result partially solved an open problem on deep holes of projective Reed-Solomon codes proposed by Wan in 2020.
基金supported by National Natural Science Foundation of China (Grant No.10971145)by the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20100181110073)
文摘Determining deep holes is an important open problem in decoding Reed-Solomon codes. It is well known that the received word is trivially a deep hole if the degree of its Lagrange interpolation polynomial equals the dimension of the Reed-Solomon code. For the standard Reed-Solomon codes [p-1, k]p with p a prime, Cheng and Murray conjectured in 2007 that there is no other deep holes except the trivial ones. In this paper, we show that this conjecture is not true. In fact, we find a new class of deep holes for standard Reed-Solomon codes [q-1, k]q with q a power of the prime p. Let q≥4 and 2≤k≤q-2. We show that the received word u is a deep hole if its Lagrange interpolation polynomial is the sum of monomial of degree q-2 and a polynomial of degree at most k-1. So there are at least 2(q-1)qk deep holes if k q-3.
文摘An experimental analysis regarding the distribution of the cutting fluid is very difficult due to the inaccessibility of the contact zone within the bore hole.Therefore,suitable simulation models are necessary to evaluate new tool designs and optimize drilling processes.In this paper the coolant distribution during helical deep hole drilling is analyzed with high-speed microscopy.Micro particles are added to the cutting fluid circuit bya developed high-pressure mixing vessel.After the evaluation of suitable particle size,particle concentration and coolant pressure,a computational fluid dynamics(CFD)simulation is validated with the experimental results.The comparison shows a very good model quality with a marginal difference for the flow velocity of 1.57%between simulation and experiment.The simulation considers the kinematic viscosity of the fluid.The results show that the fluid velocity in the chip flutes is low compared to the fluid velocity at the exit of the coolant channels of the tool and drops even further between theguidechamfers.Theflow velocity and the flow pressure directly at the cutting edge decrease to such an extent that the fluid cannot generate a sufficient cooling or lubrication.With the CFD simulation a deeper understanding of the behavior and interactions of the cutting fluid is achieved.Based on these results further research activities to improve the coolant supply can be carried out with great potential to evaluate new tool geometries and optimize the machining process.
基金The research of Jun Zhang was supported by the National Natural Science Foundation of China(Grant No.11971321)by National Key Research and Development Program of China(Grant No.2018YFA0704703)The research of Haiyan Zhou was supported by the National Natural Science Foundation of China(Grant No.12071221).
文摘In this paper, we first propose the maximum arc problem, normal rational curve conjecture, and extensions of normal rational curves over finite local rings, analogously to the finite geometry over finite fields. We then study the deep hole problem of generalized Reed-Solomon (RS) codes over finite local rings. Several different classes of deep holes are constructed. The relationship between finite geometry and deep holes of RS codes over finite local rings are also studied.
基金supported by the National 863 Program (2006AA06A19-2)
文摘Due to the slim hole at the lower part of the ultra-deep and deep wells, the eccentricity and rotation of drill string and drilling fluid properties have great effects on the annular pressure drop. This leads to the fact that conventional computational models for predicting circulating pressure drop are inapplicable to hydraulics design of deep wells. With the adoption of helical flow theory and H-B rheological model, a computational model of velocity and pressure drop of non-Newtonian fluid flow in the eccentric annulus was established for the cases where the drill string rotates. The effects of eccentricity, rotation of the drill string and the dimensions of annulus on pressure drop in the annulus were analyzed. Drilling hydraulics was given for an ultra-deep well. The results show that the annular pressure drop decreases with an increase in eccentricity and rotary speed, and increases with a decrease in annular flow area. There is a great difference between static mud density and equivalent circulating density during deep well drilling.
基金Financial supports are from the National Natural Science Foundation of China (No. 50874104)the Scientific Research Industrialization Project of Jiangsu Universities (No. JH07-023)
文摘Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.
基金Supported by the National Natural Science Foundation of China under Grant No 11574185the Science and Technology Development Program of Shandong Province under Grant No 2009GG10001005
文摘We report a heptad vortex array structure in the wave fields in an extremely deep Fresnel diffraction region by asymmetrical subwavelength holes in a metal film illuminated with linearly polarized light. A Mach Zehnder interferometer with a microscopic objective is used to record the wave fields at different distance& and the phase maps are extracted by Fourier transform of the interference intensities. We study the evolutions of the heptad vortex array with distance from the sample to the object plane. To explain the formations and the evolutions of the vortex array, we calculate the diffracted wave fields with Kirchhoff's diffraction theory. The calculations are basically consistent with the experimental results, and the properties of the heptad vortex array structure are reasonably explained.
文摘采用随机方法分析了蕴含轴向流动流体的BTA(boring and trepanning association)深孔镗杆在随机力下的横向随机动力行为。建模时考察了流固耦合镗杆承受的弯曲、拉伸和扭转变形;经Galerkin Method离散化处理,分析了BTA镗杆在有、无随机激励两种情况的特征值和特征频率对振动特性的影响;利用响应方差最大值和谱密度解析了BTA镗杆横向振动的临界转速与临界失稳频率;明确了镗杆随转速、刚度、初始轴向总力和剪切模量等参数变化对系统振动特性的影响机制:镗杆转速变化对系统稳定性不再具有单调性,随BTA镗杆转速持续增加,系统可历经两次转速的临界失稳,相继出现二次失稳和二次稳定;增加系统等效刚度和等效剪切模量会促进工作过程的稳定,改变轴向力对工作过程稳定的影响不明显;并以随机振动物理试验信号的功率谱分析,验证了理论仿真结果与试验结果的一致性。该研究在一定程度上揭示了BTA深孔工艺系统运动状态的复杂性,这种研究模式为进一步分析在复杂状态下的运动演化提供了更多的可能。研究结论为更好地理解BTA深孔镗杆工作时的随机动力行为提供了依据,也为BTA深孔工艺过程的振动控制和参数优化奠定了理论基础。