The Antarctic Bottom Water formation site Vincennes Bay,East Antarctica is experiencing a substantial intrusion of modified Circumpolar Deep Water(mCDW),which may inhibit the formation of Dense Shelf Water(DSW)and dri...The Antarctic Bottom Water formation site Vincennes Bay,East Antarctica is experiencing a substantial intrusion of modified Circumpolar Deep Water(mCDW),which may inhibit the formation of Dense Shelf Water(DSW)and drive basal melting of the ice shelves.Based on hydrographic data obtained from March to November in 2012,we evaluated the spatial spread of mCDW over the continental shelf region of Vincennes Bay and the associated temporal evolution of water properties,as well as the sea ice formation effect on water column in the coastal polynya.Results show that two branches of mCDW occupied the deep layers of the continental shelf,distinguished by the potential density(smaller than 27.8 kg/m^(3) or not)when potential temperatureθ=0.5°C in theθ-salinity space.The warmer and less dense branch observed on the east plateau,accessed the eastern ice shelves in the coastal polynya to drive basal melting of ice shelves.In contrast,the other colder and denser branch in the mid-depression reached the western Underwood Ice Shelf.DSW formation was detectable in the coastal polynya during September-November,proving the occurrence of deep convection.Surface heat loss and brine rejection during the intensive sea ice formation contributed to the destratification of the water column in the coastal polynya.It was estimated that at least 1.11±0.79 TW heat carried by mCDW into the inner part of the polynya.展开更多
In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utiliz...In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.展开更多
Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sa...Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sag of South China Sea was taken as a target.Based on the thin section,scanning electron microscopy,X-ray diffraction,porosity/permeability measurement,and mercury injection,influencing factors of dissolution were examined,and a dissolution model was established.Further,high-quality reservoirs were predicted temporally and spatially.The results show that dissolved pores constituted the main space of the Paleogene sandstone reservoir.Dissolution primarily occurred in the coarse-and medium-grained sandstones in the subaerial and subaqueous distributary channels,while dissolution was limited in fine-grained sandstones and inequigranular sandstones.The main dissolved minerals were feldspar,tuffaceous matrix,and diagenetic cement.Kaolinization of feldspar and illitization of kaolinite are the main dissolution pathways,but they occur at various depths and temperatures with different geothermal gradients.Dissolution is controlled by four factors,in terms of depositional facies,source rock evolution,overpressure,and fault activities,which co-acted at the period of 23.8–13.8 Ma,and resulted into strong dissolution.Additionally,based on these factors,high-quality reservoirs of the Enping and Zhuhai formations are predicted in the northern slope,southwestern step zone,and Liuhua uplift in the Baiyun Sag.展开更多
A novel expandable conductor was designed and applied in deep-water drilling to improve the vertical and lateral bearing capacity with a significant reduction of conductor jetting depth and soaking time. The vertical ...A novel expandable conductor was designed and applied in deep-water drilling to improve the vertical and lateral bearing capacity with a significant reduction of conductor jetting depth and soaking time. The vertical and lateral bearing capability of expandable conductors was depicted based on the ultimate subgrade reaction method and pile foundation bearing theory. The load-bearing characteristics of a laboratory-scale expandable conductor were analyzed through laboratory experiments. The serial simulation experiments are accomplished to study the bearing characteristics(vertical ultimate bearing capacity, lateral soil pressure, and lateral displacement) during the conductor soaking process. The laboratory experimental results show that the larger the length and thickness of expandable materials are,the higher the bearing capacity of the wellhead will be. During the conductor soaking process, the soil pressure around the three expandable conductors increases faster, strings representing a stronger squeezing effect and resulting in higher vertical bearing capacity. Furthermore, the lateral displacement of novel expandable conductor is smaller than that of the conventional conductor. All the advantages mentioned above contributed to the reduction of conductor’s jetting depth and soaking time. Lastly, the application workflow of a novel expandable deep-water drilling conductor was established and the autonomous expandable conductor was successfully applied in the South China Sea with a significant reduction of conductor’s jetting depth and soaking time. According to the soil properties and designed installation depth of the surface conductor, the arrangement of expandable materials should be designed reasonably to meet the safety condition and reduce the construction cost of the subsea wellhead.展开更多
Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the...Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.展开更多
A common difficulty in building prediction models with real-world environmental datasets is the skewed distribution of classes.There are significantly more samples for day-to-day classes,while rare events such as poll...A common difficulty in building prediction models with real-world environmental datasets is the skewed distribution of classes.There are significantly more samples for day-to-day classes,while rare events such as polluted classes are uncommon.Consequently,the limited availability of minority outcomes lowers the classifier’s overall reliability.This study assesses the capability of machine learning(ML)algorithms in tackling imbalanced water quality data based on the metrics of precision,recall,and F1 score.It intends to balance the misled accuracy towards the majority of data.Hence,10 ML algorithms of its performance are compared.The classifiers included are AdaBoost,SupportVector Machine,Linear Discriminant Analysis,k-Nearest Neighbors,Naive Bayes,Decision Trees,Random Forest,Extra Trees,Bagging,and the Multilayer Perceptron.This study also uses the Easy Ensemble Classifier,Balanced Bagging,andRUSBoost algorithm to evaluatemulti-class imbalanced learning methods.The comparison results revealed that a highaccuracy machine learning model is not always good in recall and sensitivity.This paper’s stacked ensemble deep learning(SE-DL)generalization model effectively classifies the water quality index(WQI)based on 23 input variables.The proposed algorithm achieved a remarkable average of 95.69%,94.96%,92.92%,and 93.88%for accuracy,precision,recall,and F1 score,respectively.In addition,the proposed model is compared against two state-of-the-art classifiers,the XGBoost(eXtreme Gradient Boosting)and Light Gradient Boosting Machine,where performance metrics of balanced accuracy and g-mean are included.The experimental setup concluded XGBoost with a higher balanced accuracy and G-mean.However,the SE-DL model has a better and more balanced performance in the F1 score.The SE-DL model aligns with the goal of this study to ensure the balance between accuracy and completeness for each water quality class.The proposed algorithm is also capable of higher efficiency at a lower computational time against using the standard SyntheticMinority Oversampling Technique(SMOTE)approach to imbalanced datasets.展开更多
The melting of the West Antarctic Ice Shelf has increased since the 1990s,driven by the relatively warm Circumpolar Deep Water(CDW)that penetrates into the West Antarctic Ice Shelf cavities through submarine glacial t...The melting of the West Antarctic Ice Shelf has increased since the 1990s,driven by the relatively warm Circumpolar Deep Water(CDW)that penetrates into the West Antarctic Ice Shelf cavities through submarine glacial troughs across the continental shelf.In this study,temperature,salinity,and current velocity data obtained by the Chinese National Antarctic Research Expedition in the Dotson-Getz Trough(DGT)shows clear differences in distribution of modified Circumpolar Deep Water(mCDW)in the summers of 2020 and 2022.Combined with contemporaneous wind data and additional temperature and salinity data from instrumented seals,the processes and mechanisms responsible for this variation are discussed.Compared with 2020,there is a significant increase in mCDW thickness in 2022,with a doubling of total heat content as the mCDW inflow path across the DGT shifts towards the eastern bank.We propose that a southward shift in the westerly winds in the summer of 2022 moved the upper oceanic divergence zone southward towards the continental slope,promoting the upwelling of mCDW above 500 m.Concurrently,stronger westerly winds over the continental slope strengthened the eastward undercurrent,increasing the transport of this mCDW and its associated heat content to the DGT through Ekman dynamics.These observations show there is strong interannual variability in the strength,path and extent of mCDW inflows to the DGT and that care must be taken when planning observation programs for long-term monitoring of the oceanic heat input to the ice shelves of this globally significant region.展开更多
The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indis...The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indispensable tool for effectively handling problems.However,this method has a conflict between localization accuracy and computational quantity.The equivalent sound speed profile(ESSP)method uses a simple sound speed profile(SSP)instead of the actual complex SSP,which can improve positioning precision but with residual error.The residual error is especially non-negligible in deep water and at large beam incidence angles.By analyzing the residual error of the ESSP method through a simulation,an empirical formula of error is presented.The data collected in the sailing circle mode(large incidence angle)of the South China Sea are used for verification.The experiments show that compared to the ESSP method,the improved algorithm has higher positioning precision and is more efficient than the ray-tracing method.展开更多
A Deep Draft Semi-submersible (DDS) under certain flow conditions could be subjected to Vortex-Induced Motions (VIM), which significantly influences the loads on and life fatigue of the moorings and the risers. To...A Deep Draft Semi-submersible (DDS) under certain flow conditions could be subjected to Vortex-Induced Motions (VIM), which significantly influences the loads on and life fatigue of the moorings and the risers. To investigate the VIM of a DDS with four rectangular section columns in waves coupled with a uniform current, a numerical study using the computational fluid dynamics (CFD) method was conducted. The issues of the VIM of multi-column floaters can be con','eniently converted to the issues of oscillating cylinders in fluid cross flows. This paper looks into the CFD numerical simulation of infinite cylinders having rectangular sections in a two-dimensional sinusoidal time- dependent flow field coupled with a uniform current. The resulted hydrodynamic forces and motion responses in different oscillatory flows plus currents both aligned in the same direction for the incidence of 135° of the DDS relative to the flow are compared with the ones in current only cases. The results show that the VIM response of this geometric arrangement of a DDS with four rectangular columns in a current combined with oscillatory flows is more evident than that in the current only case. The oscillatory flows and waves have the significant influence on the VIM response, forces and trajectory, in-plane motions of the DDS.展开更多
Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation...Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.展开更多
The spatial correlations of acoustic field have important implications for underwater target detection and other ap- plications in deep water. In this paper, the spatial correlations of the high intensity zone in the ...The spatial correlations of acoustic field have important implications for underwater target detection and other ap- plications in deep water. In this paper, the spatial correlations of the high intensity zone in the deep-water acoustic field are investigated by using the experimental data obtained in the South China Sea. The experimental results show that the structures of the spatial correlation coefficient at different ranges and depths are similar to the transmission loss structure in deep water. The main reason for this phenomenon is analyzed by combining the normal mode theory with the ray theory. It is shown that the received signals in the high intensity zone mainly include one or two main pulses which are contributed by the interference of a group of waterbome modes with similar phases. The horizontal-longitudinal correlations at the same receiver depth but in different high intensity zones are analyzed. At some positions, more pulses are received in the arrival structure of the signal due to bottom reflection and the horizontal-longitudinal correlation coefficient decreases accordingly. The multi-path arrival structure of receiving signal becomes more complex with increasing receiver depth.展开更多
Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest ...Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a beating-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz- 360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The beating-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations.展开更多
A series of environmental—geological problems have been caused by over-exploitation of deep groundwater(i.e.,confined aquifer water) in the North China Plain.In order to better understand the status of deep groundw...A series of environmental—geological problems have been caused by over-exploitation of deep groundwater(i.e.,confined aquifer water) in the North China Plain.In order to better understand the status of deep groundwater over-exploitation and the resultant environmental—geological problems on a regional scale,the over-exploitation of groundwater has been assessed by way of the groundwater exploitation potential coefficient(i.e.,the ratio of exploitable amount of deep groundwater to current exploitation), cumulative land subsidence,and long-term average lowering rate of the groundwater table.There is a good correlation among the results calculated by the different methods.On a regional scale,deep groundwater has been over-exploited and there is no further exploitation potential under the current conditions.The groundwater exploitation degree index takes the exploitation in 2003 as the reference for the calculations, so the results mainly reflect the degree of current groundwater exploitation.The results of over-exploitation of deep groundwater obtained by land subsidence data and long-term average rate of depression of the water table mainly reflect environmental—geological problems caused by exploitation of deep groundwater.展开更多
Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has ...Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has been little information on how rainfall characteristics influence soil water dynamics and deep drainage in mobile sandy lands. We used an underground chamber to examine the responses of deep drainage and soil water content in mobile sandy lands to rainfall characteristics in Inner Mongolia during the growing seasons of 2010, 2011 and 2012. Results showed that rainfall in this area was dominated by small events (〈5 mm), which increased soil water con- tent in the surface soil layers (0-40 cm), but did not increase soil water content in the deeper soil layers (greater than 40 cm). Soil water content at the 0-100 cm depth increased significantly when the total amount of rain was 〉20 mm. Rainfall amount, intensity and the duration of dry intervals were significantly related to the soil water content in different soil layers. Deep drainage was significantly correlated with rainfall amount and intensity, but not with the duration of dry intervals. The coefficients of deep drainage in the mobile sandy lands ranged from 61.30% to 67.94% during the growing seasons. Our results suggested that rainfall infiltration in the mobile sandy lands had considerable potential to increase soil water storage while recharging the groundwater in this region.展开更多
Drilling wells reveal that the organic matter abundance of Miocene marine source rocks in shallow water area of the Qiongdongnan Basin is relatively low with poor hydrocarbon generation poten- tial. However, in some d...Drilling wells reveal that the organic matter abundance of Miocene marine source rocks in shallow water area of the Qiongdongnan Basin is relatively low with poor hydrocarbon generation poten- tial. However, in some drilling wells of deep water area close to the central depression belt, Miocene marine source rocks with better organic matter abundance and hydrocarbon generation have been found, which have achieved better source rock standard based on the analysis of geochemical charac- teristics. Although there are no exploratory wells in deep water area of the research region, through the comparative analysis of geochemical data of several typical exploratory wells respectively from shallow water area in the basin, central depression belt margin in deep-water area of the basin and Site 1148 of deep sea drilling in the South China Sea Basin, it reveals that the tendency of the quality of source rocks becomes positive gradually from delta to bathyal environment, which then becomes negative as in deep oceanic environment. Owing to the lack of terrestrial organic matter input, the important controlling factors of Miocene marine source rocks in the Qiongdongnan Basin are ocean productivity and preservation conditions of organic matter. The element geochemistry data indicate that the tendency of the paleoproductivity and the preservation conditions of organic matter become positive as water depth increase from shallow area to bathyal area close to central depression belt. So it is speculated that there must exist high quality source rocks in the central depression area where the preservation conditions of organic matter are much better. Besides, in theory, in oxygen-poor zone of oceanic environment at the water depth 400–1 000 m, the preservation conditions of organic matter are well thus forming high-quality marine source rocks. The result- ing speculation, it is reasonable to consider that there are high hydrocarbon generation potential source rocks in bathyal environment of the Qiongdongnan Basin, especially at the water depth 400– 1 000 m.展开更多
Jinping traffic tunnel is one of the deepest traffic tunnels in the world with a maximum overburden of 2 375 m and the overburden over 73% of its total length is larger than 1 500 m. The tunnel is 17.5 km long and des...Jinping traffic tunnel is one of the deepest traffic tunnels in the world with a maximum overburden of 2 375 m and the overburden over 73% of its total length is larger than 1 500 m. The tunnel is 17.5 km long and designed to provide a shortcut road between two hydropower stations: Jinping I and Jinping II of the Jinping Hydropower Project, located on Yalong River, Liangshan State, Sichuan Province, China. The tunnel is so deep that building any shafts is impossible. The construction starts from both ends (east and west ends), and the construction length from the west end is 10 km with a blind heading. This paper deals with an overview of this project and analysis of the engineering features, as well as key technologies developed and applied during the construction, including geological prediction, rock burst prevention under a super high in-situ stress, sealing of groundwater with a high pressure and big flow rate, ventilation for a blind heading of 10 km, wet spraying of shotcrete at zones of rock burst and rich water, etc. The application of the new technologies to the construction achieved a high quality tunnel within the contract period.展开更多
Combined data of physical property, benthic foraminifera, and stable isotopes from ODP Sites 1148, 1146, and 1143 are used to discuss deep water evolution in the South China Sea (SCS) since the Early Miocene. The re...Combined data of physical property, benthic foraminifera, and stable isotopes from ODP Sites 1148, 1146, and 1143 are used to discuss deep water evolution in the South China Sea (SCS) since the Early Miocene. The results indicate that 3 lithostratigraphic units, respectively corresponding to 21-17 Ma, 15-10 Ma, and 10-5 Ma with positive red parameter (a^*) marking the red brown sediment color represent 3 periods of deep water ventilation. The first 2 periods show a closer link to contemporary production of the Antarctic Bottom Water (AABW) and Northern Component Water(NCW), indicating a free connection of deep waters between the SCS and the open ocean before 10 Ma.After 10 Ma, red parameter dropped but stayed higher than the modern value (a^*=0), the CaCO3 percentage difference between Site 1148 from a lower deepwater setting and Site 1146 from an upper deepwater setting enlarged significantly, and benthic species which prefer oxygen-rich bottom conditions dramatically decreased. Coupled with a major negative excursion of benthic δ^13Cat ~10 Ma,these parameters may denote a weakening in the control of the SCS deep water by the open ocean.Probably they mark the birth of a local deep water due to shallow waterways or rise of sill depths during the course of sea basin closing from south to east by the west-moving Philippine Arc after the end of SCS seafloor spreading at 16-15 Ma. However, it took another 5 Ma before the dissolved oxygen approached close to the modern level. Although the oxygen level continued to stabilize, several Pacific Bottom Water (PBW) and Pacific Deep Water (PDW) marker species rapidly increased since ~6 Ma,followed by a dramatic escalation in planktonic fragmentation which indicates high dissolution especially after ~5 Ma. The period of 5-3 Ma saw the strongest stratified deepwater in the then SCS, as indicated by up to 40﹪ CaCO3 difference between Sites 1148 and 1146. Apart from a strengthening PDW as a result of global cooling and ice cap buildup on northern high latitudes, a deepening sea basin due to stronger subduction eastward may also have triggered the influx of more corrosive waters from the deep western Pacific. Since 3 Ma, the evolution of the SCS deep water entered a modern phase, as characterized by relative stable 10﹪ CaCO3 difference between the two sites and increase in infaunal benthic species which prefer a low oxygenated environment. The subsequent reduction of PBW and PDW marker species at about 1.2 Ma and 0.9 Ma and another significant negative excursion of benthic δ^13Cto a Neogene minimum at ~0.9 Ma together convey a clear message that the PBW largely disappeared and the PDW considerably weakened in the Mid-Pleistocene SCS. Therefore, the true modern mode SCS deep water started to form only during the "Mid-Pleistocene climatic transition" probably due to the rise of sill depths under the Bashi Strait.展开更多
The warming of deep waters in the Nordic seas is identified based on observations during Chinese 5th Arctic Expedition in 2012 and historical hydrographic data. The most obvious and earliest warming occurrs in the Gre...The warming of deep waters in the Nordic seas is identified based on observations during Chinese 5th Arctic Expedition in 2012 and historical hydrographic data. The most obvious and earliest warming occurrs in the Greenland Basin (GB) and shows a coincident accelerated trend between depths 2000 and 3500 m. The ob-servations at a depth of 3000 m in the GB reveal that the potential temperature had increased from ?1.30°C in the early 1970s to ?0.93°C in 2013, with an increase of about 0.37°C (the maximum spatial deviation is 0.06°C) in the past more than 40 years. This remarkable change results in that deep waters in the center of the Lofton Basin (LB) has been colder than that in the GB since the year 2007. As for the Norwegian Basin (NB), only a slight trend of warming have been shown at a depth around 2000 m since the early 1980s, and the warming amplitude at deeper waters is just slightly above the maximum spatial deviation, implying no obvious trend of warming near the bottom. The water exchange rate of the Greenland Basin is estimated to be 86% for the period from 1982 to 2013, meaning that the residence time of the Greenland Sea deep water (GSDW) is about 35 years. As the weakening of deep-reaching convection is going on, the abyssal Nordic seas are playing a role of heat reservoir in the subarctic region and this may cause a positive feedback on the deep-sea warming in both the Arctic Ocean and the Nordic seas.展开更多
The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to...The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to quantify the natural gas generation from the Yacheng Formation and to evaluate the geological prediction and kinetic parameters using an optimization procedure based on the basin modeling of the shallow-water area. For this, the hydrocarbons produced have been grouped into four classes(C1, C2, C3 and C4-6). The results show that the onset temperature of methane generation is predicted to occur at 110℃ during the thermal history of sediments since 5.3 Ma by using data extrapolation. The hydrocarbon potential for ethane, propane and heavy gaseous hydrocarbons(C4-6) is found to be almost exhausted at geological temperature of 200℃ when the transformation ratio(TR) is over 0.8, but for which methane is determined to be about 0.5 in the shallow-water area. In contrast, the end temperature of the methane generation in the deep-water area was over 300℃ with a TR over 0.8. It plays an important role in the natural gas exploration of the deep-water basin and other basins in the broad ocean areas of China. Therefore, the natural gas exploration for the deep-water area in the Qiongdongnan Basin shall first aim at the structural traps in the Ledong, Lingshui and Beijiao sags, and in the forward direction of the structure around the sags, and then gradually develop toward the non-structural trap in the deep-water area basin of the broad ocean areas of China.展开更多
Turbidity channels have been considered as one of the important types of deepwater reservoir, and the study of their architecture plays a key role in efficient development of an oil field. To better understand the res...Turbidity channels have been considered as one of the important types of deepwater reservoir, and the study of their architecture plays a key role in efficient development of an oil field. To better understand the reservoir architecture of the lower Congo Basin M oilfield, semiquantitative–quantitative study on turbidity channel depositional architecture patterns in the middle to lower slopes was conducted with the aid of abundant high quality materials(core, outcrop, logging and seismic data),employing seismic stratigraphy, seismic sedimentology and sedimentary petrography methods. Then, its sedimentary evolution was analyzed accordingly. The results indicated that in the study area, grade 3 to grade 5 architecture units were single channel, complex channel and channel systems, respectively. Single channel sinuosity is negatively correlated with the slope, as internal grains became finer and thickness became thinner from bottom to top, axis to edge. The migration type of a single channel within one complex channel can be lateral migration and along paleocurrent migration horizontally, and lateral,indented and swing stacking in section view. Based on external morphological characteristics and boundaries,channel systems are comprised of a weakly confining type and a non-confining type. The O73 channel system can be divided into four complex channels named S1–S4, from bottom to top, with gradually less incision and more accretion. The study in this article will promote deeper understanding of turbidity channel theory, guide 3D geological modeling in reservoir development and contribute to efficient development of such reservoirs.展开更多
基金Supported by the National Natural Science Foundation of China(No.42130402)the International Science and Technology Cooperation Key Special Project of the National Key Research and Development Program of China(No.2023YFE0104500)。
文摘The Antarctic Bottom Water formation site Vincennes Bay,East Antarctica is experiencing a substantial intrusion of modified Circumpolar Deep Water(mCDW),which may inhibit the formation of Dense Shelf Water(DSW)and drive basal melting of the ice shelves.Based on hydrographic data obtained from March to November in 2012,we evaluated the spatial spread of mCDW over the continental shelf region of Vincennes Bay and the associated temporal evolution of water properties,as well as the sea ice formation effect on water column in the coastal polynya.Results show that two branches of mCDW occupied the deep layers of the continental shelf,distinguished by the potential density(smaller than 27.8 kg/m^(3) or not)when potential temperatureθ=0.5°C in theθ-salinity space.The warmer and less dense branch observed on the east plateau,accessed the eastern ice shelves in the coastal polynya to drive basal melting of ice shelves.In contrast,the other colder and denser branch in the mid-depression reached the western Underwood Ice Shelf.DSW formation was detectable in the coastal polynya during September-November,proving the occurrence of deep convection.Surface heat loss and brine rejection during the intensive sea ice formation contributed to the destratification of the water column in the coastal polynya.It was estimated that at least 1.11±0.79 TW heat carried by mCDW into the inner part of the polynya.
基金Supported by the National Science and Technology Major Project(2016ZX05029001)CNPC Science and Technology Project(2019D-4310)。
文摘In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.
基金The National Natural Science Foundation of China under contract No.42202157the China National Offshore Oil Corporation Co.,Ltd.Major Production and Scientific Research Program under contract No.2019KT-SC-22。
文摘Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sag of South China Sea was taken as a target.Based on the thin section,scanning electron microscopy,X-ray diffraction,porosity/permeability measurement,and mercury injection,influencing factors of dissolution were examined,and a dissolution model was established.Further,high-quality reservoirs were predicted temporally and spatially.The results show that dissolved pores constituted the main space of the Paleogene sandstone reservoir.Dissolution primarily occurred in the coarse-and medium-grained sandstones in the subaerial and subaqueous distributary channels,while dissolution was limited in fine-grained sandstones and inequigranular sandstones.The main dissolved minerals were feldspar,tuffaceous matrix,and diagenetic cement.Kaolinization of feldspar and illitization of kaolinite are the main dissolution pathways,but they occur at various depths and temperatures with different geothermal gradients.Dissolution is controlled by four factors,in terms of depositional facies,source rock evolution,overpressure,and fault activities,which co-acted at the period of 23.8–13.8 Ma,and resulted into strong dissolution.Additionally,based on these factors,high-quality reservoirs of the Enping and Zhuhai formations are predicted in the northern slope,southwestern step zone,and Liuhua uplift in the Baiyun Sag.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.51434009 and 51221003)。
文摘A novel expandable conductor was designed and applied in deep-water drilling to improve the vertical and lateral bearing capacity with a significant reduction of conductor jetting depth and soaking time. The vertical and lateral bearing capability of expandable conductors was depicted based on the ultimate subgrade reaction method and pile foundation bearing theory. The load-bearing characteristics of a laboratory-scale expandable conductor were analyzed through laboratory experiments. The serial simulation experiments are accomplished to study the bearing characteristics(vertical ultimate bearing capacity, lateral soil pressure, and lateral displacement) during the conductor soaking process. The laboratory experimental results show that the larger the length and thickness of expandable materials are,the higher the bearing capacity of the wellhead will be. During the conductor soaking process, the soil pressure around the three expandable conductors increases faster, strings representing a stronger squeezing effect and resulting in higher vertical bearing capacity. Furthermore, the lateral displacement of novel expandable conductor is smaller than that of the conventional conductor. All the advantages mentioned above contributed to the reduction of conductor’s jetting depth and soaking time. Lastly, the application workflow of a novel expandable deep-water drilling conductor was established and the autonomous expandable conductor was successfully applied in the South China Sea with a significant reduction of conductor’s jetting depth and soaking time. According to the soil properties and designed installation depth of the surface conductor, the arrangement of expandable materials should be designed reasonably to meet the safety condition and reduce the construction cost of the subsea wellhead.
基金Supported by the National Natural Science Foundation of China Project(52274014)Comprehensive Scientific Research Project of China National Offshore Oil Corporation(KJZH-2023-2303)。
文摘Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.
基金primarily supported by the Ministry of Higher Education through MRUN Young Researchers Grant Scheme(MY-RGS),MR001-2019,entitled“Climate Change Mitigation:Artificial Intelligence-Based Integrated Environmental System for Mangrove Forest Conservation,”received by K.H.,S.A.R.,H.F.H.,M.I.M.,and M.M.Asecondarily funded by the UM-RU Grant,ST065-2021,entitled Climate Smart Mitigation and Adaptation:Integrated Climate Resilience Strategy for Tropical Marine Ecosystem.
文摘A common difficulty in building prediction models with real-world environmental datasets is the skewed distribution of classes.There are significantly more samples for day-to-day classes,while rare events such as polluted classes are uncommon.Consequently,the limited availability of minority outcomes lowers the classifier’s overall reliability.This study assesses the capability of machine learning(ML)algorithms in tackling imbalanced water quality data based on the metrics of precision,recall,and F1 score.It intends to balance the misled accuracy towards the majority of data.Hence,10 ML algorithms of its performance are compared.The classifiers included are AdaBoost,SupportVector Machine,Linear Discriminant Analysis,k-Nearest Neighbors,Naive Bayes,Decision Trees,Random Forest,Extra Trees,Bagging,and the Multilayer Perceptron.This study also uses the Easy Ensemble Classifier,Balanced Bagging,andRUSBoost algorithm to evaluatemulti-class imbalanced learning methods.The comparison results revealed that a highaccuracy machine learning model is not always good in recall and sensitivity.This paper’s stacked ensemble deep learning(SE-DL)generalization model effectively classifies the water quality index(WQI)based on 23 input variables.The proposed algorithm achieved a remarkable average of 95.69%,94.96%,92.92%,and 93.88%for accuracy,precision,recall,and F1 score,respectively.In addition,the proposed model is compared against two state-of-the-art classifiers,the XGBoost(eXtreme Gradient Boosting)and Light Gradient Boosting Machine,where performance metrics of balanced accuracy and g-mean are included.The experimental setup concluded XGBoost with a higher balanced accuracy and G-mean.However,the SE-DL model has a better and more balanced performance in the F1 score.The SE-DL model aligns with the goal of this study to ensure the balance between accuracy and completeness for each water quality class.The proposed algorithm is also capable of higher efficiency at a lower computational time against using the standard SyntheticMinority Oversampling Technique(SMOTE)approach to imbalanced datasets.
基金This work is supported by Chinese Arctic and Antarctic Administration(Grant no.IRASCC2020-2022)National Key R&D Program of China(Grant no.2018YFA0605701).
文摘The melting of the West Antarctic Ice Shelf has increased since the 1990s,driven by the relatively warm Circumpolar Deep Water(CDW)that penetrates into the West Antarctic Ice Shelf cavities through submarine glacial troughs across the continental shelf.In this study,temperature,salinity,and current velocity data obtained by the Chinese National Antarctic Research Expedition in the Dotson-Getz Trough(DGT)shows clear differences in distribution of modified Circumpolar Deep Water(mCDW)in the summers of 2020 and 2022.Combined with contemporaneous wind data and additional temperature and salinity data from instrumented seals,the processes and mechanisms responsible for this variation are discussed.Compared with 2020,there is a significant increase in mCDW thickness in 2022,with a doubling of total heat content as the mCDW inflow path across the DGT shifts towards the eastern bank.We propose that a southward shift in the westerly winds in the summer of 2022 moved the upper oceanic divergence zone southward towards the continental slope,promoting the upwelling of mCDW above 500 m.Concurrently,stronger westerly winds over the continental slope strengthened the eastward undercurrent,increasing the transport of this mCDW and its associated heat content to the DGT through Ekman dynamics.These observations show there is strong interannual variability in the strength,path and extent of mCDW inflows to the DGT and that care must be taken when planning observation programs for long-term monitoring of the oceanic heat input to the ice shelves of this globally significant region.
基金the Natural Science Foundation of Shandong Province of China(No.ZR2022MA051)the China Postdoctoral Science Foundation(No.2020M670891)the SDUST Research Fund(No.2019TDJH103)。
文摘The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indispensable tool for effectively handling problems.However,this method has a conflict between localization accuracy and computational quantity.The equivalent sound speed profile(ESSP)method uses a simple sound speed profile(SSP)instead of the actual complex SSP,which can improve positioning precision but with residual error.The residual error is especially non-negligible in deep water and at large beam incidence angles.By analyzing the residual error of the ESSP method through a simulation,an empirical formula of error is presented.The data collected in the sailing circle mode(large incidence angle)of the South China Sea are used for verification.The experiments show that compared to the ESSP method,the improved algorithm has higher positioning precision and is more efficient than the ray-tracing method.
基金supported by the National Natural Science Foundation of China(Grant No.51279104)a Research Project on High-Technology Ships by the Ministry of Industry and Information Technology
文摘A Deep Draft Semi-submersible (DDS) under certain flow conditions could be subjected to Vortex-Induced Motions (VIM), which significantly influences the loads on and life fatigue of the moorings and the risers. To investigate the VIM of a DDS with four rectangular section columns in waves coupled with a uniform current, a numerical study using the computational fluid dynamics (CFD) method was conducted. The issues of the VIM of multi-column floaters can be con','eniently converted to the issues of oscillating cylinders in fluid cross flows. This paper looks into the CFD numerical simulation of infinite cylinders having rectangular sections in a two-dimensional sinusoidal time- dependent flow field coupled with a uniform current. The resulted hydrodynamic forces and motion responses in different oscillatory flows plus currents both aligned in the same direction for the incidence of 135° of the DDS relative to the flow are compared with the ones in current only cases. The results show that the VIM response of this geometric arrangement of a DDS with four rectangular columns in a current combined with oscillatory flows is more evident than that in the current only case. The oscillatory flows and waves have the significant influence on the VIM response, forces and trajectory, in-plane motions of the DDS.
基金supported by the National High Technology Research and Development Programof China(863 Program,Grant No.2006AA09A105)
文摘Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11434012 and 41561144006)
文摘The spatial correlations of acoustic field have important implications for underwater target detection and other ap- plications in deep water. In this paper, the spatial correlations of the high intensity zone in the deep-water acoustic field are investigated by using the experimental data obtained in the South China Sea. The experimental results show that the structures of the spatial correlation coefficient at different ranges and depths are similar to the transmission loss structure in deep water. The main reason for this phenomenon is analyzed by combining the normal mode theory with the ray theory. It is shown that the received signals in the high intensity zone mainly include one or two main pulses which are contributed by the interference of a group of waterbome modes with similar phases. The horizontal-longitudinal correlations at the same receiver depth but in different high intensity zones are analyzed. At some positions, more pulses are received in the arrival structure of the signal due to bottom reflection and the horizontal-longitudinal correlation coefficient decreases accordingly. The multi-path arrival structure of receiving signal becomes more complex with increasing receiver depth.
基金Project supported by the Program of One Hundred Talented People of the Chinese Academy of SciencesNational Natural Science Foundation of China(Grant Nos.11434012 and 41561144006)
文摘Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a beating-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz- 360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The beating-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations.
基金sponsored by a research grant from the National Natural Foundation Committee:Groundwater Crisis Critical Signal and Groundwater Resources Adjustment and Control of State Project No.973(Grant No.2010CB428806)
文摘A series of environmental—geological problems have been caused by over-exploitation of deep groundwater(i.e.,confined aquifer water) in the North China Plain.In order to better understand the status of deep groundwater over-exploitation and the resultant environmental—geological problems on a regional scale,the over-exploitation of groundwater has been assessed by way of the groundwater exploitation potential coefficient(i.e.,the ratio of exploitable amount of deep groundwater to current exploitation), cumulative land subsidence,and long-term average lowering rate of the groundwater table.There is a good correlation among the results calculated by the different methods.On a regional scale,deep groundwater has been over-exploited and there is no further exploitation potential under the current conditions.The groundwater exploitation degree index takes the exploitation in 2003 as the reference for the calculations, so the results mainly reflect the degree of current groundwater exploitation.The results of over-exploitation of deep groundwater obtained by land subsidence data and long-term average rate of depression of the water table mainly reflect environmental—geological problems caused by exploitation of deep groundwater.
基金financially supported by the National Natural Science Foundation of China (41371053, 31270501)the National Science and Technology Planning Project (2011BAC07B02)+1 种基金the Strategic Forerunner Project of Science and Technology, Chineses Academy of Sciences (XDA05050201-04-01)the Special Scientific Research Fund (201109025-2)
文摘Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has been little information on how rainfall characteristics influence soil water dynamics and deep drainage in mobile sandy lands. We used an underground chamber to examine the responses of deep drainage and soil water content in mobile sandy lands to rainfall characteristics in Inner Mongolia during the growing seasons of 2010, 2011 and 2012. Results showed that rainfall in this area was dominated by small events (〈5 mm), which increased soil water con- tent in the surface soil layers (0-40 cm), but did not increase soil water content in the deeper soil layers (greater than 40 cm). Soil water content at the 0-100 cm depth increased significantly when the total amount of rain was 〉20 mm. Rainfall amount, intensity and the duration of dry intervals were significantly related to the soil water content in different soil layers. Deep drainage was significantly correlated with rainfall amount and intensity, but not with the duration of dry intervals. The coefficients of deep drainage in the mobile sandy lands ranged from 61.30% to 67.94% during the growing seasons. Our results suggested that rainfall infiltration in the mobile sandy lands had considerable potential to increase soil water storage while recharging the groundwater in this region.
基金The Major State Basic Research Development Program (973 Program) under contract No. 2009CB219402
文摘Drilling wells reveal that the organic matter abundance of Miocene marine source rocks in shallow water area of the Qiongdongnan Basin is relatively low with poor hydrocarbon generation poten- tial. However, in some drilling wells of deep water area close to the central depression belt, Miocene marine source rocks with better organic matter abundance and hydrocarbon generation have been found, which have achieved better source rock standard based on the analysis of geochemical charac- teristics. Although there are no exploratory wells in deep water area of the research region, through the comparative analysis of geochemical data of several typical exploratory wells respectively from shallow water area in the basin, central depression belt margin in deep-water area of the basin and Site 1148 of deep sea drilling in the South China Sea Basin, it reveals that the tendency of the quality of source rocks becomes positive gradually from delta to bathyal environment, which then becomes negative as in deep oceanic environment. Owing to the lack of terrestrial organic matter input, the important controlling factors of Miocene marine source rocks in the Qiongdongnan Basin are ocean productivity and preservation conditions of organic matter. The element geochemistry data indicate that the tendency of the paleoproductivity and the preservation conditions of organic matter become positive as water depth increase from shallow area to bathyal area close to central depression belt. So it is speculated that there must exist high quality source rocks in the central depression area where the preservation conditions of organic matter are much better. Besides, in theory, in oxygen-poor zone of oceanic environment at the water depth 400–1 000 m, the preservation conditions of organic matter are well thus forming high-quality marine source rocks. The result- ing speculation, it is reasonable to consider that there are high hydrocarbon generation potential source rocks in bathyal environment of the Qiongdongnan Basin, especially at the water depth 400– 1 000 m.
文摘Jinping traffic tunnel is one of the deepest traffic tunnels in the world with a maximum overburden of 2 375 m and the overburden over 73% of its total length is larger than 1 500 m. The tunnel is 17.5 km long and designed to provide a shortcut road between two hydropower stations: Jinping I and Jinping II of the Jinping Hydropower Project, located on Yalong River, Liangshan State, Sichuan Province, China. The tunnel is so deep that building any shafts is impossible. The construction starts from both ends (east and west ends), and the construction length from the west end is 10 km with a blind heading. This paper deals with an overview of this project and analysis of the engineering features, as well as key technologies developed and applied during the construction, including geological prediction, rock burst prevention under a super high in-situ stress, sealing of groundwater with a high pressure and big flow rate, ventilation for a blind heading of 10 km, wet spraying of shotcrete at zones of rock burst and rich water, etc. The application of the new technologies to the construction achieved a high quality tunnel within the contract period.
基金This paper is supported by the National Natural Science Foundation of china (Nos. 40576031, 40476030, 40631007).
文摘Combined data of physical property, benthic foraminifera, and stable isotopes from ODP Sites 1148, 1146, and 1143 are used to discuss deep water evolution in the South China Sea (SCS) since the Early Miocene. The results indicate that 3 lithostratigraphic units, respectively corresponding to 21-17 Ma, 15-10 Ma, and 10-5 Ma with positive red parameter (a^*) marking the red brown sediment color represent 3 periods of deep water ventilation. The first 2 periods show a closer link to contemporary production of the Antarctic Bottom Water (AABW) and Northern Component Water(NCW), indicating a free connection of deep waters between the SCS and the open ocean before 10 Ma.After 10 Ma, red parameter dropped but stayed higher than the modern value (a^*=0), the CaCO3 percentage difference between Site 1148 from a lower deepwater setting and Site 1146 from an upper deepwater setting enlarged significantly, and benthic species which prefer oxygen-rich bottom conditions dramatically decreased. Coupled with a major negative excursion of benthic δ^13Cat ~10 Ma,these parameters may denote a weakening in the control of the SCS deep water by the open ocean.Probably they mark the birth of a local deep water due to shallow waterways or rise of sill depths during the course of sea basin closing from south to east by the west-moving Philippine Arc after the end of SCS seafloor spreading at 16-15 Ma. However, it took another 5 Ma before the dissolved oxygen approached close to the modern level. Although the oxygen level continued to stabilize, several Pacific Bottom Water (PBW) and Pacific Deep Water (PDW) marker species rapidly increased since ~6 Ma,followed by a dramatic escalation in planktonic fragmentation which indicates high dissolution especially after ~5 Ma. The period of 5-3 Ma saw the strongest stratified deepwater in the then SCS, as indicated by up to 40﹪ CaCO3 difference between Sites 1148 and 1146. Apart from a strengthening PDW as a result of global cooling and ice cap buildup on northern high latitudes, a deepening sea basin due to stronger subduction eastward may also have triggered the influx of more corrosive waters from the deep western Pacific. Since 3 Ma, the evolution of the SCS deep water entered a modern phase, as characterized by relative stable 10﹪ CaCO3 difference between the two sites and increase in infaunal benthic species which prefer a low oxygenated environment. The subsequent reduction of PBW and PDW marker species at about 1.2 Ma and 0.9 Ma and another significant negative excursion of benthic δ^13Cto a Neogene minimum at ~0.9 Ma together convey a clear message that the PBW largely disappeared and the PDW considerably weakened in the Mid-Pleistocene SCS. Therefore, the true modern mode SCS deep water started to form only during the "Mid-Pleistocene climatic transition" probably due to the rise of sill depths under the Bashi Strait.
基金The National Natural Science Foundation of China under contract No.41330960the Chinese Polar Environmental Comprehensive Investigation and Assessment Programs under contract Nos CHINARE2013-04-03 and CHINARE2012-03-01
文摘The warming of deep waters in the Nordic seas is identified based on observations during Chinese 5th Arctic Expedition in 2012 and historical hydrographic data. The most obvious and earliest warming occurrs in the Greenland Basin (GB) and shows a coincident accelerated trend between depths 2000 and 3500 m. The ob-servations at a depth of 3000 m in the GB reveal that the potential temperature had increased from ?1.30°C in the early 1970s to ?0.93°C in 2013, with an increase of about 0.37°C (the maximum spatial deviation is 0.06°C) in the past more than 40 years. This remarkable change results in that deep waters in the center of the Lofton Basin (LB) has been colder than that in the GB since the year 2007. As for the Norwegian Basin (NB), only a slight trend of warming have been shown at a depth around 2000 m since the early 1980s, and the warming amplitude at deeper waters is just slightly above the maximum spatial deviation, implying no obvious trend of warming near the bottom. The water exchange rate of the Greenland Basin is estimated to be 86% for the period from 1982 to 2013, meaning that the residence time of the Greenland Sea deep water (GSDW) is about 35 years. As the weakening of deep-reaching convection is going on, the abyssal Nordic seas are playing a role of heat reservoir in the subarctic region and this may cause a positive feedback on the deep-sea warming in both the Arctic Ocean and the Nordic seas.
基金The Western Light Talent Culture Project of the Chinese Academy of Sciences under contract No.Y404RC1the National Petroleum Major Projects of China under contract No.2016ZX05026-007-005+2 种基金the Key Laboratory of Petroleum Resources Research Fund of the Chinese Academy of Sciences under contract No.KFJJ2013-04the Science and Technology Program of Gansu Province under contract No.1501RJYA006the Key Laboratory Project of Gansu Province of China under contract No.1309RTSA041
文摘The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to quantify the natural gas generation from the Yacheng Formation and to evaluate the geological prediction and kinetic parameters using an optimization procedure based on the basin modeling of the shallow-water area. For this, the hydrocarbons produced have been grouped into four classes(C1, C2, C3 and C4-6). The results show that the onset temperature of methane generation is predicted to occur at 110℃ during the thermal history of sediments since 5.3 Ma by using data extrapolation. The hydrocarbon potential for ethane, propane and heavy gaseous hydrocarbons(C4-6) is found to be almost exhausted at geological temperature of 200℃ when the transformation ratio(TR) is over 0.8, but for which methane is determined to be about 0.5 in the shallow-water area. In contrast, the end temperature of the methane generation in the deep-water area was over 300℃ with a TR over 0.8. It plays an important role in the natural gas exploration of the deep-water basin and other basins in the broad ocean areas of China. Therefore, the natural gas exploration for the deep-water area in the Qiongdongnan Basin shall first aim at the structural traps in the Ledong, Lingshui and Beijiao sags, and in the forward direction of the structure around the sags, and then gradually develop toward the non-structural trap in the deep-water area basin of the broad ocean areas of China.
基金supported by the National Major Scientific and Technological Special Project during the Thirteenth Five-year Plan Period (2016ZX05033-003-002)the Project of Sinopec Science and Technology Development Department (G580015-ZS-KJB016)
文摘Turbidity channels have been considered as one of the important types of deepwater reservoir, and the study of their architecture plays a key role in efficient development of an oil field. To better understand the reservoir architecture of the lower Congo Basin M oilfield, semiquantitative–quantitative study on turbidity channel depositional architecture patterns in the middle to lower slopes was conducted with the aid of abundant high quality materials(core, outcrop, logging and seismic data),employing seismic stratigraphy, seismic sedimentology and sedimentary petrography methods. Then, its sedimentary evolution was analyzed accordingly. The results indicated that in the study area, grade 3 to grade 5 architecture units were single channel, complex channel and channel systems, respectively. Single channel sinuosity is negatively correlated with the slope, as internal grains became finer and thickness became thinner from bottom to top, axis to edge. The migration type of a single channel within one complex channel can be lateral migration and along paleocurrent migration horizontally, and lateral,indented and swing stacking in section view. Based on external morphological characteristics and boundaries,channel systems are comprised of a weakly confining type and a non-confining type. The O73 channel system can be divided into four complex channels named S1–S4, from bottom to top, with gradually less incision and more accretion. The study in this article will promote deeper understanding of turbidity channel theory, guide 3D geological modeling in reservoir development and contribute to efficient development of such reservoirs.