期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Deepfakes技术的应用对用户信息安全的影响研究——基于用户对Deepfakes技术的态度调查分析 被引量:2
1
作者 陈方元 高梦盈 郭璐璇 《情报探索》 2020年第11期79-84,共6页
[目的/意义]旨在分析Deepfakes技术的应用对用户信息安全的影响,明确用户对该技术的现有态度,找到Deepfakes技术在信息安全方面存在的问题,并从用户视角提出针对性建议。[方法/过程]采用访谈法和问卷调查法相结合,根据访谈的数据设计调... [目的/意义]旨在分析Deepfakes技术的应用对用户信息安全的影响,明确用户对该技术的现有态度,找到Deepfakes技术在信息安全方面存在的问题,并从用户视角提出针对性建议。[方法/过程]采用访谈法和问卷调查法相结合,根据访谈的数据设计调查问卷,调研了用户对Deepfakes技术的态度,并对结果进行质性分析和描述分析。[结果/结论]Deepfakes对用户带来面部信息泄露的风险担忧、信息真实性遭受挑战、用户产生信任危机等问题。针对上述问题从政府、行业、用户三个角度提出政府应尽快完善相关法律、加强监管力度、行业要加强自律、用户要提高信息安全意识和信息素养等建议。 展开更多
关键词 deepfakes 信息安全 AI换脸 用户
下载PDF
Deepfakes Detection Techniques Using Deep Learning: A Survey 被引量:1
2
作者 Abdulqader M. Almars 《Journal of Computer and Communications》 2021年第5期20-35,共16页
Deep learning is an effective and useful technique that has been widely applied in a variety of fields, including computer vision, machine vision, and natural language processing. Deepfakes uses deep learning technolo... Deep learning is an effective and useful technique that has been widely applied in a variety of fields, including computer vision, machine vision, and natural language processing. Deepfakes uses deep learning technology to manipulate images and videos of a person that humans cannot differentiate them from the real one. In recent years, many studies have been conducted to understand how deepfakes work and many approaches based on deep learning have been introduced to detect deepfakes videos or images. In this paper, we conduct a comprehensive review of deepfakes creation and detection technologies using deep learning approaches. In addition, we give a thorough analysis of various technologies and their application in deepfakes detection. Our study will be beneficial for researchers in this field as it will cover the recent state-of-art methods that discover deepfakes videos or images in social contents. In addition, it will help comparison with the existing works because of the detailed description of the latest methods and dataset used in this domain. 展开更多
关键词 deepfakes Deep Learning Fake Detection Social Media Machine Learning
下载PDF
Explainable Deep Fake Framework for Images Creation and Classification
3
作者 Majed M. Alwateer 《Journal of Computer and Communications》 2024年第5期86-101,共16页
Deep learning is a practical and efficient technique that has been used extensively in many domains. Using deep learning technology, deepfakes create fake images of a person that people cannot distinguish from the rea... Deep learning is a practical and efficient technique that has been used extensively in many domains. Using deep learning technology, deepfakes create fake images of a person that people cannot distinguish from the real one. Recently, many researchers have focused on understanding how deepkakes work and detecting using deep learning approaches. This paper introduces an explainable deepfake framework for images creation and classification. The framework consists of three main parts: the first approach is called Instant ID which is used to create deepfacke images from the original one;the second approach called Xception classifies the real and deepfake images;the third approach called Local Interpretable Model (LIME) provides a method for interpreting the predictions of any machine learning model in a local and interpretable manner. Our study proposes deepfake approach that achieves 100% precision and 100% accuracy for deepfake creation and classification. Furthermore, the results highlight the superior performance of the proposed model in deep fake creation and classification. 展开更多
关键词 deepfakes Machine Learning Deep Learning Fake Detection Social Media LIME Technique
下载PDF
一种特征融合的双流深度检测伪造人脸方法
4
作者 孟媛 汪西原 《宁夏大学学报(自然科学版)》 CAS 2024年第3期299-306,共8页
Deepfake技术的迅速发展,使得深度伪造视频和音频内容日益逼真,这种技术被广泛应用于政治伪造、金融欺诈和虚假新闻传播等领域.因此,研究和开发高效的Deepfake检测方法变得尤为关键.本研究探索了一种结合ViT与CNN的策略,充分利用CNN在... Deepfake技术的迅速发展,使得深度伪造视频和音频内容日益逼真,这种技术被广泛应用于政治伪造、金融欺诈和虚假新闻传播等领域.因此,研究和开发高效的Deepfake检测方法变得尤为关键.本研究探索了一种结合ViT与CNN的策略,充分利用CNN在局部特征提取方面的优势,以及ViT在建模全局关系方面的潜力,以提升Deepfake检测算法在实际应用中的效能.此外,为增强模型对图像或视频压缩引起的影响的抵御能力,引入频域特征,使用双流网络提取特征,以提高模型在跨压缩场景下的检测性能和稳定性.实验结果表明,基于多域特征融合的双流网络模型在FaceForensics++数据集上有较好的检测性能,其ACC值达96.98%、AUC值达98.82%.在跨数据集检测方面也取得了令人满意的结果,在Celeb-DF数据集上的AUC值达75.41%. 展开更多
关键词 Deepfake检测 CNN结合ViT RGB频域特征融合 跨压缩场景
下载PDF
A Deepfake Detection Algorithm Based on Fourier Transform of Biological Signal
5
作者 Yin Ni Wu Zeng +2 位作者 Peng Xia Guang Stanley Yang Ruochen Tan 《Computers, Materials & Continua》 SCIE EI 2024年第6期5295-5312,共18页
Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepf... Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces. 展开更多
关键词 Deepfake detector remote photoplethysmography fast fourier transform spatial attention mechanism
下载PDF
人工智能换脸技术带来的社会风险和对策研究
6
作者 何宛星 王宁 段崔林 《长江信息通信》 2024年第7期151-153,158,共4页
随着人工智能的快速发展,人脸换脸技术日益成熟,然而其广泛应用也伴随着潜在的社会风险。本研究着重探讨人工智能换脸技术在侵犯个体肖像权、隐私泄露、传播虚假信息等方面带来的风险。同时,提出应对策略,包括强化公众意识、加强政府监... 随着人工智能的快速发展,人脸换脸技术日益成熟,然而其广泛应用也伴随着潜在的社会风险。本研究着重探讨人工智能换脸技术在侵犯个体肖像权、隐私泄露、传播虚假信息等方面带来的风险。同时,提出应对策略,包括强化公众意识、加强政府监管、制定相关法规以及建设有效的防护系统。通过全面了解并规避这些风险,有望更好地引导人工智能技术的应用,维护社会稳定和公共安全。 展开更多
关键词 人脸伪造 Deepfake 深度学习 人工智能
下载PDF
深度伪造技术应用的公共安全挑战与治理 被引量:5
7
作者 姜文瀚 田青 郭小波 《警察技术》 2023年第1期3-9,共7页
面向公共安全领域深度伪造技术应用带来的安全问题,分析了相应的风险和挑战,概述了视频、音频、图像、文本各类型伪造应用和伪造检测技术现状,以及相关法律法规、标准规范情况,提出了技术研究、规制管理、宣传教育三个方面的系统性治理... 面向公共安全领域深度伪造技术应用带来的安全问题,分析了相应的风险和挑战,概述了视频、音频、图像、文本各类型伪造应用和伪造检测技术现状,以及相关法律法规、标准规范情况,提出了技术研究、规制管理、宣传教育三个方面的系统性治理措施建议,展望了未来技术发展趋势和安全治理方向。 展开更多
关键词 深度伪造 Deepfake 深度合成 音视频伪造 身份鉴别 身份认证 活体检测 数字克隆
下载PDF
基于噪声注意力的伪造人脸检测方法 被引量:1
8
作者 张博林 朱春陶 +5 位作者 殷琪林 付婧巧 刘凌毅 刘佳睿 刘红梅 卢伟 《网络与信息安全学报》 2023年第4期155-165,共11页
随着人工智能和深度神经网络的不断发展,图像生成与编辑变得越来越容易,恶意运用图像生成工具进行篡改伪造的现象层出不穷,这对多媒体安全以及社会稳定造成了极大威胁,因此研究伪造人脸的检测方法至关重要。人脸篡改伪造的方式和工具多... 随着人工智能和深度神经网络的不断发展,图像生成与编辑变得越来越容易,恶意运用图像生成工具进行篡改伪造的现象层出不穷,这对多媒体安全以及社会稳定造成了极大威胁,因此研究伪造人脸的检测方法至关重要。人脸篡改伪造的方式和工具多种多样,在篡改的过程中可能留下不同程度的篡改痕迹,而这在图像噪声中都有一定程度上的反映。从图像噪声的角度出发,通过噪声去除的方式挖掘反映伪造人脸篡改痕迹的噪声成分,进一步生成噪声注意力,指导主干网络进行伪造人脸检测。使用SRM滤波监督噪声去除模块的训练,并将噪声去除模块所得到的噪声再次加入真实人脸图像中,形成一对有监督的训练样本,通过自监督的方式对噪声去除模块进行加强指导,实验结果说明噪声去除模块得到的噪声特征具有较好的区分度。在多个公开数据集上进行了实验,所提方法在Celeb-DF数据集上达到98.32%的准确率,在FaceForensics++数据集上达到94%以上的准确率,在DFDC数据集上达到92.61%的准确率,证明了所提方法的有效性。 展开更多
关键词 Deepfake检测 图像噪声 注意力机制 篡改痕迹
下载PDF
基于多域时序特征挖掘的伪造人脸检测方法 被引量:1
9
作者 朱春陶 尹承禧 +2 位作者 张博林 殷琪林 卢伟 《网络与信息安全学报》 2023年第3期123-134,共12页
随着计算机技术在金融服务行业中的不断发展,金融科技便利了人们的日常生活,与此同时,数字金融存在着危害性极大的安全问题。人脸生物信息作为人物身份信息的重要组成部分,广泛应用于金融行业中的支付系统、账号注册等方面;伪造人脸技... 随着计算机技术在金融服务行业中的不断发展,金融科技便利了人们的日常生活,与此同时,数字金融存在着危害性极大的安全问题。人脸生物信息作为人物身份信息的重要组成部分,广泛应用于金融行业中的支付系统、账号注册等方面;伪造人脸技术的出现不断冲击着数字金融安全体系,给国家资产安全和社会稳定造成了一定的威胁。为了应对伪造人脸带来的安全问题,提出了一种基于多域时序特征挖掘的伪造人脸检测方法。所提方法从视频在空域和频域中存在的时序特征出发,基于人脸统计特征数据分布的一致性以及时间上动作趋势的一致性,对篡改特征进行区分增强。在空域中,所提方法使用改进的长短记忆网络(LSTM)来挖掘帧间的时序特征;在频域中,利用3D卷积层来挖掘不同频段频谱的时序信息,并与主干网络提取到的篡改特征进行融合,进而有效地区分伪造人脸和真实人脸。所提方法在主流数据集中表现优越,证明了所提方法的有效性。 展开更多
关键词 人脸身份认证 Deepfake检测 时序特征 多域特征
下载PDF
基于集成学习双流神经网络的实时面部篡改视频检测模型 被引量:1
10
作者 袁野 黄丽清 +3 位作者 叶锋 黄添强 罗海峰 徐超 《计算机工程与科学》 CSCD 北大核心 2023年第3期470-477,共8页
恶意面部篡改对社会安全和稳定存在负面影响,对面部篡改后的视频图像进行准确的检测是一个十分重要的课题。为了解决视频检测模型实时性较差的问题,提出一种基于集成学习双流循环神经网络的面部篡改视频检测模型,并引入集成学习中的投... 恶意面部篡改对社会安全和稳定存在负面影响,对面部篡改后的视频图像进行准确的检测是一个十分重要的课题。为了解决视频检测模型实时性较差的问题,提出一种基于集成学习双流循环神经网络的面部篡改视频检测模型,并引入集成学习中的投票机制。首先,接收少量连续的序列帧,通过卷积神经网络进行空间特征的提取,同时引入中心差分卷积进行空间域的篡改伪影增强。然后,将连续的序列帧进行差分,以增强时间域上的篡改伪影,同时通过卷积神经网络进行时间特征的提取。随后,将空间域和时间域的双流特征向量进行拼接,通过循环神经网络进行特征提取。在循环神经网络特征提取过程中,逐帧的特征信息被保留下来作为后续辅助帧级分类器的输入,同时循环神经网络的最终输出作为视频级判别器的输入。最后,引入集成模型的投票机制整合多个辅助帧级判别器和视频级判别器的输出,并通过引入权重超参数γ来平衡辅助帧级判别器和视频级判别器的重要程度,帮助模型提高检测准确率。在FaceForensics++数据集上,与主流检测模型进行对比,所提模型平均准确率提升了0.4%和1.0%。同时,所提模型可以仅使用较少连续帧进行篡改检测,提高了模型的实时性。 展开更多
关键词 Deepfake 卷积神经网络 循环神经网络 投票机制 中心差分卷积
下载PDF
基于非关键掩码和注意力机制的深度伪造人脸篡改视频检测方法 被引量:1
11
作者 俞洋 袁家斌 +4 位作者 蔡纪元 查可可 陈章屿 戴加威 冯煜翔 《计算机科学》 CSCD 北大核心 2023年第11期160-167,共8页
自深度伪造技术(Deepfake)被提出以来,其非法应用对个人、社会、国家安全造成了恶劣影响,存在巨大隐患,因此针对人脸视频的深度伪造检测是计算机视觉领域中的热点及难点问题。针对上述问题,提出了一种基于非关键掩码和CA_S3D模型的深度... 自深度伪造技术(Deepfake)被提出以来,其非法应用对个人、社会、国家安全造成了恶劣影响,存在巨大隐患,因此针对人脸视频的深度伪造检测是计算机视觉领域中的热点及难点问题。针对上述问题,提出了一种基于非关键掩码和CA_S3D模型的深度伪造视频检测方法。该方法首先将人脸图像划分为关键区域和非关键区域,通过对非关键区域掩码的处理,提高了深度神经网络对人脸图像关键区域的关注程度,减少了无关信息对深度神经网络的影响和干扰;接着在S3D网络中引入上下文注意力模块,增强了对样本数据信息长程依赖的捕获能力,提高了对关键通道和特征的关注程度。实验结果表明,该方法在DFDC数据集上得到了明显的性能提升,准确率从83.85%提升到了90.10%,AUC值从0.931提升到了0.979;同时与现有的深度伪造视频检测方法进行了对比,所提方法的表现优于现有方法,验证了该方法的有效性。 展开更多
关键词 深度伪造 Deepfake检测 图像掩码 三维卷积网络 注意力机制
下载PDF
视频深度伪造检测技术及应用 被引量:5
12
作者 孙炜晨 田青 +1 位作者 罗曼 刘健 《警察技术》 2023年第1期10-16,共7页
深度合成作为一种人工智能合成技术,近年来引起社会的广泛关注,深度合成技术已经衍生出包括图像合成、视频合成、声音合成和文本生成等多种技术,凭借低技术门槛,已经广泛应用于传媒、影视制作、娱乐、教育和电子商务等诸多领域。但恶意... 深度合成作为一种人工智能合成技术,近年来引起社会的广泛关注,深度合成技术已经衍生出包括图像合成、视频合成、声音合成和文本生成等多种技术,凭借低技术门槛,已经广泛应用于传媒、影视制作、娱乐、教育和电子商务等诸多领域。但恶意使用该技术生成的音视频也显示出巨大的破坏力,不法分子可通过伪造以假乱真的音频、视频,实施诬陷、诽谤、诈骗、勒索等违法行为,扰乱社会秩序,给个人、企业乃至国家、社会造成威胁。 展开更多
关键词 深度伪造 Deepfake 深度合成 深伪检测
下载PDF
Multi-Branch Deepfake Detection Algorithm Based on Fine-Grained Features
13
作者 Wenkai Qin Tianliang Lu +2 位作者 Lu Zhang Shufan Peng Da Wan 《Computers, Materials & Continua》 SCIE EI 2023年第10期467-490,共24页
With the rapid development of deepfake technology,the authenticity of various types of fake synthetic content is increasing rapidly,which brings potential security threats to people’s daily life and social stability.... With the rapid development of deepfake technology,the authenticity of various types of fake synthetic content is increasing rapidly,which brings potential security threats to people’s daily life and social stability.Currently,most algorithms define deepfake detection as a binary classification problem,i.e.,global features are first extracted using a backbone network and then fed into a binary classifier to discriminate true or false.However,the differences between real and fake samples are often subtle and local,and such global feature-based detection algorithms are not optimal in efficiency and accuracy.To this end,to enhance the extraction of forgery details in deep forgery samples,we propose a multi-branch deepfake detection algorithm based on fine-grained features from the perspective of fine-grained classification.First,to address the critical problem in locating discriminative feature regions in fine-grained classification tasks,we investigate a method for locating multiple different discriminative regions and design a lightweight feature localization module to obtain crucial feature representations by augmenting the most significant parts of the feature map.Second,using information complementation,we introduce a correlation-guided fusion module to enhance the discriminative feature information of different branches.Finally,we use the global attention module in the multi-branch model to improve the cross-dimensional interaction of spatial domain and channel domain information and increase the weights of crucial feature regions and feature channels.We conduct sufficient ablation experiments and comparative experiments.The experimental results show that the algorithm outperforms the detection accuracy and effectiveness on the FaceForensics++and Celeb-DF-v2 datasets compared with the representative detection algorithms in recent years,which can achieve better detection results. 展开更多
关键词 Deepfake detection fine-grained classification multi-branch global attention
下载PDF
Deepfake Video Detection Based on Improved CapsNet and Temporal–Spatial Features
14
作者 Tianliang Lu Yuxuan Bao Lanting Li 《Computers, Materials & Continua》 SCIE EI 2023年第4期715-740,共26页
Rapid development of deepfake technology led to the spread of forged audios and videos across network platforms,presenting risks for numerous countries,societies,and individuals,and posing a serious threat to cyberspa... Rapid development of deepfake technology led to the spread of forged audios and videos across network platforms,presenting risks for numerous countries,societies,and individuals,and posing a serious threat to cyberspace security.To address the problem of insufficient extraction of spatial features and the fact that temporal features are not considered in the deepfake video detection,we propose a detection method based on improved CapsNet and temporal–spatial features(iCapsNet–TSF).First,the dynamic routing algorithm of CapsNet is improved using weight initialization and updating.Then,the optical flow algorithm is used to extract interframe temporal features of the videos to form a dataset of temporal–spatial features.Finally,the iCapsNet model is employed to fully learn the temporal–spatial features of facial videos,and the results are fused.Experimental results show that the detection accuracy of iCapsNet–TSF reaches 94.07%,98.83%,and 98.50%on the Celeb-DF,FaceSwap,and Deepfakes datasets,respectively,displaying a better performance than most existing mainstream algorithms.The iCapsNet–TSF method combines the capsule network and the optical flow algorithm,providing a novel strategy for the deepfake detection,which is of great significance to the prevention of deepfake attacks and the preservation of cyberspace security. 展开更多
关键词 Deepfake detection CapsNet optical flow algorithm temporal–spatial features
下载PDF
Detecting Deepfake Images Using Deep Learning Techniques and Explainable AI Methods
15
作者 Wahidul Hasan Abir Faria Rahman Khanam +5 位作者 Kazi Nabiul Alam Myriam Hadjouni Hela Elmannai Sami Bourouis Rajesh Dey Mohammad Monirujjaman Khan 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2151-2169,共19页
Nowadays,deepfake is wreaking havoc on society.Deepfake content is created with the help of artificial intelligence and machine learning to replace one person’s likeness with another person in pictures or recorded vid... Nowadays,deepfake is wreaking havoc on society.Deepfake content is created with the help of artificial intelligence and machine learning to replace one person’s likeness with another person in pictures or recorded videos.Although visual media manipulations are not new,the introduction of deepfakes has marked a breakthrough in creating fake media and information.These manipulated pic-tures and videos will undoubtedly have an enormous societal impact.Deepfake uses the latest technology like Artificial Intelligence(AI),Machine Learning(ML),and Deep Learning(DL)to construct automated methods for creating fake content that is becoming increasingly difficult to detect with the human eye.Therefore,automated solutions employed by DL can be an efficient approach for detecting deepfake.Though the“black-box”nature of the DL system allows for robust predictions,they cannot be completely trustworthy.Explainability is thefirst step toward achieving transparency,but the existing incapacity of DL to explain its own decisions to human users limits the efficacy of these systems.Though Explainable Artificial Intelligence(XAI)can solve this problem by inter-preting the predictions of these systems.This work proposes to provide a compre-hensive study of deepfake detection using the DL method and analyze the result of the most effective algorithm with Local Interpretable Model-Agnostic Explana-tions(LIME)to assure its validity and reliability.This study identifies real and deepfake images using different Convolutional Neural Network(CNN)models to get the best accuracy.It also explains which part of the image caused the model to make a specific classification using the LIME algorithm.To apply the CNN model,the dataset is taken from Kaggle,which includes 70 k real images from the Flickr dataset collected by Nvidia and 70 k fake faces generated by StyleGAN of 256 px in size.For experimental results,Jupyter notebook,TensorFlow,Num-Py,and Pandas were used as software,InceptionResnetV2,DenseNet201,Incep-tionV3,and ResNet152V2 were used as CNN models.All these models’performances were good enough,such as InceptionV3 gained 99.68%accuracy,ResNet152V2 got an accuracy of 99.19%,and DenseNet201 performed with 99.81%accuracy.However,InceptionResNetV2 achieved the highest accuracy of 99.87%,which was verified later with the LIME algorithm for XAI,where the proposed method performed the best.The obtained results and dependability demonstrate its preference for detecting deepfake images effectively. 展开更多
关键词 Deepfake deep learning explainable artificial intelligence(XAI) convolutional neural network(CNN) local interpretable model-agnostic explanations(LIME)
下载PDF
Deepfake Video Detection Employing Human Facial Features
16
作者 Daniel Schilling Weiss Nguyen Desmond T. Ademiluyi 《Journal of Computer and Communications》 2023年第12期1-13,共13页
Deepfake technology can be used to replace people’s faces in videos or pictures to show them saying or doing things they never said or did. Deepfake media are often used to extort, defame, and manipulate public opini... Deepfake technology can be used to replace people’s faces in videos or pictures to show them saying or doing things they never said or did. Deepfake media are often used to extort, defame, and manipulate public opinion. However, despite deepfake technology’s risks, current deepfake detection methods lack generalization and are inconsistent when applied to unknown videos, i.e., videos on which they have not been trained. The purpose of this study is to develop a generalizable deepfake detection model by training convoluted neural networks (CNNs) to classify human facial features in videos. The study formulated the research questions: “How effectively does the developed model provide reliable generalizations?” A CNN model was trained to distinguish between real and fake videos using the facial features of human subjects in videos. The model was trained, validated, and tested using the FaceForensiq++ dataset, which contains more than 500,000 frames and subsets of the DFDC dataset, totaling more than 22,000 videos. The study demonstrated high generalizability, as the accuracy of the unknown dataset was only marginally (about 1%) lower than that of the known dataset. The findings of this study indicate that detection systems can be more generalizable, lighter, and faster by focusing on just a small region (the human face) of an entire video. 展开更多
关键词 Artificial Intelligence Convoluted Neural Networks Deepfake GANs GENERALIZATION Deep Learning Facial Features Video Frames
下载PDF
基于时空特征一致性的Deepfake视频检测模型 被引量:2
17
作者 赵磊 葛万峰 +3 位作者 毛钰竹 韩萌 李文欣 李学 《工程科学与技术》 EI CAS CSCD 北大核心 2020年第4期243-250,共8页
针对目前大部分研究仅关注Deepfake单幅图像的空间域特征而设计检测模型的问题,以Deepfake视频中人物面部表情变化存在细微的不一致、不连续等现象为出发点,提出一种基于时空特征一致性的检测模型。该模型使用卷积神经网络对待检测图像... 针对目前大部分研究仅关注Deepfake单幅图像的空间域特征而设计检测模型的问题,以Deepfake视频中人物面部表情变化存在细微的不一致、不连续等现象为出发点,提出一种基于时空特征一致性的检测模型。该模型使用卷积神经网络对待检测图像提取空域特征,利用光流法在待检测图像的连续帧间进行时域特征的捕获,同时利用卷积神经网络对时域特征进行深层次特征提取,在时域特征和空域特征经过多重的特征变换后,使用全连接神经网络对空域特征和时域特征的组合空间进行分类实现检测目标。将本文提出的模型在Faceforensics++开源Deepfake数据集上开展模型的训练,并对模型的检测效果进行实验验证。实验结果表明,本文模型的检测准确率可达98.1%,AUC值可达0.9981。通过与现有的Deepfake检测模型进行对比,本文模型在检测准确率和AUC取值方面均优于现有模型,验证了本文模型的有效性。 展开更多
关键词 虚假图像 Deepfake检测 时域特征 空域特征
下载PDF
Deepfake加持下短视频类假新闻的演变与治理 被引量:3
18
作者 翟红蕾 邹心晨 《今传媒》 2020年第11期34-36,共3页
人工智能时代,假新闻在Deepfake等新兴技术的影响下不断嬗变,形态也从文本转向音频、视频,这不仅在一定程度上纵容了更多假新闻的产生,也对受众辨别信息的能力提出了更高的要求。但是,技术并没有邪恶之分,媒介技术的革新也不是假新闻出... 人工智能时代,假新闻在Deepfake等新兴技术的影响下不断嬗变,形态也从文本转向音频、视频,这不仅在一定程度上纵容了更多假新闻的产生,也对受众辨别信息的能力提出了更高的要求。但是,技术并没有邪恶之分,媒介技术的革新也不是假新闻出现的根源,当前人类认知能力、道德水平及媒介规范程度跟不上技术的变革,如何借助人工智能技术有利的一面营造良好的内容生态,进而帮助用户提高媒介素养,才是治理假新闻的有效途径,也是当前亟待解决的问题。 展开更多
关键词 Deepfake 假新闻 深度伪造 人工智能时代
下载PDF
AI换脸技术的法律风险评估--从APP“ZAO”谈起 被引量:4
19
作者 赵超 《江苏工程职业技术学院学报》 2020年第1期103-108,共6页
AI换脸技术作为一种对人物面部图像进行替换的技术工具,因其深度拟真、低制作门槛的特点,在互联网时代呈现出了强大的传播力和影响力。在服务影视制作、满足公众社交、娱乐等需求的同时,AI换脸技术的应用也给现代社会带来诸多潜在危险... AI换脸技术作为一种对人物面部图像进行替换的技术工具,因其深度拟真、低制作门槛的特点,在互联网时代呈现出了强大的传播力和影响力。在服务影视制作、满足公众社交、娱乐等需求的同时,AI换脸技术的应用也给现代社会带来诸多潜在危险和不安全性。不当利用这一技术可能会给个人信息保护带来难题、增加侵权问题、诱发刑事犯罪,对此我们应当以客观中立的态度看待AI技术的应用,理性地分析并防范由此带来的法律风险,这样才能更好地享受技术进步的成果与福利。 展开更多
关键词 AI换脸 deepfakes 人工智能 法律风险评估
下载PDF
基于自动编码器的深度伪造图像检测方法 被引量:7
20
作者 张亚 金鑫 +3 位作者 江倩 李昕洁 董云云 姚绍文 《计算机应用》 CSCD 北大核心 2021年第10期2985-2990,共6页
基于深度学习的图像伪造方法生成的图像肉眼难辨,一旦该技术被滥用于制作虚假图像和视频,可能会对国家政治、经济、文化造成严重的负面影响,也可能会对社会生活和个人隐私构成威胁。针对上述问题,提出了一种基于自动编码器的深度伪造Dee... 基于深度学习的图像伪造方法生成的图像肉眼难辨,一旦该技术被滥用于制作虚假图像和视频,可能会对国家政治、经济、文化造成严重的负面影响,也可能会对社会生活和个人隐私构成威胁。针对上述问题,提出了一种基于自动编码器的深度伪造Deepfake图像检测方法。首先,借助高斯滤波对图像进行预处理,提取高频信息作为模型输入;然后,利用自动编码器对图像进行特征提取,并在编码器中添加注意力机制模块以获取更好的分类效果;最后,通过消融实验证明,采用所提的预处理方法和添加注意力机制模块有助于伪造图像检测。实验结果表明,与ResNet50、Xception以及InceptionV3相比,所提方法在数据集样本量较小且包含的场景丰富时,可以有效检测多种生成方法所伪造的图像,其平均准确率可达97.10%,明显优于对比方法,且其泛化性能也明显优于对比方法。 展开更多
关键词 Deepfake检测 深度伪造图像 自动编码器 生成对抗网络 注意力机制
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部