Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende...Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.展开更多
As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex b...As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection.展开更多
To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different ...To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different scales of strip surface defects,a strip steel surface defect detection algorithm based on improved Faster R-CNN is proposed.Firstly,the residual convolution module is inserted into the Swin Transformer network module to form the RC-Swin Transformer network module,and the RC-Swin Transformer module is introduced into the backbone network of the traditional Faster R-CNN to enhance the ability of the network to extract the global feature information of the image and adapt to the complex shape of the strip steel surface defect.To improve the attention of the network to defects in the image,a CBAM-BiFPN network module is designed,and then the backbone network is combined with the CBAM-BiFPN network to realize the de-tection and fusion of multi-scale features.The RoI align layer is used instead of the RoI pooling layer to improve the accuracy of defect loca-tion.Finally,Soft NMS is used to achieve non-maximum suppression and remove redundant boxes.In the comparative experiment on the NEU-DET dataset,the improved algorithm improves the mean average precision by 4.2%compared with the Faster R-CNN algorithm,and also improves the average precision by 6.1%and 6.7%for crazing defect and rolled-in scale defect,which are difficult to detect with the Faster R-CNN algorithm.The experiments show that the improvements proposed in the paper effectively improve the detection accuracy of the algorithm and have certain practical value.展开更多
Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking ...Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR.展开更多
Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect...Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model.展开更多
Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based ...Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities.展开更多
Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become o...Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images.展开更多
Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable...Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects.展开更多
Defect detection technology is crucial for the efficient operation and maintenance of photovoltaic systems.However,the diversity of defect types,scale inconsistencies,and background interference significantly complica...Defect detection technology is crucial for the efficient operation and maintenance of photovoltaic systems.However,the diversity of defect types,scale inconsistencies,and background interference significantly complicate the detection task.Therefore,this paper employs the YOLOX model as the backbone network structure and optimizes various modules to address these issues.First,we adopt a transfer learning strategy to accelerate model convergence and avoid insufficient accuracy due to the limited number of defect samples.Second,we introduce the SENet module into the feature extraction process to enhance the contrast between defects and their background.Then,we incorporate the ASFF strategy at the end of the PAFPN network to adaptively learn and emphasize both high-and low-level semantic features of defects.Furthermore,model accuracy is enhanced by refining the loss functions for positioning,classification,and confidence.Finally,the proposed method achieved excellent results on the Photovoltaic Electroluminescence Anomaly Detection dataset(PVEL-AD),with a mAP of 96.7%and a detection speed of 71.47FPS.Specifically,the detection of small target defects showed significant improvement.展开更多
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ...The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.展开更多
In textile inspection field,the fabric defect refers to the destruction of the texture structure on the fabric surface.The technology of computer vision makes it possible to detect defects automatically.Firstly,the ov...In textile inspection field,the fabric defect refers to the destruction of the texture structure on the fabric surface.The technology of computer vision makes it possible to detect defects automatically.Firstly,the overall structure of the fabric defect detection system is introduced and some mature detection systems are studied.Then the fabric detection methods are summarized,including structural methods,statistical methods,frequency domain methods,model methods and deep learning methods.In addition,the evaluation criteria of automatic detection algorithms are discussed and the characteristics of various algorithms are analyzed.Finally,the research status of this field is discussed,and the future development trend is predicted.展开更多
Recently,convolutional neural network(CNN)-based visual inspec-tion has been developed to detect defects on building surfaces automatically.The CNN model demonstrates remarkable accuracy in image data analysis;however...Recently,convolutional neural network(CNN)-based visual inspec-tion has been developed to detect defects on building surfaces automatically.The CNN model demonstrates remarkable accuracy in image data analysis;however,the predicted results have uncertainty in providing accurate informa-tion to users because of the“black box”problem in the deep learning model.Therefore,this study proposes a visual explanation method to overcome the uncertainty limitation of CNN-based defect identification.The visual repre-sentative gradient-weights class activation mapping(Grad-CAM)method is adopted to provide visually explainable information.A visualizing evaluation index is proposed to quantitatively analyze visual representations;this index reflects a rough estimate of the concordance rate between the visualized heat map and intended defects.In addition,an ablation study,adopting three-branch combinations with the VGG16,is implemented to identify perfor-mance variations by visualizing predicted results.Experiments reveal that the proposed model,combined with hybrid pooling,batch normalization,and multi-attention modules,achieves the best performance with an accuracy of 97.77%,corresponding to an improvement of 2.49%compared with the baseline model.Consequently,this study demonstrates that reliable results from an automatic defect classification model can be provided to an inspector through the visual representation of the predicted results using CNN models.展开更多
In the early stage of software development,a software requirements specification(SRS)is essential,and whether the requirements are clear and explicit is the key.However,due to various reasons,there may be a large numb...In the early stage of software development,a software requirements specification(SRS)is essential,and whether the requirements are clear and explicit is the key.However,due to various reasons,there may be a large number of misunderstandings.To generate high-quality software requirements specifications,numerous researchers have developed a variety of ways to improve the quality of SRS.In this paper,we propose a questions extraction method based on SRS elements decomposition,which evaluates the quality of SRS in the form of numerical indicators.The proposed method not only evaluates the quality of SRSs but also helps in the detection of defects,especially the description problem and omission defects in SRSs.To verify the effectiveness of the proposed method,we conducted a controlled experiment to compare the ability of checklist-based review(CBR)and the proposed method in the SRS review.The CBR is a classicmethod of reviewing SRS defects.After a lot of practice and improvement for a long time,CBR has excellent review ability in improving the quality of software requirements specifications.The experimental results with 40 graduate studentsmajoring in software engineering confirmed the effectiveness and advantages of the proposed method.However,the shortcomings and deficiencies of the proposed method are also observed through the experiment.Furthermore,the proposed method has been tried out by engineers with practical work experience in software development industry and received good feedback.展开更多
The Problem of Photovoltaic(PV)defects detection and classification has been well studied.Several techniques exist in identifying the defects and localizing them in PV panels that use various features,but suffer to ac...The Problem of Photovoltaic(PV)defects detection and classification has been well studied.Several techniques exist in identifying the defects and localizing them in PV panels that use various features,but suffer to achieve higher performance.An efficient Real-Time Multi Variant Deep learning Model(RMVDM)is presented in this article to handle this issue.The method considers different defects like a spotlight,crack,dust,and micro-cracks to detect the defects as well as loca-lizes the defects.The image data set given has been preprocessed by applying the Region-Based Histogram Approximation(RHA)algorithm.The preprocessed images are applied with Gray Scale Quantization Algorithm(GSQA)to extract the features.Extracted features are trained with a Multi Variant Deep learning model where the model trained with a number of layers belongs to different classes of neurons.Each class neuron has been designed to measure Defect Class Support(DCS).At the test phase,the input image has been applied with different operations,and the features extracted passed through the model trained.The output layer returns a number of DCS values using which the method identifies the class of defect and localizes the defect in the image.Further,the method uses the Higher-Order Texture Localization(HOTL)technique in localizing the defect.The pro-posed model produces efficient results with around 97%in defect detection and localization with higher accuracy and less time complexity.展开更多
Deep learning has been constantly improving in recent years,and a significant number of researchers have devoted themselves to the research of defect detection algorithms.Detection and recognition of small and complex...Deep learning has been constantly improving in recent years,and a significant number of researchers have devoted themselves to the research of defect detection algorithms.Detection and recognition of small and complex targets is still a problem that needs to be solved.The authors of this research would like to present an improved defect detection model for detecting small and complex defect targets in steel surfaces.During steel strip production,mechanical forces and environmental factors cause surface defects of the steel strip.Therefore,the detection of such defects is key to the production of high-quality products.Moreover,surface defects of the steel strip cause great economic losses to the high-tech industry.So far,few studies have explored methods of identifying the defects,and most of the currently available algorithms are not sufficiently effective.Therefore,this study presents an improved real-time metallic surface defect detection model based on You Only Look Once(YOLOv5)specially designed for small networks.For the smaller features of the target,the conventional part is replaced with a depthwise convolution and channel shuffle mechanism.Then assigning weights to Feature Pyramid Networks(FPN)output features and fusing them,increases feature propagation and the network’s characterization ability.The experimental results reveal that the improved proposed model outperforms other comparable models in terms of accuracy and detection time.The precision of the proposed model achieved by mAP@0.5 is 77.5%on the Northeastern University,Dataset(NEU-DET)and 70.18%on the GC10-DET datasets.展开更多
Gears play an important role in virtual manufacturing systems for digital twins;however,the image of gear tooth defects is difficult to acquire owing to its non-convex shape.In this study,a deep learning network is pr...Gears play an important role in virtual manufacturing systems for digital twins;however,the image of gear tooth defects is difficult to acquire owing to its non-convex shape.In this study,a deep learning network is proposed to detect gear defects based on their point cloud representation.This approach mainly consists of three steps:(1)Various types of gear defects are classified into four cases(fracture,pitting,glue,and wear);A 3D gear dataset was constructed with 10000 instances following the aforementioned classification.(2)Gear-PCNet++introduces a novel Combinational Convolution Block,proposed based on the gear dataset for gear defect detection to effectively extract the local gear information and identify its complex topology;(3)Compared with other methods,experiments show that this method can achieve better recognition results for gear defects with higher efficiency and practicability.展开更多
In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system...In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments.展开更多
For surface defects in electronic water pump shells,the manual detection efficiency is low,prone to misdetection and leak detection,and encounters problems,such as uncertainty.To improve the speed and accuracy of surf...For surface defects in electronic water pump shells,the manual detection efficiency is low,prone to misdetection and leak detection,and encounters problems,such as uncertainty.To improve the speed and accuracy of surface defect detection,a lightweight detection method based on an improved YOLOv5s method is proposed to replace the traditional manual detection methods.In this method,the MobileNetV3 module replaces the backbone network of YOLOv5s,depth-separable convolution is introduced,the parameters and calculations are reduced,and CIoU_Loss is used as the loss function of the boundary box regression to improve its detection accuracy.A dataset of electronic pump shell defects is established,and the performance of the improved method is evaluated by comparing it with that of the original method.The results show that the parameters and FLOPs are reduced by 49.83%and 61.59%,respectively,compared with the original YOLOv5s model,and the detection accuracy is improved by 1.74%,which is an indication of the superiority of the improved method.To further verify the universality of the improved method,it is compared with the results using the original method on the PASCALVOC2007 dataset,which verifies that it yields better performance.In summary,the improved lightweight method can be used for the real-time detection of electronic water pump shell defects.展开更多
In the industrial production of expanded thermoplastic polyurethane (E-TPU) midsoles, the surface defects still rely on manual inspection at present, and the eligibility criteria are uneven. Therefore, this paper prop...In the industrial production of expanded thermoplastic polyurethane (E-TPU) midsoles, the surface defects still rely on manual inspection at present, and the eligibility criteria are uneven. Therefore, this paper proposes an E-TPU midsole surface defect detection method based on machine vision to achieve automatic detection and defect classification. The proposed method is divided into three parts: image preprocessing, block defect detection, and linear defect detection. Image preprocessing uses RGB three channel self-inspection to identify scorch and color pollution. Block defect detection uses superpixel segmentation and background prior mining to determine holes, impurities, and dirt. Linear defect detection uses Gabor filter and Hough transform to detect indentation and convex marks. After image preprocessing, block defect detection and linear defect detection are simultaneously performed by parallel computing. The false positive rate (FPR) of the proposed method in this paper is 8.3%, the false negatives rate (FNR) of the hole is 4.7%, the FNR of indentation is 2.1%, and the running time does not exceed 1.6 s. The test results show that this method can quickly and accurately detect various defects in the E-TPU midsole.展开更多
Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operat...Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operation of high-speed trains.For this reason,a rail internal defect detection method based on an enhanced network structure and module design using ultrasonic images is proposed in this paper.First,a data augmentation method was used to extend the existing image dataset to obtain appropriate image samples.Second,an enhanced network structure was designed to make full use of the high-level and low-level feature information in the image,which improved the accuracy of defect detection.Subsequently,to optimize the detection performance of the proposed model,the Mish activation function was used to design the block module of the feature extraction network.Finally,the pro-posed rail defect detection model was trained.The experimental results showed that the precision rate and F1score of the proposed method were as high as 98%,while the model’s recall rate reached 99%.Specifically,good detec-tion results were achieved for different types of defects,which provides a reference for the engineering application of internal defect detection.Experimental results verified the effectiveness of the proposed method.展开更多
基金This research was financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Project for Research and Development with Middle Markets Enterprises and DNA(Data,Network,AI)Universities”(AI-based Safety Assessment and Management System for Concrete Structures)(ReferenceNumber P0024559)supervised by theKorea Institute for Advancement of Technology(KIAT).
文摘Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.
基金supported in part by the National Natural Science Foundation of China under Grants 32171909,51705365,52205254The Guangdong Basic and Applied Basic Research Foundation under Grants 2020B1515120050,2023A1515011255+2 种基金The Guangdong Key R&D projects under Grant 2020B0404030001the Scientific Research Projects of Universities in Guangdong Province under Grant 2020KCXTD015The Ji Hua Laboratory Open Project under Grant X220931UZ230.
文摘As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection.
基金supported by the National Natural Science Foundation of China(12002138).
文摘To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different scales of strip surface defects,a strip steel surface defect detection algorithm based on improved Faster R-CNN is proposed.Firstly,the residual convolution module is inserted into the Swin Transformer network module to form the RC-Swin Transformer network module,and the RC-Swin Transformer module is introduced into the backbone network of the traditional Faster R-CNN to enhance the ability of the network to extract the global feature information of the image and adapt to the complex shape of the strip steel surface defect.To improve the attention of the network to defects in the image,a CBAM-BiFPN network module is designed,and then the backbone network is combined with the CBAM-BiFPN network to realize the de-tection and fusion of multi-scale features.The RoI align layer is used instead of the RoI pooling layer to improve the accuracy of defect loca-tion.Finally,Soft NMS is used to achieve non-maximum suppression and remove redundant boxes.In the comparative experiment on the NEU-DET dataset,the improved algorithm improves the mean average precision by 4.2%compared with the Faster R-CNN algorithm,and also improves the average precision by 6.1%and 6.7%for crazing defect and rolled-in scale defect,which are difficult to detect with the Faster R-CNN algorithm.The experiments show that the improvements proposed in the paper effectively improve the detection accuracy of the algorithm and have certain practical value.
基金supported in part by the National Natural Science Foundation of China under grants 62202044 and 62372039Scientific and Technological Innovation Foundation of Foshan under grant BK22BF009+3 种基金Excellent Youth Team Project for the Central Universities under grant FRF-EYIT-23-01Fundamental Research Funds for the Central Universities under grants 06500103 and 06500078Guangdong Basic and Applied Basic Research Foundation under grant 2022A1515240044Beijing Natural Science Foundation under grant 4232040.
文摘Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR.
基金supported by the National Natural Science Foundation of China under Grant No.61976226the Research and Academic Team of South-CentralMinzu University under Grant No.KTZ20050.
文摘Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model.
基金supported by the Science and Technology Development Fund of Macao(Grant No.0079/2019/AMJ)the National Key R&D Program of China(No.2019YFE0111400).
文摘Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities.
基金supported by the National Natural Science Foundation of China(No.61976083)Hubei Province Key R&D Program of China(No.2022BBA0016).
文摘Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images.
基金State Grid Jiangsu Electric Power Co.,Ltd.of the Science and Technology Project(Grant No.J2022004).
文摘Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects.
基金supported by the National Natural Science Foundation of China under Grant 62266034the Ningxia Natural Science Foundation Key Program underGrant2023AAC02011.
文摘Defect detection technology is crucial for the efficient operation and maintenance of photovoltaic systems.However,the diversity of defect types,scale inconsistencies,and background interference significantly complicate the detection task.Therefore,this paper employs the YOLOX model as the backbone network structure and optimizes various modules to address these issues.First,we adopt a transfer learning strategy to accelerate model convergence and avoid insufficient accuracy due to the limited number of defect samples.Second,we introduce the SENet module into the feature extraction process to enhance the contrast between defects and their background.Then,we incorporate the ASFF strategy at the end of the PAFPN network to adaptively learn and emphasize both high-and low-level semantic features of defects.Furthermore,model accuracy is enhanced by refining the loss functions for positioning,classification,and confidence.Finally,the proposed method achieved excellent results on the Photovoltaic Electroluminescence Anomaly Detection dataset(PVEL-AD),with a mAP of 96.7%and a detection speed of 71.47FPS.Specifically,the detection of small target defects showed significant improvement.
基金supported by the National Science Foundation of China(Grant Nos.52068049 and 51908266)the Science Fund for Distinguished Young Scholars of Gansu Province(No.21JR7RA267)Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
文摘The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.
文摘In textile inspection field,the fabric defect refers to the destruction of the texture structure on the fabric surface.The technology of computer vision makes it possible to detect defects automatically.Firstly,the overall structure of the fabric defect detection system is introduced and some mature detection systems are studied.Then the fabric detection methods are summarized,including structural methods,statistical methods,frequency domain methods,model methods and deep learning methods.In addition,the evaluation criteria of automatic detection algorithms are discussed and the characteristics of various algorithms are analyzed.Finally,the research status of this field is discussed,and the future development trend is predicted.
基金supported by a Korea Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure,and Transport(Grant 22CTAP-C163951-02).
文摘Recently,convolutional neural network(CNN)-based visual inspec-tion has been developed to detect defects on building surfaces automatically.The CNN model demonstrates remarkable accuracy in image data analysis;however,the predicted results have uncertainty in providing accurate informa-tion to users because of the“black box”problem in the deep learning model.Therefore,this study proposes a visual explanation method to overcome the uncertainty limitation of CNN-based defect identification.The visual repre-sentative gradient-weights class activation mapping(Grad-CAM)method is adopted to provide visually explainable information.A visualizing evaluation index is proposed to quantitatively analyze visual representations;this index reflects a rough estimate of the concordance rate between the visualized heat map and intended defects.In addition,an ablation study,adopting three-branch combinations with the VGG16,is implemented to identify perfor-mance variations by visualizing predicted results.Experiments reveal that the proposed model,combined with hybrid pooling,batch normalization,and multi-attention modules,achieves the best performance with an accuracy of 97.77%,corresponding to an improvement of 2.49%compared with the baseline model.Consequently,this study demonstrates that reliable results from an automatic defect classification model can be provided to an inspector through the visual representation of the predicted results using CNN models.
基金This work was partially supported by the Natural Science Foundation of Jiangsu Province under Grant No.BK20201462partially supported by the Scientific Research Support Project of Jiangsu Normal University under Grant No.21XSRX001.
文摘In the early stage of software development,a software requirements specification(SRS)is essential,and whether the requirements are clear and explicit is the key.However,due to various reasons,there may be a large number of misunderstandings.To generate high-quality software requirements specifications,numerous researchers have developed a variety of ways to improve the quality of SRS.In this paper,we propose a questions extraction method based on SRS elements decomposition,which evaluates the quality of SRS in the form of numerical indicators.The proposed method not only evaluates the quality of SRSs but also helps in the detection of defects,especially the description problem and omission defects in SRSs.To verify the effectiveness of the proposed method,we conducted a controlled experiment to compare the ability of checklist-based review(CBR)and the proposed method in the SRS review.The CBR is a classicmethod of reviewing SRS defects.After a lot of practice and improvement for a long time,CBR has excellent review ability in improving the quality of software requirements specifications.The experimental results with 40 graduate studentsmajoring in software engineering confirmed the effectiveness and advantages of the proposed method.However,the shortcomings and deficiencies of the proposed method are also observed through the experiment.Furthermore,the proposed method has been tried out by engineers with practical work experience in software development industry and received good feedback.
文摘The Problem of Photovoltaic(PV)defects detection and classification has been well studied.Several techniques exist in identifying the defects and localizing them in PV panels that use various features,but suffer to achieve higher performance.An efficient Real-Time Multi Variant Deep learning Model(RMVDM)is presented in this article to handle this issue.The method considers different defects like a spotlight,crack,dust,and micro-cracks to detect the defects as well as loca-lizes the defects.The image data set given has been preprocessed by applying the Region-Based Histogram Approximation(RHA)algorithm.The preprocessed images are applied with Gray Scale Quantization Algorithm(GSQA)to extract the features.Extracted features are trained with a Multi Variant Deep learning model where the model trained with a number of layers belongs to different classes of neurons.Each class neuron has been designed to measure Defect Class Support(DCS).At the test phase,the input image has been applied with different operations,and the features extracted passed through the model trained.The output layer returns a number of DCS values using which the method identifies the class of defect and localizes the defect in the image.Further,the method uses the Higher-Order Texture Localization(HOTL)technique in localizing the defect.The pro-posed model produces efficient results with around 97%in defect detection and localization with higher accuracy and less time complexity.
文摘Deep learning has been constantly improving in recent years,and a significant number of researchers have devoted themselves to the research of defect detection algorithms.Detection and recognition of small and complex targets is still a problem that needs to be solved.The authors of this research would like to present an improved defect detection model for detecting small and complex defect targets in steel surfaces.During steel strip production,mechanical forces and environmental factors cause surface defects of the steel strip.Therefore,the detection of such defects is key to the production of high-quality products.Moreover,surface defects of the steel strip cause great economic losses to the high-tech industry.So far,few studies have explored methods of identifying the defects,and most of the currently available algorithms are not sufficiently effective.Therefore,this study presents an improved real-time metallic surface defect detection model based on You Only Look Once(YOLOv5)specially designed for small networks.For the smaller features of the target,the conventional part is replaced with a depthwise convolution and channel shuffle mechanism.Then assigning weights to Feature Pyramid Networks(FPN)output features and fusing them,increases feature propagation and the network’s characterization ability.The experimental results reveal that the improved proposed model outperforms other comparable models in terms of accuracy and detection time.The precision of the proposed model achieved by mAP@0.5 is 77.5%on the Northeastern University,Dataset(NEU-DET)and 70.18%on the GC10-DET datasets.
基金opening fund of State Key Laboratory of Lunar and Planetary Sciences(Macao University of Science and Technology),No.119/2017/A3the Natural Science Foundation of China,Nos.61572056 and 61872347the Special Plan for the Development of Distinguished Young Scientists of ISCAS,No.Y8RC535018.
文摘Gears play an important role in virtual manufacturing systems for digital twins;however,the image of gear tooth defects is difficult to acquire owing to its non-convex shape.In this study,a deep learning network is proposed to detect gear defects based on their point cloud representation.This approach mainly consists of three steps:(1)Various types of gear defects are classified into four cases(fracture,pitting,glue,and wear);A 3D gear dataset was constructed with 10000 instances following the aforementioned classification.(2)Gear-PCNet++introduces a novel Combinational Convolution Block,proposed based on the gear dataset for gear defect detection to effectively extract the local gear information and identify its complex topology;(3)Compared with other methods,experiments show that this method can achieve better recognition results for gear defects with higher efficiency and practicability.
文摘In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments.
基金This work is supported by the Qing Lan Project of the Higher Education Institutions of Jiangsu Province,the 2022 Jiangsu Science and Technology Plan Special Fund(International Science and Technology Cooperation)(BZ2022029).
文摘For surface defects in electronic water pump shells,the manual detection efficiency is low,prone to misdetection and leak detection,and encounters problems,such as uncertainty.To improve the speed and accuracy of surface defect detection,a lightweight detection method based on an improved YOLOv5s method is proposed to replace the traditional manual detection methods.In this method,the MobileNetV3 module replaces the backbone network of YOLOv5s,depth-separable convolution is introduced,the parameters and calculations are reduced,and CIoU_Loss is used as the loss function of the boundary box regression to improve its detection accuracy.A dataset of electronic pump shell defects is established,and the performance of the improved method is evaluated by comparing it with that of the original method.The results show that the parameters and FLOPs are reduced by 49.83%and 61.59%,respectively,compared with the original YOLOv5s model,and the detection accuracy is improved by 1.74%,which is an indication of the superiority of the improved method.To further verify the universality of the improved method,it is compared with the results using the original method on the PASCALVOC2007 dataset,which verifies that it yields better performance.In summary,the improved lightweight method can be used for the real-time detection of electronic water pump shell defects.
文摘In the industrial production of expanded thermoplastic polyurethane (E-TPU) midsoles, the surface defects still rely on manual inspection at present, and the eligibility criteria are uneven. Therefore, this paper proposes an E-TPU midsole surface defect detection method based on machine vision to achieve automatic detection and defect classification. The proposed method is divided into three parts: image preprocessing, block defect detection, and linear defect detection. Image preprocessing uses RGB three channel self-inspection to identify scorch and color pollution. Block defect detection uses superpixel segmentation and background prior mining to determine holes, impurities, and dirt. Linear defect detection uses Gabor filter and Hough transform to detect indentation and convex marks. After image preprocessing, block defect detection and linear defect detection are simultaneously performed by parallel computing. The false positive rate (FPR) of the proposed method in this paper is 8.3%, the false negatives rate (FNR) of the hole is 4.7%, the FNR of indentation is 2.1%, and the running time does not exceed 1.6 s. The test results show that this method can quickly and accurately detect various defects in the E-TPU midsole.
基金Supported by National Natural Science Foundation of China(Grant No.61573233)Guangdong Provincial Natural Science Foundation of China(Grant No.2021A1515010661)Guangdong Provincial Special Projects in Key Fields of Colleges and Universities of China(Grant No.2020ZDZX2005).
文摘Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operation of high-speed trains.For this reason,a rail internal defect detection method based on an enhanced network structure and module design using ultrasonic images is proposed in this paper.First,a data augmentation method was used to extend the existing image dataset to obtain appropriate image samples.Second,an enhanced network structure was designed to make full use of the high-level and low-level feature information in the image,which improved the accuracy of defect detection.Subsequently,to optimize the detection performance of the proposed model,the Mish activation function was used to design the block module of the feature extraction network.Finally,the pro-posed rail defect detection model was trained.The experimental results showed that the precision rate and F1score of the proposed method were as high as 98%,while the model’s recall rate reached 99%.Specifically,good detec-tion results were achieved for different types of defects,which provides a reference for the engineering application of internal defect detection.Experimental results verified the effectiveness of the proposed method.