A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces...A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.展开更多
This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates wi...This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。展开更多
Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs...Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.展开更多
The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/stra...The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.展开更多
In this paper, the deformation theory in plasticity is formulated in the variational inequality, which can relax the constraint conditions of the constitutive equations. The new form makes the calculation more conveni...In this paper, the deformation theory in plasticity is formulated in the variational inequality, which can relax the constraint conditions of the constitutive equations. The new form makes the calculation more convenient than general energy forms and have reliable mathematical basis. Thus the plasticity theory may be solved by means of the quadratic programming instead of the iterative methods. And the solutions can be made in one step without any diversion of the load.展开更多
Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the co...Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the continuity of in-plane displacements and trans-verse shear stresses.The current LW-TOSD can be applied to arbitrary multi-layer laminated structures with only seven Degrees of Freedom(DOFs)for each element node and eliminates the use of the shear correction factors.Moreover,a shear penalty stiffness matrix is constructed to sat-isfy artificial constraints to optimize the structural shear strain.A dynamic finite element model is obtained based on LW-TOSD using the Hamilton's principle.First,the accuracy of the current model is validated by comparing with literature and ABAQUS results.Then,this study carries out numerical investigations of piezolaminated structures for different width-to-thickness ratios,length-to-width ratios,penalty stiffness matrix,boundary conditions,electric fields and dynamics.展开更多
Nonlinear forced vibrations and natural frequency of sandwich functionally graded material doubly curved shallow shell with a rectangular base are investigated. The sandwich functionally graded material(FGM) doubly cu...Nonlinear forced vibrations and natural frequency of sandwich functionally graded material doubly curved shallow shell with a rectangular base are investigated. The sandwich functionally graded material(FGM) doubly curved shell is subjected to a harmonic point load at centre. The sandwich doubly curved shell with homogeneous face sheets and FGM face sheets is considered respectively when the natural frequencies are studied. Reddy's third order shear deformation theory is expanded in which stretching effects in thickness are considered by introducing the secant function. Hamilton's principle and von-Karman type nonlinear geometric equation are applied to obtain partial differential equation of the FGM sandwich doubly curved shell. Comparative studies with other shear deformation theories are carried out to validate the present formulation. Navier method is used to discuss the natural vibration frequencies of the FGM sandwich doubly curved shell. Numerical simulation is applied to demonstrate the nonlinear dynamic responses of the FGM sandwich doubly curved shell. Multiple periods, quasi-period and chaos are detected for the dynamic system for different core thickness.展开更多
The one-step finite element method (FEM), based on plastic deformation theory, has been widely used to simulate sheet metal forming processes, but its application in bulk metal forming simulation has been seldom inv...The one-step finite element method (FEM), based on plastic deformation theory, has been widely used to simulate sheet metal forming processes, but its application in bulk metal forming simulation has been seldom investigated, because of the complexity involved. Thus, a bulk metal forming process was analyzed using a rapid FEM based on deformation theory. The material was assumed to be rigid-plastic and strain-hardened. The constitutive relationship between stress and total strain was adopted, whereas the incompressible condition was enforced by penalty function. The geometrical non-linearity in large plastic deformation was taken into consideration. Furthermore, the force boundary condition was treated by a simplified equivalent approach, considering the contact history. Based on constraint variational principle, the deformation FEM was proposed. The one-step forward simulation of axisymmettic upsetting process was performed using this method. The results were compared with those obtained by the traditional incremental FEM to verify the feasibility of the proposed method.展开更多
The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for ...The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation.展开更多
In this article,an analytical method is proposed to analyze of the linear buckling behavior of the FG porous truncated conical shells subjected to a uniform axial compressive load and resting on the Pasternak elastic ...In this article,an analytical method is proposed to analyze of the linear buckling behavior of the FG porous truncated conical shells subjected to a uniform axial compressive load and resting on the Pasternak elastic foundation.The material properties including Young’s modulus,shear modulus and density are assumed to vary in the thickness direction.Three types of FG porous distributions including symmetric porosity distribution,non-symmetric porosity and uniform porosity distribution are considered.The governing equations of the FG porous truncated conical shells are obtained by using the first-order shear deformation theory(FSDT).With the help of the Galerkin method,the expressions for critical buckling loads are obtained in closed forms.The reliability of the obtained results is verified by comparing the present solutions with the published solutions.Finally,the numerical results show the effects of shell characteristics,porosity distribution,porosity coefficient,and elastic foundation on the critical buckling load.展开更多
arman-type nonlinear large deflection equations are derived occnrding to theReddy's higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperf...arman-type nonlinear large deflection equations are derived occnrding to theReddy's higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperfections of the plate areincluded in the present study which also includes th thermal effects.Simply supported,symmetric cross-ply laminated plates subjected to uniform or nomuniform parabolictemperature distribution are considered. The analysis uses a mixed GalerkinGolerkinperlurbation technique to determine thermal buckling louds and postbucklingequilibrium paths.The effects played by transverse shear deformation plate aspeclraio, total number of plies thermal load ratio and initial geometric imperfections arealso studied.展开更多
This paper reviews the recent advances in computing coseismic deformations,and their contributions to seismology and geodesy. At first,an overview on the history of the dislocation theory development is given in the i...This paper reviews the recent advances in computing coseismic deformations,and their contributions to seismology and geodesy. At first,an overview on the history of the dislocation theory development is given in the introduction section. Then,emphasis are given on some new developments through few examples in the following sections,such as the new dislocation theory for a 3D Earth model,a new computing scheme on coseismic deflection change of vertical,the relation of dislocation Love number and the conventional Love numbers,the application of dislocation theory applied in satellite gravity observations,the coseismic deformations observed by GRACE,and a new method to determine dislocation Love numbers by GRACE. Furthermore,some advanced theoretical and cases studies are introduced to illustrate how dislocation theory is important in interpret geodetic data,or invert seismic slip for co- and post-seismic processes,using seismic and geodetic data. Final remarks are given in the last section,with discussions,conclusions,comments on existing problems,and expected methods to solve them.展开更多
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ...An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.展开更多
A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress the...A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC).展开更多
Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform...Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses.展开更多
Bending analysis of functionally graded plates using the two variable refined plate theory is presented in this paper.The number of unknown functions involved is reduced to merely four,as against five in other shear d...Bending analysis of functionally graded plates using the two variable refined plate theory is presented in this paper.The number of unknown functions involved is reduced to merely four,as against five in other shear deformation theories. The variationally consistent theory presented here has, in many respects,strong similarity to the classical plate theory. It does not require shear correction factors,and gives rise to such transverse shear stress variation that the transverse shear stresses vary parabolically across the thickness and satisfy shear stress free surface conditions.Material properties of the plate are assumed to be graded in the thickness direction with their distributions following a simple power-law in terms of the volume fractions of the constituents.Governing equations are derived from the principle of virtual displacements, and a closed-form solution is found for a simply supported rectangular plate subjected to sinusoidal loading by using the Navier method.Numerical results obtained by the present theory are compared with available solutions,from which it can be concluded that the proposed theory is accurate and simple in analyzing the static bending behavior of functionally graded plates.展开更多
The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but w...The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.展开更多
Due to the conflict between equilibrium and constitutive requirements,Eringen’s strain-driven nonlocal integral model is not applicable to nanostructures of engineering interest.As an alternative,the stress-driven mo...Due to the conflict between equilibrium and constitutive requirements,Eringen’s strain-driven nonlocal integral model is not applicable to nanostructures of engineering interest.As an alternative,the stress-driven model has been recently developed.In this paper,for higher-order shear deformation beams,the ill-posed issue(i.e.,excessive mandatory boundary conditions(BCs)cannot be met simultaneously)exists not only in strain-driven nonlocal models but also in stress-driven ones.The well-posedness of both the strain-and stress-driven two-phase nonlocal(TPN-Strain D and TPN-Stress D)models is pertinently evidenced by formulating the static bending of curved beams made of functionally graded(FG)materials.The two-phase nonlocal integral constitutive relation is equivalent to a differential law equipped with two restriction conditions.By using the generalized differential quadrature method(GDQM),the coupling governing equations are solved numerically.The results show that the two-phase models can predict consistent scale-effects under different supported and loading conditions.展开更多
This research paper provides valuable insight into the electronic,mechanical and transport properties of the Sr_(2)RuO_(2)F_(2)compound.The study shows that the Sr_(2)RuO_(4)compound exhibits a metallic ground state a...This research paper provides valuable insight into the electronic,mechanical and transport properties of the Sr_(2)RuO_(2)F_(2)compound.The study shows that the Sr_(2)RuO_(4)compound exhibits a metallic ground state and that the energy gap widens with oxygen substitution with fluorine.The concept of absolute deformation potential and its correlation with band energies and strains is explained using deformation potential theory.The paper also examines the mechanical features of Sr_(2)RuO_(2)F_(2)using the Voigt-Reuss-Hill approximation method and analyzes its elastic constants,bulk modulus and shear modulus,indicating flexibility and suitability for optoelectronic applications.The role of acoustic phonons in scattering rates and carrier mobility in Sr_(2)RuO_(2)F_(2)and its potential for phonon-mediated superconductivity is investigated.The intrinsic resistivity of electrons and holes under strain and its potential impact on superconductivity and electrical resistivity are also discussed.The insight provided by this study contributes to the current understanding of Sr_(2)RuO_(2)F_(2),and its potential applications.展开更多
Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-d...Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-dependent thermoelectric characteristics of wurtzite-ZnO(0001)nanowires based on first-principles and molecular dynamics simulations.Under the synergistic effect of band degeneracy and weak phonon-electron scattering,P-type(ZnO)_(73) nanowires achieve an ultrahigh power factor above 1500μW·cm^(-1)·K^(-2)over a wide temperature range.The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence.When the ZnO nanowire diameter exceeds 12.72A,the carrier transport properties increase significantly,while the thermal conductivity shows a slight increase with the diameter size,resulting in a ZT value of up to 6.4 at 700 K for P-type(ZnO)_(73).For the first time,the size effect is also illustrated by introducing two geometrical configurations of the ZnO nanowires.This work theoretically depicts the size optimization strategy for the thermoelectric conversion of ZnO nanowires.展开更多
基金The project supported by the National Natural Science Foundation of China(10172023)
文摘A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.
文摘This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。
文摘Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.
基金Project(50575143)supported by the National Natural Science Foundation of ChinaProject(20040248005)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.
文摘In this paper, the deformation theory in plasticity is formulated in the variational inequality, which can relax the constraint conditions of the constitutive equations. The new form makes the calculation more convenient than general energy forms and have reliable mathematical basis. Thus the plasticity theory may be solved by means of the quadratic programming instead of the iterative methods. And the solutions can be made in one step without any diversion of the load.
基金support from the National Natural Science Foundation of China (No.11972020)the Natural Science Foundation of Shanghai,China (No.21ZR1424100).
文摘Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the continuity of in-plane displacements and trans-verse shear stresses.The current LW-TOSD can be applied to arbitrary multi-layer laminated structures with only seven Degrees of Freedom(DOFs)for each element node and eliminates the use of the shear correction factors.Moreover,a shear penalty stiffness matrix is constructed to sat-isfy artificial constraints to optimize the structural shear strain.A dynamic finite element model is obtained based on LW-TOSD using the Hamilton's principle.First,the accuracy of the current model is validated by comparing with literature and ABAQUS results.Then,this study carries out numerical investigations of piezolaminated structures for different width-to-thickness ratios,length-to-width ratios,penalty stiffness matrix,boundary conditions,electric fields and dynamics.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472056 and 11472298)the Natural Science Foundation of Tianjin City(Grant No.13JCQNJC04400)
文摘Nonlinear forced vibrations and natural frequency of sandwich functionally graded material doubly curved shallow shell with a rectangular base are investigated. The sandwich functionally graded material(FGM) doubly curved shell is subjected to a harmonic point load at centre. The sandwich doubly curved shell with homogeneous face sheets and FGM face sheets is considered respectively when the natural frequencies are studied. Reddy's third order shear deformation theory is expanded in which stretching effects in thickness are considered by introducing the secant function. Hamilton's principle and von-Karman type nonlinear geometric equation are applied to obtain partial differential equation of the FGM sandwich doubly curved shell. Comparative studies with other shear deformation theories are carried out to validate the present formulation. Navier method is used to discuss the natural vibration frequencies of the FGM sandwich doubly curved shell. Numerical simulation is applied to demonstrate the nonlinear dynamic responses of the FGM sandwich doubly curved shell. Multiple periods, quasi-period and chaos are detected for the dynamic system for different core thickness.
基金Sponsored by National Natural Science Foundation of China(50575143)Specialized Research Fund for Doctoral Program of Higher Education of China(20040248005)
文摘The one-step finite element method (FEM), based on plastic deformation theory, has been widely used to simulate sheet metal forming processes, but its application in bulk metal forming simulation has been seldom investigated, because of the complexity involved. Thus, a bulk metal forming process was analyzed using a rapid FEM based on deformation theory. The material was assumed to be rigid-plastic and strain-hardened. The constitutive relationship between stress and total strain was adopted, whereas the incompressible condition was enforced by penalty function. The geometrical non-linearity in large plastic deformation was taken into consideration. Furthermore, the force boundary condition was treated by a simplified equivalent approach, considering the contact history. Based on constraint variational principle, the deformation FEM was proposed. The one-step forward simulation of axisymmettic upsetting process was performed using this method. The results were compared with those obtained by the traditional incremental FEM to verify the feasibility of the proposed method.
基金the University of Kashan.(Grant Number:467893/0655)。
文摘The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation.
基金Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number 107.02-2018.324.
文摘In this article,an analytical method is proposed to analyze of the linear buckling behavior of the FG porous truncated conical shells subjected to a uniform axial compressive load and resting on the Pasternak elastic foundation.The material properties including Young’s modulus,shear modulus and density are assumed to vary in the thickness direction.Three types of FG porous distributions including symmetric porosity distribution,non-symmetric porosity and uniform porosity distribution are considered.The governing equations of the FG porous truncated conical shells are obtained by using the first-order shear deformation theory(FSDT).With the help of the Galerkin method,the expressions for critical buckling loads are obtained in closed forms.The reliability of the obtained results is verified by comparing the present solutions with the published solutions.Finally,the numerical results show the effects of shell characteristics,porosity distribution,porosity coefficient,and elastic foundation on the critical buckling load.
文摘arman-type nonlinear large deflection equations are derived occnrding to theReddy's higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperfections of the plate areincluded in the present study which also includes th thermal effects.Simply supported,symmetric cross-ply laminated plates subjected to uniform or nomuniform parabolictemperature distribution are considered. The analysis uses a mixed GalerkinGolerkinperlurbation technique to determine thermal buckling louds and postbucklingequilibrium paths.The effects played by transverse shear deformation plate aspeclraio, total number of plies thermal load ratio and initial geometric imperfections arealso studied.
基金financially supported by the CAS/CAFEA international partnership Program for creative research teams (No. KZZD-EW-TZ-19)the National Nature Science Foundation of China (No. 41331066 and 41174063)
文摘This paper reviews the recent advances in computing coseismic deformations,and their contributions to seismology and geodesy. At first,an overview on the history of the dislocation theory development is given in the introduction section. Then,emphasis are given on some new developments through few examples in the following sections,such as the new dislocation theory for a 3D Earth model,a new computing scheme on coseismic deflection change of vertical,the relation of dislocation Love number and the conventional Love numbers,the application of dislocation theory applied in satellite gravity observations,the coseismic deformations observed by GRACE,and a new method to determine dislocation Love numbers by GRACE. Furthermore,some advanced theoretical and cases studies are introduced to illustrate how dislocation theory is important in interpret geodetic data,or invert seismic slip for co- and post-seismic processes,using seismic and geodetic data. Final remarks are given in the last section,with discussions,conclusions,comments on existing problems,and expected methods to solve them.
文摘An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.
基金the National Natural Science Foundation of China(Nos.11602204 and 12102373)the Fundamental Research Funds for the Central Universities of China(Nos.2682022ZTPY081 and 2682022CX056)the Natural Science Foundation of Sichuan Province of China(Nos.2023NSFSC0849,2023NSFSC1300,2022NSFSC1938,and 2022NSFSC2003)。
文摘A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC).
基金The authors would like to thank the Iranian Nanotechnology Development Committee for their financial support.
文摘Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses.
文摘Bending analysis of functionally graded plates using the two variable refined plate theory is presented in this paper.The number of unknown functions involved is reduced to merely four,as against five in other shear deformation theories. The variationally consistent theory presented here has, in many respects,strong similarity to the classical plate theory. It does not require shear correction factors,and gives rise to such transverse shear stress variation that the transverse shear stresses vary parabolically across the thickness and satisfy shear stress free surface conditions.Material properties of the plate are assumed to be graded in the thickness direction with their distributions following a simple power-law in terms of the volume fractions of the constituents.Governing equations are derived from the principle of virtual displacements, and a closed-form solution is found for a simply supported rectangular plate subjected to sinusoidal loading by using the Navier method.Numerical results obtained by the present theory are compared with available solutions,from which it can be concluded that the proposed theory is accurate and simple in analyzing the static bending behavior of functionally graded plates.
文摘The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.
基金Project supported by the National Natural Science Foundation of China(No.11672131)。
文摘Due to the conflict between equilibrium and constitutive requirements,Eringen’s strain-driven nonlocal integral model is not applicable to nanostructures of engineering interest.As an alternative,the stress-driven model has been recently developed.In this paper,for higher-order shear deformation beams,the ill-posed issue(i.e.,excessive mandatory boundary conditions(BCs)cannot be met simultaneously)exists not only in strain-driven nonlocal models but also in stress-driven ones.The well-posedness of both the strain-and stress-driven two-phase nonlocal(TPN-Strain D and TPN-Stress D)models is pertinently evidenced by formulating the static bending of curved beams made of functionally graded(FG)materials.The two-phase nonlocal integral constitutive relation is equivalent to a differential law equipped with two restriction conditions.By using the generalized differential quadrature method(GDQM),the coupling governing equations are solved numerically.The results show that the two-phase models can predict consistent scale-effects under different supported and loading conditions.
文摘This research paper provides valuable insight into the electronic,mechanical and transport properties of the Sr_(2)RuO_(2)F_(2)compound.The study shows that the Sr_(2)RuO_(4)compound exhibits a metallic ground state and that the energy gap widens with oxygen substitution with fluorine.The concept of absolute deformation potential and its correlation with band energies and strains is explained using deformation potential theory.The paper also examines the mechanical features of Sr_(2)RuO_(2)F_(2)using the Voigt-Reuss-Hill approximation method and analyzes its elastic constants,bulk modulus and shear modulus,indicating flexibility and suitability for optoelectronic applications.The role of acoustic phonons in scattering rates and carrier mobility in Sr_(2)RuO_(2)F_(2)and its potential for phonon-mediated superconductivity is investigated.The intrinsic resistivity of electrons and holes under strain and its potential impact on superconductivity and electrical resistivity are also discussed.The insight provided by this study contributes to the current understanding of Sr_(2)RuO_(2)F_(2),and its potential applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52130604 and 51825604)。
文摘Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-dependent thermoelectric characteristics of wurtzite-ZnO(0001)nanowires based on first-principles and molecular dynamics simulations.Under the synergistic effect of band degeneracy and weak phonon-electron scattering,P-type(ZnO)_(73) nanowires achieve an ultrahigh power factor above 1500μW·cm^(-1)·K^(-2)over a wide temperature range.The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence.When the ZnO nanowire diameter exceeds 12.72A,the carrier transport properties increase significantly,while the thermal conductivity shows a slight increase with the diameter size,resulting in a ZT value of up to 6.4 at 700 K for P-type(ZnO)_(73).For the first time,the size effect is also illustrated by introducing two geometrical configurations of the ZnO nanowires.This work theoretically depicts the size optimization strategy for the thermoelectric conversion of ZnO nanowires.