Electrochemical CO reduction reaction(CORR) provides a promising approach for producing valuable multicarbon products(C_(2+)), while the low solubility of CO in aqueous solution and high energy barrier of C–C couplin...Electrochemical CO reduction reaction(CORR) provides a promising approach for producing valuable multicarbon products(C_(2+)), while the low solubility of CO in aqueous solution and high energy barrier of C–C coupling as well as the competing hydrogen evolution reaction(HER) largely limit the efficiency for C_(2+)production in CORR. Here we report an overturn on the Faradaic efficiency of CORR from being HER-dominant to C_(2+)formation-dominant over a wide potential window, accompanied by a significant activity enhancement over a Moss-like Cu catalyst via pressuring CO. With the CO pressure rising from 1 to 40 atm, the C_(2+)Faradaic efficiency and partial current density remarkably increase from 22.8%and 18.9 mA cm^(-2)to 89.7% and 116.7 mA cm^(-2), respectively. Experimental and theoretical investigations reveal that high pressure-induced high CO coverage on metallic Cu surface weakens the Cu–C bond via reducing electron transfer from Cu to adsorbed CO and restrains hydrogen adsorption, which significantly facilitates the C–C coupling while suppressing HER on the predominant Cu(111) surface, thereby boosting the CO electroreduction to C_(2+)activity.展开更多
The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal ...The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal pressure,as it is easy to develop the rigid busbar,which may lead to the flashover occurring around the support insulators.We establish a pantograph-catenary arc experiment and diagnosis platform to simulate low pressure and strong airflow environment.Meanwhile,the variation law of arc drift height with time under different air pressures and airflow velocities is analyzed.Moreover,arc drift characteristics and influencing factors are explored.The physical process of the arc column drifting to the rigid busbar with the jumping mechanism of the arc root on the rigid busbar is summarized.In order to further explore the mechanism of the above physical process,a multi-field stress coupling model is built,as the multi-stress variation law of arc is quantitatively evaluated.The dynamic action mechanism of multi-field stress on arc drifting characteristics is explored,as the physical mechanism of arc drifting under low pressure is theoretically explained.The research results provide theoretical support for arc suppression in high-altitude areas.展开更多
Excessively high pore water pressure presents unpredictable risks to the safety of rock tunnels in mountainous regions that are predominantly composed of limestone. Investigating the creep characteristics and permeabi...Excessively high pore water pressure presents unpredictable risks to the safety of rock tunnels in mountainous regions that are predominantly composed of limestone. Investigating the creep characteristics and permeability evolution of limestone under varying hydrated conditions is crucial for a better understanding of the delayed deformation mechanisms of limestone rock tunnels. To this end, this paper initially conducts a series of multi-stage triaxial creep tests on limestone samples under varying pore water pressures. The experiment examines how pore water pressure affects limestone’s creep strain, strain rate, long-term strength, lifespan, and permeability, all within the context of hydraulicmechanical(HM) coupling. To better describe the creep behavior associated with pore water pressure, this paper proposes a new nonlinear fractional creep constitutive model. This constitutive model depicts the initial, steady-state, and accelerated phases of limestone’s creep behavior. Finally, the proposed model is applied to the numerical realization of deformation in limestone tunnel, validating the effectiveness of the proposed constitutive model in predicting tunnel’s creep deformation. This research enhances our understanding of limestone’s creep characteristics and permeability evolution under HM coupling, laying a foundation for assessing the longterm stability of mountain tunnels.展开更多
A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using ...A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement.Through simulating calculation and experiments,the effects of tightening torque on the dynamic characteristics of the rotor system connected by a spline coupling including critical speeds,vibration modes and unbalance responses are analyzed.The results show that when increasing the tightening torque,the first two critical speeds and the amplitudes of unbalance response gradually increase in varying degrees while the vibration modes are essentially unchanged.In addition,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change.展开更多
The effects of operating parameters on oxidative coupling of methane (OCM) over Na-W-Mn/SiO2 catalyst have been studied at elevated pressures of 0.2, 0.3 and 0.4 MPa under low gaseous hourly space velocity (GHSV) ...The effects of operating parameters on oxidative coupling of methane (OCM) over Na-W-Mn/SiO2 catalyst have been studied at elevated pressures of 0.2, 0.3 and 0.4 MPa under low gaseous hourly space velocity (GHSV) and low temperature conditions. Experimental results show that when the operating pressure is increased, C2+ yield slightly decreases, while the maximum ratio of ethylene to ethane remains unchanged. Moreover, it has been found empirically that increase of pressure does not affect the catalyst behavior permanently, the catalyst recovers its original low pressure performance without hysteresis behavior by reducing the pressure. Under the investigated conditions, when oxygen is completely consumed, the increase of GHSV leads to improvement in C2 selectivity, while C3+ and COx selectivities decrease slightly. The C2+ selectivity increases by increase of nitrogen diluent in the feed, but the C3+ hydrocarbons selectivities decrease with increase of nitrogen since it is possible that further dilution at high pressure may reduce the probability of collision between CH3 and C2+ hydrocarbons. During the stability test at high pressure, the catalyst performance remains unchanged throughout the 20 h running. The fresh and used catalysts were characterized using XRD, SEM and N2 adsorption-desorption methods. It was found that the phase transformation of the support from α-cristobalite to tridymite and quartz does not have obvious effect on catalyst performance at high pressure.展开更多
Aiming at deep roadway anchorage solids, laboratory similar model tests were used to reveal the mechanical properties of anchorage solids with different anchorage lengths under the coupling effect of temperature and p...Aiming at deep roadway anchorage solids, laboratory similar model tests were used to reveal the mechanical properties of anchorage solids with different anchorage lengths under the coupling effect of temperature and pressure, and SPSS statistical analysis software was used to conduct linear regression analysis of the ultimate anchorage force obtained from the tests. The results show that: through multiple linear regression analysis, the influence degree of temperature and pressure coupling on the ultimate anchorage force is arranged in order of anchoring length > surrounding rock strength > temperature > side pressure coefficient, and the linear regression equation of the model is obtained. Compared with the linear regression equation of simulation results, the model has a high explanatory ability.展开更多
Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. ...Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. As well, the relation between pore pressure and soil stress was evaluated. The model tests show the vibrations of pore pressure and soil stress as a result of mining activities. The simulation model tells of the response characteristics of pore pressure after mining and its distribution in the sand aquifer. The comparative analysis reveals that pore pressure and soil stress vibration are activated by unexpected events occurring in mines, such as collapsing roofs. An increased pore pressure zone always lies above the wall in front or behind the working face of a mine. Both pore pressure and vertical stress result in increasing and decreasing processes during movements of the working face of a mine. The vibration of pore pressure always precedes soil stress in the same area and ends with a sharp decline. Changes in pore pressure of sand aquifer are limited to the area of stress changes. Obvious changes are largely located in a very small frame over the mining face.展开更多
In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned man...In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.展开更多
The model of pressure solution for granular aggregate was introduced into the FEM code for analysis of thermo-hydro- mechanical (T-H-M) coupling in porous medium. Aiming at a hypothetical nuclear waste repository in...The model of pressure solution for granular aggregate was introduced into the FEM code for analysis of thermo-hydro- mechanical (T-H-M) coupling in porous medium. Aiming at a hypothetical nuclear waste repository in an unsaturated quartz rock mass, two computation conditions were designed: 1) the porosity and the permeability of rock mass are fimctions of pressure solution; 2) the porosity and the permeability are constants. Then the corresponding numerical simulations for a disposal period of 4 a were carried out, and the states of temperatures, porosities and permeabilities, pore pressures, flow velocities and stresses in the rock mass were investigated. The results show that at the end of the calculation in Case 1, pressure solution makes the porosities and the permeabilities decrease to 10%-45% and 0.05%-1.4% of their initial values, respectively. Under the action of the release heat of nuclear waste, the negative pore pressures both in Case 1 and Case 2 are 1.2-1.4 and 1.01-l.06 times of the initial values, respectively. So, the former represents an obvious effect of pressure solution. The magnitudes and distributions of stresses within the rock mass in the two calculation cases are the same.展开更多
The pressure solution model of granular aggregates was introduced into a FEM code which was developed for the analysis of thermo-hydro-mechanical(T-H-M) coupling in porous medium. Aimed at creating a hypothetical mode...The pressure solution model of granular aggregates was introduced into a FEM code which was developed for the analysis of thermo-hydro-mechanical(T-H-M) coupling in porous medium. Aimed at creating a hypothetical model of nuclear waste disposal in unsaturated quartz aggregate rock mass with laboratory scale, two 4-year computation cases were designed: 1) The porosity and permeability of rock mass are functions of the pressure solution; 2) The porosity and the permeability are constants. Calculation results show that the magnitude and distribution of stresses in the rock mass of these two calculation cases are roughly the same. And, the porosity and the permeability decrease to 43%-54% and 4.4%-9.1% of their original values after case 1 being accomplished; but the negative pore water pressures in cases 1 and 2 are respectively 1.0-1.25 and 1.0-1.1 times of their initial values under the action of nuclear waste. Case 1 exhibits the obvious effect of pressure solution.展开更多
This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sands...This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sandstone with water pressure, and revealing the influence of water pressure on the upper limit stress and deformation characteristics of sandstone during post-peak cyclic loading and unloading.Regarding the rock strength, the experimental study confirms that the peak strength σ_(p) and residual strength σ_(r) decrease as water pressure P increases. Especially, the normalized strength parameters σ_(p)/σ_(pk) and σ_(r)/σ_(re) was negatively and linearly correlated with the P/σ_(3). Moreover, the Hoek-Brown strength criterion can be applied to describe the relationship between effective peak strength and effective confining stress. During post-peak cyclic loading and unloading, both the upper limit stress σ_(p(i)) and crack damage threshold stress σ_(cd(i)) of each cycle tend to decrease with the increasing cycle number. A hysteresis loop exists among the loading and unloading stress–strain curves, indicating the unloading deformation modulus E_(unload) is larger than the loading deformation modulus E_(load). Based on experimental results,a post-peak strength prediction model related to water pressure and plastic shear strain is established.展开更多
The effect of hydrostatic pressure on the vibration dispersion characteristics of fluid-shell coupled structures was studied.Both fluid-loaded cylindrical shells and fluid-filled cylindrical shells were considered.Num...The effect of hydrostatic pressure on the vibration dispersion characteristics of fluid-shell coupled structures was studied.Both fluid-loaded cylindrical shells and fluid-filled cylindrical shells were considered.Numerical analysis was applied to solve the dispersion equations for shells filled with or loaded with fluid at various hydrostatic pressures.The results for external pressure showed that non-dimensional axial wave numbers are nearly independent when the pressure is below the critical level.The influence of internal pressure on wave numbers was found significant for the real branch s=1 and the complex branches of dispersion curves.The presence of internal pressure increased the cut on frequencies for the branch s=1 for high order wave modes.展开更多
Deep oil exploration coring technology cannot accurately maintain the in-situ pressure and temperature of samples, which leads to a distortion of deep oil and gas resource reserve evaluations based on conventional cor...Deep oil exploration coring technology cannot accurately maintain the in-situ pressure and temperature of samples, which leads to a distortion of deep oil and gas resource reserve evaluations based on conventional cores and cannot guide the development of deep oil and gas resources on Earth. The fundamental reason is the lack of temperature and pressure control in in-situ coring environments. In this paper, a pressure control method of a coring device is studied. The theory and method of deep intelligent temperature-pressure coupling control are innovatively proposed, and a multifield coupling dynamic sealing model is established. The optimal cardinality three term PID (Proportional-Integral-Differential) intelligent control algorithm of pressure system is developed. The temperature-pressure characteristic of the gas-liquid two-phase cavity is analyzed, and the pressure intelligent control is carried out based on three term PID control algorithms. An in-situ condition-preserved coring (ICP-Coring) device is developed, and an intelligent control system for the temperature and pressure of the coring device is designed and verified by experiments. The results show that the temperature-pressure coupling control system can effectively realize stable sealing under temperature-pressure fields of 140 MPa and 150 °C. The temperature-pressure coupling control method can accurately realize a constant pressure inside the coring device. The maximum working pressure is 140 MPa, and the effective pressure compensation range is 20 MPa. The numerical simulation experiment of pressure system control algorithm is carried out, and the optimal cardinality and three term coefficients are obtained. The pressure steady-state error is less than 0.01%. The method of temperature-pressure coupling control has guiding significance for coring device research, and is also the basis for temperature-pressure decoupling control in ICP-Coring.展开更多
Tungsten disulfide(WS_(2))has been reported to show negligible stacking dependence under ambient conditions,impeding its further explorations on physical properties and potential applications.Here,we realize efficient...Tungsten disulfide(WS_(2))has been reported to show negligible stacking dependence under ambient conditions,impeding its further explorations on physical properties and potential applications.Here,we realize efficient modulation of interlayer coupling in bilayer WS_(2)with 3R and 2H stackings by high pressure,and find that the pressure-triggered interlayer coupling and pressure-induced resonant-to-nonresonant transition exhibit prominent stacking dependence,which are experimentally observed for the first time in WS2.Our work may unleash the stacking degree of freedom in designing WS_(2)devices with tailored properties correlated to interlayer coupling.展开更多
An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is stud...An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.展开更多
A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- ida...A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- idation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis) gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-Plate anchor svstem.展开更多
Considering the complicated interactions between temperature,pressure and hydration reaction of cement,a coupled model of temperature and pressure based on hydration kinetics during deep-water well cementing was estab...Considering the complicated interactions between temperature,pressure and hydration reaction of cement,a coupled model of temperature and pressure based on hydration kinetics during deep-water well cementing was established.The differential method was used to do the coupled numerical calculation,and the calculation results were compared with experimental and field data to verify the accuracy of the model.When the interactions between temperature,pressure and hydration reaction are considered,the calculation accuracy of the model proposed is within 5.6%,which can meet the engineering requirements.A series of numerical simulation was conducted to find out the variation pattern of temperature,pressure and hydration degree during the cement curing.The research results show that cement temperature increases dramatically as a result of the heat of cement hydration.With the development of cement gel strength,the pore pressure of cement slurry decreases gradually to even lower than the formation pressure,causing gas channeling;the transient temperature and pressure have an impact on the rate of cement hydration reaction,so cement slurry in the deeper part of wellbore has a higher rate of hydration rate as a result of the high temperature and pressure.For well cementing in deep water regions,the low temperature around seabed would slow the rate of cement hydration and thus prolong the cementing cycle.展开更多
We report robust superconducting state and gap symmetry of Nb5Ir3O via electrical transport and specific heat measurements. The analysis of specific heat manifests that Nb5Ir3O is a strongly coupled superconductor wi...We report robust superconducting state and gap symmetry of Nb5Ir3O via electrical transport and specific heat measurements. The analysis of specific heat manifests that Nb5Ir3O is a strongly coupled superconductor with ΔC/γnTc ~ 1.91 and double s-wave superconducting gaps of 2ΔL(0)/kBTc ~ 6.56 and 2ΔS(0)/kBTc ~ 2.36 accounting for 90% and 10%,respectively. The(Cp-γnT)/T^3 vs. T plot shows a broad peak at ~ 23 K, indicating phonon softening and the appearance of low-lying phonon mode associated with the interstitial oxygen. This behavior explains the monotonic increase of Tc in Nb5Ir3O(1-δ)by strengthening the electron-phonon coupling and enlarging the density of states at Fermi level. The Hall coefficient is temperature independent below 200 K, and changes its sign from positive to negative above 250 K, suggesting that carrier is across the hole-to electron-dominant regions and the multi-band electronic structures. On warming, the resistivity shows a gradual crossover from T^2-to T^3-dependence at a critical temperature T^*, and a broad peak at a temperature Tp. The reduced Tc under pressure is linearly correlated with lattice parameters c/a ratio and Tp, suggesting the important phonon contributions in Nb5Ir3O as a phonon-medicated superconductor. Possible physical mechanisms are proposed.展开更多
Stable operations of single direct current (DC) discharge, single radio frequency (RF) discharge and DC + RF hybrid discharge are achieved in a specially-designed DC enhanced inductively- coupled plasma (DCE-ICP...Stable operations of single direct current (DC) discharge, single radio frequency (RF) discharge and DC + RF hybrid discharge are achieved in a specially-designed DC enhanced inductively- coupled plasma (DCE-ICP) source. Their plasma characteristics, such as electron density, electron temperature and the electron density spatial distribution profiles are investigated and compared experimentally at different gas pressures. It is found that under the condition of single RF discharge, the electron density distribution profiles show a 'convex' shape and 'saddle' shape at gas pressures of 3 mTorr and 150 mTorr respectively. This result can be attributed to the transition of electron kinetics from nonlocal to local kinetics with an increase in gas pressure. Moreover, in the operation of DC q- RF hybrid discharge at different gas pressures, the DC discharge has different effects on plasma uniformity. The plasma uniformity can be improved by modulating DC power at a high pressure of 150 mTorr where local electron kinetics is dominant, whereas plasma uniformity deteriorates at a low pressure of 3 mTorr where nonlocal electron kinetics prevails. This phenomenon, as analyzed, is due to the obvious nonlinear enhancement effect of electron density at the chamber center, and the inherent radial distribution difference in the electron density with single RF discharge at different gas pressures.展开更多
Pressure and tilt data are jointly inverted to simultaneously map the orientation and dimensions of a hydraulic fracture.The deformation induced by a fracture under internal pressure is modeled using the distributed d...Pressure and tilt data are jointly inverted to simultaneously map the orientation and dimensions of a hydraulic fracture.The deformation induced by a fracture under internal pressure is modeled using the distributed dislocation technique.The planar fracture is represented by four quarter ellipses,joined at the center and sharing semi-axes.This configuration provides a straightforward model for characterizing asymmetric fracture geometry.The inverse problem of mapping the fracture geometry is formulated using the Bayesian probabilistic method,combining the a priori information on the fracture model with updated information from pressure and tilt data.Solving the nonlinear inverse problem is achieved by pseudo-randomly sampling the posterior probability distribution through the Markov chain Monte Carlo method.The resulting posterior probability distribution is then explored to assess uncertainty,resolution,and correlation between model parameters.Numerical experiments are conducted to verify the accuracy and validity of the proposed analysis method in mapping the fracture geometry using synthetic pressure and tilt data.展开更多
基金financial support from the National Key R&D Program of China (Nos. 2022YFA1504500, 2022YFA1503100)the National Natural Science Foundation of China (Nos. 21988101, 21890753, 22225204, 92145301, 22002160 and 22272174)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36030200)the CAS Project for Young Scientists in Basic Research (No. YSBR-028)the Fundamental Research Funds for the Central Universities (No. 20720220008)the Dalian National Lab for Clean Energy (DNL Cooperation Fund 202001)the Innovation Research Fund Project of DICP (No. DICP I202016)。
文摘Electrochemical CO reduction reaction(CORR) provides a promising approach for producing valuable multicarbon products(C_(2+)), while the low solubility of CO in aqueous solution and high energy barrier of C–C coupling as well as the competing hydrogen evolution reaction(HER) largely limit the efficiency for C_(2+)production in CORR. Here we report an overturn on the Faradaic efficiency of CORR from being HER-dominant to C_(2+)formation-dominant over a wide potential window, accompanied by a significant activity enhancement over a Moss-like Cu catalyst via pressuring CO. With the CO pressure rising from 1 to 40 atm, the C_(2+)Faradaic efficiency and partial current density remarkably increase from 22.8%and 18.9 mA cm^(-2)to 89.7% and 116.7 mA cm^(-2), respectively. Experimental and theoretical investigations reveal that high pressure-induced high CO coverage on metallic Cu surface weakens the Cu–C bond via reducing electron transfer from Cu to adsorbed CO and restrains hydrogen adsorption, which significantly facilitates the C–C coupling while suppressing HER on the predominant Cu(111) surface, thereby boosting the CO electroreduction to C_(2+)activity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51707166,51922090,U1966602,and U19A20105)the Sichuan Science and Technology General Project(Grant Nos.2019YJ0213 and2019JDJQ0019)。
文摘The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal pressure,as it is easy to develop the rigid busbar,which may lead to the flashover occurring around the support insulators.We establish a pantograph-catenary arc experiment and diagnosis platform to simulate low pressure and strong airflow environment.Meanwhile,the variation law of arc drift height with time under different air pressures and airflow velocities is analyzed.Moreover,arc drift characteristics and influencing factors are explored.The physical process of the arc column drifting to the rigid busbar with the jumping mechanism of the arc root on the rigid busbar is summarized.In order to further explore the mechanism of the above physical process,a multi-field stress coupling model is built,as the multi-stress variation law of arc is quantitatively evaluated.The dynamic action mechanism of multi-field stress on arc drifting characteristics is explored,as the physical mechanism of arc drifting under low pressure is theoretically explained.The research results provide theoretical support for arc suppression in high-altitude areas.
基金financially supported by the China Postdoctoral Science Foundation (No. 2023M742898)the Postdoctoral Fellowship Program of CPSF (No. GZC20232193)。
文摘Excessively high pore water pressure presents unpredictable risks to the safety of rock tunnels in mountainous regions that are predominantly composed of limestone. Investigating the creep characteristics and permeability evolution of limestone under varying hydrated conditions is crucial for a better understanding of the delayed deformation mechanisms of limestone rock tunnels. To this end, this paper initially conducts a series of multi-stage triaxial creep tests on limestone samples under varying pore water pressures. The experiment examines how pore water pressure affects limestone’s creep strain, strain rate, long-term strength, lifespan, and permeability, all within the context of hydraulicmechanical(HM) coupling. To better describe the creep behavior associated with pore water pressure, this paper proposes a new nonlinear fractional creep constitutive model. This constitutive model depicts the initial, steady-state, and accelerated phases of limestone’s creep behavior. Finally, the proposed model is applied to the numerical realization of deformation in limestone tunnel, validating the effectiveness of the proposed constitutive model in predicting tunnel’s creep deformation. This research enhances our understanding of limestone’s creep characteristics and permeability evolution under HM coupling, laying a foundation for assessing the longterm stability of mountain tunnels.
文摘A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement.Through simulating calculation and experiments,the effects of tightening torque on the dynamic characteristics of the rotor system connected by a spline coupling including critical speeds,vibration modes and unbalance responses are analyzed.The results show that when increasing the tightening torque,the first two critical speeds and the amplitudes of unbalance response gradually increase in varying degrees while the vibration modes are essentially unchanged.In addition,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change.
文摘The effects of operating parameters on oxidative coupling of methane (OCM) over Na-W-Mn/SiO2 catalyst have been studied at elevated pressures of 0.2, 0.3 and 0.4 MPa under low gaseous hourly space velocity (GHSV) and low temperature conditions. Experimental results show that when the operating pressure is increased, C2+ yield slightly decreases, while the maximum ratio of ethylene to ethane remains unchanged. Moreover, it has been found empirically that increase of pressure does not affect the catalyst behavior permanently, the catalyst recovers its original low pressure performance without hysteresis behavior by reducing the pressure. Under the investigated conditions, when oxygen is completely consumed, the increase of GHSV leads to improvement in C2 selectivity, while C3+ and COx selectivities decrease slightly. The C2+ selectivity increases by increase of nitrogen diluent in the feed, but the C3+ hydrocarbons selectivities decrease with increase of nitrogen since it is possible that further dilution at high pressure may reduce the probability of collision between CH3 and C2+ hydrocarbons. During the stability test at high pressure, the catalyst performance remains unchanged throughout the 20 h running. The fresh and used catalysts were characterized using XRD, SEM and N2 adsorption-desorption methods. It was found that the phase transformation of the support from α-cristobalite to tridymite and quartz does not have obvious effect on catalyst performance at high pressure.
文摘Aiming at deep roadway anchorage solids, laboratory similar model tests were used to reveal the mechanical properties of anchorage solids with different anchorage lengths under the coupling effect of temperature and pressure, and SPSS statistical analysis software was used to conduct linear regression analysis of the ultimate anchorage force obtained from the tests. The results show that: through multiple linear regression analysis, the influence degree of temperature and pressure coupling on the ultimate anchorage force is arranged in order of anchoring length > surrounding rock strength > temperature > side pressure coefficient, and the linear regression equation of the model is obtained. Compared with the linear regression equation of simulation results, the model has a high explanatory ability.
基金Project supported by Qing Lan Project of Jiangsu, China
文摘Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. As well, the relation between pore pressure and soil stress was evaluated. The model tests show the vibrations of pore pressure and soil stress as a result of mining activities. The simulation model tells of the response characteristics of pore pressure after mining and its distribution in the sand aquifer. The comparative analysis reveals that pore pressure and soil stress vibration are activated by unexpected events occurring in mines, such as collapsing roofs. An increased pore pressure zone always lies above the wall in front or behind the working face of a mine. Both pore pressure and vertical stress result in increasing and decreasing processes during movements of the working face of a mine. The vibration of pore pressure always precedes soil stress in the same area and ends with a sharp decline. Changes in pore pressure of sand aquifer are limited to the area of stress changes. Obvious changes are largely located in a very small frame over the mining face.
基金sponsored by Bureau Veritas under the administration of Dr.ime Malenica
文摘In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.
基金Project(2010CB732101) supported by the National Basic Research Program of ChinaProject(51079145) supported by the National Natural Science Foundation of ChinaProject(2009BAK53B03) supported by the National Key Technology R&D Program of China
文摘The model of pressure solution for granular aggregate was introduced into the FEM code for analysis of thermo-hydro- mechanical (T-H-M) coupling in porous medium. Aiming at a hypothetical nuclear waste repository in an unsaturated quartz rock mass, two computation conditions were designed: 1) the porosity and the permeability of rock mass are fimctions of pressure solution; 2) the porosity and the permeability are constants. Then the corresponding numerical simulations for a disposal period of 4 a were carried out, and the states of temperatures, porosities and permeabilities, pore pressures, flow velocities and stresses in the rock mass were investigated. The results show that at the end of the calculation in Case 1, pressure solution makes the porosities and the permeabilities decrease to 10%-45% and 0.05%-1.4% of their initial values, respectively. Under the action of the release heat of nuclear waste, the negative pore pressures both in Case 1 and Case 2 are 1.2-1.4 and 1.01-l.06 times of the initial values, respectively. So, the former represents an obvious effect of pressure solution. The magnitudes and distributions of stresses within the rock mass in the two calculation cases are the same.
基金Project(2010CB732101)supported by the National Key Basic Research and Development Program of ChinaProjects(51079145,51379201)supported by the National Natural Science Foundation of China
文摘The pressure solution model of granular aggregates was introduced into a FEM code which was developed for the analysis of thermo-hydro-mechanical(T-H-M) coupling in porous medium. Aimed at creating a hypothetical model of nuclear waste disposal in unsaturated quartz aggregate rock mass with laboratory scale, two 4-year computation cases were designed: 1) The porosity and permeability of rock mass are functions of the pressure solution; 2) The porosity and the permeability are constants. Calculation results show that the magnitude and distribution of stresses in the rock mass of these two calculation cases are roughly the same. And, the porosity and the permeability decrease to 43%-54% and 4.4%-9.1% of their original values after case 1 being accomplished; but the negative pore water pressures in cases 1 and 2 are respectively 1.0-1.25 and 1.0-1.1 times of their initial values under the action of nuclear waste. Case 1 exhibits the obvious effect of pressure solution.
基金supported by the National Natural Science Foundation of China(Nos.52274118 and 52274145)the Construction Project of Chenzhou National Sustainable Development Agenda Innovation Demonstration Zone(No.2021sfQ18).
文摘This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sandstone with water pressure, and revealing the influence of water pressure on the upper limit stress and deformation characteristics of sandstone during post-peak cyclic loading and unloading.Regarding the rock strength, the experimental study confirms that the peak strength σ_(p) and residual strength σ_(r) decrease as water pressure P increases. Especially, the normalized strength parameters σ_(p)/σ_(pk) and σ_(r)/σ_(re) was negatively and linearly correlated with the P/σ_(3). Moreover, the Hoek-Brown strength criterion can be applied to describe the relationship between effective peak strength and effective confining stress. During post-peak cyclic loading and unloading, both the upper limit stress σ_(p(i)) and crack damage threshold stress σ_(cd(i)) of each cycle tend to decrease with the increasing cycle number. A hysteresis loop exists among the loading and unloading stress–strain curves, indicating the unloading deformation modulus E_(unload) is larger than the loading deformation modulus E_(load). Based on experimental results,a post-peak strength prediction model related to water pressure and plastic shear strain is established.
文摘The effect of hydrostatic pressure on the vibration dispersion characteristics of fluid-shell coupled structures was studied.Both fluid-loaded cylindrical shells and fluid-filled cylindrical shells were considered.Numerical analysis was applied to solve the dispersion equations for shells filled with or loaded with fluid at various hydrostatic pressures.The results for external pressure showed that non-dimensional axial wave numbers are nearly independent when the pressure is below the critical level.The influence of internal pressure on wave numbers was found significant for the real branch s=1 and the complex branches of dispersion curves.The presence of internal pressure increased the cut on frequencies for the branch s=1 for high order wave modes.
基金supported by the National Natural Science Foundation of China(grant numbers 51827901,51805340)funded by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)Shenzhen Basic Research Program(General Program)(No.JCYJ20190808153416970).
文摘Deep oil exploration coring technology cannot accurately maintain the in-situ pressure and temperature of samples, which leads to a distortion of deep oil and gas resource reserve evaluations based on conventional cores and cannot guide the development of deep oil and gas resources on Earth. The fundamental reason is the lack of temperature and pressure control in in-situ coring environments. In this paper, a pressure control method of a coring device is studied. The theory and method of deep intelligent temperature-pressure coupling control are innovatively proposed, and a multifield coupling dynamic sealing model is established. The optimal cardinality three term PID (Proportional-Integral-Differential) intelligent control algorithm of pressure system is developed. The temperature-pressure characteristic of the gas-liquid two-phase cavity is analyzed, and the pressure intelligent control is carried out based on three term PID control algorithms. An in-situ condition-preserved coring (ICP-Coring) device is developed, and an intelligent control system for the temperature and pressure of the coring device is designed and verified by experiments. The results show that the temperature-pressure coupling control system can effectively realize stable sealing under temperature-pressure fields of 140 MPa and 150 °C. The temperature-pressure coupling control method can accurately realize a constant pressure inside the coring device. The maximum working pressure is 140 MPa, and the effective pressure compensation range is 20 MPa. The numerical simulation experiment of pressure system control algorithm is carried out, and the optimal cardinality and three term coefficients are obtained. The pressure steady-state error is less than 0.01%. The method of temperature-pressure coupling control has guiding significance for coring device research, and is also the basis for temperature-pressure decoupling control in ICP-Coring.
基金supported by the National Natural Science Foundation of China(Grant Nos.T2325007,62250073,U21A20459,62004026,61774029,62104029,12104086,62150052,U23A20570,and 51902346)the Sichuan Science and Technology Program(Grant Nos.2021JDTD0028,2023NSFSC1334,24NSFSC5852,and 24NSFSC5853)the Science and Technology Innovation Program of Hunan Province(Grant No.2021RC3021)。
文摘Tungsten disulfide(WS_(2))has been reported to show negligible stacking dependence under ambient conditions,impeding its further explorations on physical properties and potential applications.Here,we realize efficient modulation of interlayer coupling in bilayer WS_(2)with 3R and 2H stackings by high pressure,and find that the pressure-triggered interlayer coupling and pressure-induced resonant-to-nonresonant transition exhibit prominent stacking dependence,which are experimentally observed for the first time in WS2.Our work may unleash the stacking degree of freedom in designing WS_(2)devices with tailored properties correlated to interlayer coupling.
基金The China Ocean Mineral Resources Research and Development Association Research Program of the State Oceanic Administration of China under contract No.DY125-13-R-07the National Natural Science Foundation of China under contract Nos 41322036 and 41230960+1 种基金the Shandong Provincial Natural Science Foundation of China under contract No.ZR2014DP009the Special Basic Research Funds for Central Public Research Institutes for The First Institute of Oceanography,State Oceanic Administration of China under contract Nos GY0213G06 and GY02-2012G35
文摘An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.
基金supported by the National Natural Science Foundation of China(51309213)the 973 program of China (2014CB046200)
文摘A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- idation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis) gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-Plate anchor svstem.
基金Supported by the National Natural Science Foundation of China(U1762216)China National Science and Technology Major Project(2016ZX05028-001-03)
文摘Considering the complicated interactions between temperature,pressure and hydration reaction of cement,a coupled model of temperature and pressure based on hydration kinetics during deep-water well cementing was established.The differential method was used to do the coupled numerical calculation,and the calculation results were compared with experimental and field data to verify the accuracy of the model.When the interactions between temperature,pressure and hydration reaction are considered,the calculation accuracy of the model proposed is within 5.6%,which can meet the engineering requirements.A series of numerical simulation was conducted to find out the variation pattern of temperature,pressure and hydration degree during the cement curing.The research results show that cement temperature increases dramatically as a result of the heat of cement hydration.With the development of cement gel strength,the pore pressure of cement slurry decreases gradually to even lower than the formation pressure,causing gas channeling;the transient temperature and pressure have an impact on the rate of cement hydration reaction,so cement slurry in the deeper part of wellbore has a higher rate of hydration rate as a result of the high temperature and pressure.For well cementing in deep water regions,the low temperature around seabed would slow the rate of cement hydration and thus prolong the cementing cycle.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFA0305700 and 2018YFA0305800)JSPS Kakenhi(Grant No.17H06153)+4 种基金the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant Nos.XDB25000000 and QYZDB-SSW-SLH013)the National Natural Science Foundation of China(Grant No.11574377)Beijing Natural Science Foundation,China(Grant No.Z190008)IOP Hundred-Talent Program,China(Grant No.Y7K5031×61)the Youth Promotion Association,Chinese Academy of Sciences(Grant No.2018010)
文摘We report robust superconducting state and gap symmetry of Nb5Ir3O via electrical transport and specific heat measurements. The analysis of specific heat manifests that Nb5Ir3O is a strongly coupled superconductor with ΔC/γnTc ~ 1.91 and double s-wave superconducting gaps of 2ΔL(0)/kBTc ~ 6.56 and 2ΔS(0)/kBTc ~ 2.36 accounting for 90% and 10%,respectively. The(Cp-γnT)/T^3 vs. T plot shows a broad peak at ~ 23 K, indicating phonon softening and the appearance of low-lying phonon mode associated with the interstitial oxygen. This behavior explains the monotonic increase of Tc in Nb5Ir3O(1-δ)by strengthening the electron-phonon coupling and enlarging the density of states at Fermi level. The Hall coefficient is temperature independent below 200 K, and changes its sign from positive to negative above 250 K, suggesting that carrier is across the hole-to electron-dominant regions and the multi-band electronic structures. On warming, the resistivity shows a gradual crossover from T^2-to T^3-dependence at a critical temperature T^*, and a broad peak at a temperature Tp. The reduced Tc under pressure is linearly correlated with lattice parameters c/a ratio and Tp, suggesting the important phonon contributions in Nb5Ir3O as a phonon-medicated superconductor. Possible physical mechanisms are proposed.
基金supported by National Natural Science Foundation of China under Grant No. 11475038
文摘Stable operations of single direct current (DC) discharge, single radio frequency (RF) discharge and DC + RF hybrid discharge are achieved in a specially-designed DC enhanced inductively- coupled plasma (DCE-ICP) source. Their plasma characteristics, such as electron density, electron temperature and the electron density spatial distribution profiles are investigated and compared experimentally at different gas pressures. It is found that under the condition of single RF discharge, the electron density distribution profiles show a 'convex' shape and 'saddle' shape at gas pressures of 3 mTorr and 150 mTorr respectively. This result can be attributed to the transition of electron kinetics from nonlocal to local kinetics with an increase in gas pressure. Moreover, in the operation of DC q- RF hybrid discharge at different gas pressures, the DC discharge has different effects on plasma uniformity. The plasma uniformity can be improved by modulating DC power at a high pressure of 150 mTorr where local electron kinetics is dominant, whereas plasma uniformity deteriorates at a low pressure of 3 mTorr where nonlocal electron kinetics prevails. This phenomenon, as analyzed, is due to the obvious nonlinear enhancement effect of electron density at the chamber center, and the inherent radial distribution difference in the electron density with single RF discharge at different gas pressures.
基金supported by the National Natural Science Foundation of China under Grant Nos.52374033 and U23A20596.
文摘Pressure and tilt data are jointly inverted to simultaneously map the orientation and dimensions of a hydraulic fracture.The deformation induced by a fracture under internal pressure is modeled using the distributed dislocation technique.The planar fracture is represented by four quarter ellipses,joined at the center and sharing semi-axes.This configuration provides a straightforward model for characterizing asymmetric fracture geometry.The inverse problem of mapping the fracture geometry is formulated using the Bayesian probabilistic method,combining the a priori information on the fracture model with updated information from pressure and tilt data.Solving the nonlinear inverse problem is achieved by pseudo-randomly sampling the posterior probability distribution through the Markov chain Monte Carlo method.The resulting posterior probability distribution is then explored to assess uncertainty,resolution,and correlation between model parameters.Numerical experiments are conducted to verify the accuracy and validity of the proposed analysis method in mapping the fracture geometry using synthetic pressure and tilt data.