Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinul...Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains(0.5, 1.5 or 3.0 % per g of wet weight of substrate) added to the substrates. Also, wheat straw and wood chips were chopped to either 0.5 or 2 cm.Effectiveness of the fungal treatment after 0, 2, 4, 6, or 8 wk of incubation was determined by changes in chemical composition, in vitro gas production(IVGP) as a measure for rumen degradability, and ergosterol content as a measure of fungal biomass.Results: Incomplete colonization was observed for C. subvermispora treated wheat straw and L. edodes treated wood chips. The different particle sizes and amounts of inoculum tested, had no significant effects on the chemical composition and the IVGP of C. subvermispora treated wood chips. Particle size did influence L.edodes treatment of wheat straw. The L. edodes treatment of 2 cm wheat straw resulted in a more selective delignification and a higher IVGP than the smaller particles. Addition of 1.5 % or 3 % L. edodes inoculum to wheat straw resulted in more selective delignification and a higher IVGP than addition of 0.5 % inoculum.Conclusion: Particle size and amount of inoculum did not have an effect on C. subvermispora treatment of wood chips. At least 1.5 % L. edodes colonized millet grains should be added to 2 cm wheat straw to result in an increased IVGP and acid detergent lignin(ADL) degradation.展开更多
Background: The present work investigated the influence of lignin content and composition in the fungal treatment of lignocellulosic biomass in order to improve rumen degradability. Wheat straw and wood chips,differi...Background: The present work investigated the influence of lignin content and composition in the fungal treatment of lignocellulosic biomass in order to improve rumen degradability. Wheat straw and wood chips,differing in lignin composition, were treated with Lentinula edodes for 0, 2, 4, 8 and 12 wk and the changes occurring during fungal degradation were analyzed using pyrolysis-gas chromatography-mass spectrometry and detergent fiber analysis.Results: L. edodes preferentially degraded lignin, with only limited cellulose degradation, in wheat straw and wood chips, leaving a substrate enriched in cellulose. Syringyl(S)-lignin units were preferentially degraded than guaiacyl(G)-lignin units, resulting in a decreased S/G ratio. A decreasing S/G ratio(wheat straw: r =-0.72, wood chips: r =-0.75) and selective lignin degradation(wheat straw: r =-0.69, wood chips: r =-0.88) were correlated with in vitro gas production(IVGP), a good indicator for rumen degradability.Conclusions: L. edodes treatment increased the IVGP of wheat straw and wood chips. Effects on IVGP were similar for wheat straw and wood chips indicating that lignin content and 3D-structure of cell walls influence in vitro rumen degradability more than lignin composition.展开更多
Erythromycin(ERY),a widely used antibiotic,has recently been detected in municipal secondary effluents and poses serious threats to human health during wastewater reusing.In this study,the removal,fate,and degradati...Erythromycin(ERY),a widely used antibiotic,has recently been detected in municipal secondary effluents and poses serious threats to human health during wastewater reusing.In this study,the removal,fate,and degradation pathway of ERY in secondary effluent during soil aquifer treatment was evaluated via laboratory-scale SAT tests.Up to a 92.9%reduction of ERY in synthetic secondary effluent was observed in 1.0 m depth column system,which decreased to 64.7%when recharged with wastewater treatment plant secondary effluent.XRD-fractionation results demonstrated that the transphilic acid and hydrophobic acid fractions in secondary effluent compete for the adsorption sites of the packed soil and lead to a declined ERY removal.Moreover,aerobic biodegradation was the predominant role for ERY removal,contributing more than 60%reduction of ERY when recharged with synthetic secondary effluent.Destruction of 14-member macrocyclic lactone ring and breakdown of two cyclic sugars(L-cladinose and D-desosamine) were main removal pathways for ERY degradation,and produced six new intermediates.展开更多
The current work deals with ZnO-Ag nanocomposites(in the wide range of x in the Zn1-x O-Ag x chemical composition) synthesized using microwave assisted solution combustion method.The structural, morphological and op...The current work deals with ZnO-Ag nanocomposites(in the wide range of x in the Zn1-x O-Ag x chemical composition) synthesized using microwave assisted solution combustion method.The structural, morphological and optical properties of the samples were characterized by XRD(X-ray diffraction), FTIR(Fourier transform infrared spectrometry), SEM(scanning electron microscopy technique), EDX(energy dispersive X-ray spectrum), ICP(inductively coupled plasma technique), TEM(transmission electron microscopy), BET(Brunauer–Emmett–Teller method), UV–Vis(ultraviolet–visible spectrophotometer) and photoluminescence spectrophotometer. The photocatalytic activity of the ZnO-Ag was investigated by photo-degradation of Acid Blue 113(AB 113) under UV illumination in a semi-batch reactor. This experiment showed that ZnO-Ag has much more excellent photocatalytic properties than ZnO synthesized by the same method. The enhanced photocatalytic activity was due to the decrease in recombination of photogenerated electron-holes. The results showed the improvement of ZnO photocatalytic activity and there is an optimum amount of Ag(3.5 mol%) that needs to be doped with ZnO.The effect of operating parameters such as p H, catalyst dose and dye concentration were investigated. The reaction byproducts were identified by LC/MS(liquid chromatography/mass spectrometry) analysis and a pathway was proposed as well. Kinetic studies indicated that the decolorization process follows the first order kinetics. Also, the degradation percentage of AB113 was determined using a total organic carbon(TOC) analyzer. Additionally, cost analysis of the process, the mechanism and the role of Ag were discussed.展开更多
In this study, the effect of heat treatment on the room temperature strength of W-core Si C fiber produced by chemical vapor deposition(CVD) was investigated. Thermal exposure in the temperature range of 900–1000?...In this study, the effect of heat treatment on the room temperature strength of W-core Si C fiber produced by chemical vapor deposition(CVD) was investigated. Thermal exposure in the temperature range of 900–1000?C decreases the strength of the Si C fiber. Fracture morphology analysis indicates that failure initiations predominantly take place at the W-core/Si C interface. A reaction layer that formed at the W-core/Si C interface during thermal exposure degraded the fiber strength and an empirical linear relationship of strength vs thickness of the reaction layer can be obtained. The kinetics of the growth of the W-core/Si C reaction layer were determined.展开更多
基金supported by the Dutch Technology Foundation (STW)which is part of the Netherlands Organization for Scientific Research (NWO)+1 种基金which is partly funded by the Dutch Ministry of Economic Affairsproject (11611) was co-sponsored by Agrifirm, Purac, DSM, Den Ouden, Hofmans, the Dutch commodity boards for dairy and horticulture, and Wageningen University
文摘Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains(0.5, 1.5 or 3.0 % per g of wet weight of substrate) added to the substrates. Also, wheat straw and wood chips were chopped to either 0.5 or 2 cm.Effectiveness of the fungal treatment after 0, 2, 4, 6, or 8 wk of incubation was determined by changes in chemical composition, in vitro gas production(IVGP) as a measure for rumen degradability, and ergosterol content as a measure of fungal biomass.Results: Incomplete colonization was observed for C. subvermispora treated wheat straw and L. edodes treated wood chips. The different particle sizes and amounts of inoculum tested, had no significant effects on the chemical composition and the IVGP of C. subvermispora treated wood chips. Particle size did influence L.edodes treatment of wheat straw. The L. edodes treatment of 2 cm wheat straw resulted in a more selective delignification and a higher IVGP than the smaller particles. Addition of 1.5 % or 3 % L. edodes inoculum to wheat straw resulted in more selective delignification and a higher IVGP than addition of 0.5 % inoculum.Conclusion: Particle size and amount of inoculum did not have an effect on C. subvermispora treatment of wood chips. At least 1.5 % L. edodes colonized millet grains should be added to 2 cm wheat straw to result in an increased IVGP and acid detergent lignin(ADL) degradation.
基金funded by Dutch Technology Foundation(STW),which is part of the Netherlands Organization for Scientific Research(NWO)partially funded by the Spanish projects AGL2011-25379,AGL2014-53730-R and CTQ2014-60764-JIN(co-financed by FEDER funds)+1 种基金the CSIC project 2014-40E-097the EU-project INDOX(KBBE-2013-7-613549)
文摘Background: The present work investigated the influence of lignin content and composition in the fungal treatment of lignocellulosic biomass in order to improve rumen degradability. Wheat straw and wood chips,differing in lignin composition, were treated with Lentinula edodes for 0, 2, 4, 8 and 12 wk and the changes occurring during fungal degradation were analyzed using pyrolysis-gas chromatography-mass spectrometry and detergent fiber analysis.Results: L. edodes preferentially degraded lignin, with only limited cellulose degradation, in wheat straw and wood chips, leaving a substrate enriched in cellulose. Syringyl(S)-lignin units were preferentially degraded than guaiacyl(G)-lignin units, resulting in a decreased S/G ratio. A decreasing S/G ratio(wheat straw: r =-0.72, wood chips: r =-0.75) and selective lignin degradation(wheat straw: r =-0.69, wood chips: r =-0.88) were correlated with in vitro gas production(IVGP), a good indicator for rumen degradability.Conclusions: L. edodes treatment increased the IVGP of wheat straw and wood chips. Effects on IVGP were similar for wheat straw and wood chips indicating that lignin content and 3D-structure of cell walls influence in vitro rumen degradability more than lignin composition.
基金supported by the National Natural Science Foundation of China(no.51408159)the State Key Laboratory of Urban Water Resource and Environment(no.2016DX05)the China Postdoctoral Science Foundation funded projects(nos.2013T60375 and 2012M520744)
文摘Erythromycin(ERY),a widely used antibiotic,has recently been detected in municipal secondary effluents and poses serious threats to human health during wastewater reusing.In this study,the removal,fate,and degradation pathway of ERY in secondary effluent during soil aquifer treatment was evaluated via laboratory-scale SAT tests.Up to a 92.9%reduction of ERY in synthetic secondary effluent was observed in 1.0 m depth column system,which decreased to 64.7%when recharged with wastewater treatment plant secondary effluent.XRD-fractionation results demonstrated that the transphilic acid and hydrophobic acid fractions in secondary effluent compete for the adsorption sites of the packed soil and lead to a declined ERY removal.Moreover,aerobic biodegradation was the predominant role for ERY removal,contributing more than 60%reduction of ERY when recharged with synthetic secondary effluent.Destruction of 14-member macrocyclic lactone ring and breakdown of two cyclic sugars(L-cladinose and D-desosamine) were main removal pathways for ERY degradation,and produced six new intermediates.
文摘The current work deals with ZnO-Ag nanocomposites(in the wide range of x in the Zn1-x O-Ag x chemical composition) synthesized using microwave assisted solution combustion method.The structural, morphological and optical properties of the samples were characterized by XRD(X-ray diffraction), FTIR(Fourier transform infrared spectrometry), SEM(scanning electron microscopy technique), EDX(energy dispersive X-ray spectrum), ICP(inductively coupled plasma technique), TEM(transmission electron microscopy), BET(Brunauer–Emmett–Teller method), UV–Vis(ultraviolet–visible spectrophotometer) and photoluminescence spectrophotometer. The photocatalytic activity of the ZnO-Ag was investigated by photo-degradation of Acid Blue 113(AB 113) under UV illumination in a semi-batch reactor. This experiment showed that ZnO-Ag has much more excellent photocatalytic properties than ZnO synthesized by the same method. The enhanced photocatalytic activity was due to the decrease in recombination of photogenerated electron-holes. The results showed the improvement of ZnO photocatalytic activity and there is an optimum amount of Ag(3.5 mol%) that needs to be doped with ZnO.The effect of operating parameters such as p H, catalyst dose and dye concentration were investigated. The reaction byproducts were identified by LC/MS(liquid chromatography/mass spectrometry) analysis and a pathway was proposed as well. Kinetic studies indicated that the decolorization process follows the first order kinetics. Also, the degradation percentage of AB113 was determined using a total organic carbon(TOC) analyzer. Additionally, cost analysis of the process, the mechanism and the role of Ag were discussed.
基金the Raman Spectroscopy Laboratory of Institute of Metal Research, Chinese Academy of Sciences for the support in the accomplishment of this paper
文摘In this study, the effect of heat treatment on the room temperature strength of W-core Si C fiber produced by chemical vapor deposition(CVD) was investigated. Thermal exposure in the temperature range of 900–1000?C decreases the strength of the Si C fiber. Fracture morphology analysis indicates that failure initiations predominantly take place at the W-core/Si C interface. A reaction layer that formed at the W-core/Si C interface during thermal exposure degraded the fiber strength and an empirical linear relationship of strength vs thickness of the reaction layer can be obtained. The kinetics of the growth of the W-core/Si C reaction layer were determined.