Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinic...Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinical use up to now,biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment.Polyethylene glycol(PEG)-modification(or PEGylation)has been regarded as the gold standard for stabilising nDDS in complex biological environment.However,the accelerated blood clearance(ABC)of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications.Zwitterionic polymer,a novel family of antifouling materials,have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility.Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues.More impressively,zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution,pressure gradients,impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications.The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS,which could facilitate their better clinical translation.Herein,we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlyingmechanisms.Finally,prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.展开更多
Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent bioc...Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.展开更多
Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers,that are promising for tissue engineering and regenerative medicine.Microgels ...Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers,that are promising for tissue engineering and regenerative medicine.Microgels can also be aggregated into microporous scaffolds,promoting cell infiltration and proliferation for tissue repair.This review gives an overview of recent developments in the fabrication techniques and applications of microgels.A series of conventional and novel strategies including emulsification,microfluidic,lithography,electrospray,centrifugation,gas-shearing,three-dimensional bioprinting,etc.are discussed in depth.The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy.Additionally,we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering.Through stimulating innovative ideas,the present review paves new avenues for expanding the application of microgels in cell delivery techniques.展开更多
The rapid development of 5G/6G and AI enables an environment of Internet of Everything(IoE)which can support millions of connected mobile devices and applications to operate smoothly at high speed and low delay.Howeve...The rapid development of 5G/6G and AI enables an environment of Internet of Everything(IoE)which can support millions of connected mobile devices and applications to operate smoothly at high speed and low delay.However,these massive devices will lead to explosive traffic growth,which in turn cause great burden for the data transmission and content delivery.This challenge can be eased by sinking some critical content from cloud to edge.In this case,how to determine the critical content,where to sink and how to access the content correctly and efficiently become new challenges.This work focuses on establishing a highly efficient content delivery framework in the IoE environment.In particular,the IoE environment is re-constructed as an end-edge-cloud collaborative system,in which the concept of digital twin is applied to promote the collaboration.Based on the digital asset obtained by digital twin from end users,a content popularity prediction scheme is firstly proposed to decide the critical content by using the Temporal Pattern Attention(TPA)enabled Long Short-Term Memory(LSTM)model.Then,the prediction results are input for the proposed caching scheme to decide where to sink the critical content by using the Reinforce Learning(RL)technology.Finally,a collaborative routing scheme is proposed to determine the way to access the content with the objective of minimizing overhead.The experimental results indicate that the proposed schemes outperform the state-of-the-art benchmarks in terms of the caching hit rate,the average throughput,the successful content delivery rate and the average routing overhead.展开更多
Achieving increasingly finely targeted drug delivery to organs,tissues,cells,and even to intracellular biomacromolecules is one of the core goals of nanomedicines.As the delivery destination is refined to cellular and...Achieving increasingly finely targeted drug delivery to organs,tissues,cells,and even to intracellular biomacromolecules is one of the core goals of nanomedicines.As the delivery destination is refined to cellular and subcellular targets,it is essential to explore the delivery of nanomedicines at the molecular level.However,due to the lack of technical methods,the molecular mechanism of the intracellular delivery of nanomedicines remains unclear to date.Here,we develop an enzyme-induced proximity labeling technology in nanoparticles(nano-EPL)for the real-time monitoring of proteins that interact with intracellular nanomedicines.Poly(lactic-co-glycolic acid)nanoparticles coupled with horseradish peroxidase(HRP)were fabricated as a model(HRP(+)-PNPs)to evaluate the molecular mechanism of nano delivery in macrophages.By adding the labeling probe biotin-phenol and the catalytic substrate H_(2)O_(2)at different time points in cellular delivery,nano-EPL technology was validated for the real-time in situ labeling of proteins interacting with nanoparticles.Nano-EPL achieves the dynamic molecular profiling of 740 proteins to map the intracellular delivery of HRP(+)-PNPs in macrophages over time.Based on dynamic clustering analysis of these proteins,we further discovered that different organelles,including endosomes,lysosomes,the endoplasmic reticulum,and the Golgi apparatus,are involved in delivery with distinct participation timelines.More importantly,the engagement of these organelles differentially affects the drug delivery efficiency,reflecting the spatial–temporal heterogeneity of nano delivery in cells.In summary,these findings highlight a significant methodological advance toward understanding the molecular mechanisms involved in the intracellular delivery of nanomedicines.展开更多
Flurbiprofen(FB),a nonsteroidal anti-inflammatory drug,is widely employed in treating ocular inflammation owing to its remarkable anti-inflammatory effects.However,the racemic nature of its commercially available form...Flurbiprofen(FB),a nonsteroidal anti-inflammatory drug,is widely employed in treating ocular inflammation owing to its remarkable anti-inflammatory effects.However,the racemic nature of its commercially available formulation(Ocufen^(R))limits the full potential of its therapeutic activity,as the(S)-enantiomer is responsible for the desired antiinflammatory effects.Additionally,the limited corneal permeability of FB significantly restricts its bioavailability.In this study,we successfully separated the chiral isomers of FB to obtain the highly active(S)-FB.Subsequently,utilizing ion-pairing technology,we coupled(S)-FB with various counter-ions,such as sodium,diethylamine,trimethamine(TMA),and l-arginine,to enhance its ocular bioavailability.A comprehensive evaluation encompassed balanced solubility,octanol-water partition coefficient,corneal permeability,ocular pharmacokinetics,tissue distribution,and in vivo ocular anti-inflammatory activity of each chiral isomer salt.Among the various formulations,S-FBTMA exhibited superior water solubility(about 1–12 mg/ml),lipid solubility(1<lgP_(ow)<3)and corneal permeability.In comparison to Ocufen^(R),S-FBTMA demonstrated significantly higher in vivo antiinflammatory activity and lower ocular irritability(such as conjunctival congestion and tingling).The findings from this research highlight the potential of chiral separation and ion-pair enhanced permeation techniques in providing pharmaceutical enterprises focused on drug development with a valuable avenue for improving therapeutic outcomes.展开更多
The rise in online home delivery services(OHDS)has had a significant impact on how urban services are supplied and used in recent years.Studies on the spatial accessibility of OHDS are emerging,but few is known about ...The rise in online home delivery services(OHDS)has had a significant impact on how urban services are supplied and used in recent years.Studies on the spatial accessibility of OHDS are emerging,but few is known about the temporal dimension of OHDS accessibility as well as the geographic and socioeconomic differences in the spatiotemporal accessibility of OHDS.This study measures the spatiotemporal accessibility of four types of OHDS,namely leisure,fresh and convenient,medical,and catering services.The geographic and socioeconomic disparities in the spatiotemporal accessibility of these four types of OHDS are then identified using spatial statistical methods and the Kruskal-Wallis test(K-W test).The case study in Nanjing,China,suggests that:1)spatiotemporal accessibility better reflects the temporal variation of OHDS accessibility and avoids overestimation of OHDS accessibility when only considering its spatial dimension.2)The spatiotemporal accessibility of OHDS varies geographically and socioeconomically.Neighborhoods located in the main city or neighborhoods with higher housing prices,higher population density,and higher point of interest(POI)mix have better OHDS spatiotemporal accessibility.Our study contributes to the understanding of OHDS accessibility from a spatiotemporal perspective,and the empirical insights can assist policymakers in creating intervention plans that take into account variations in OHDS spatiotemporal accessibility.展开更多
Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content deliver...Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.展开更多
Induction of tumor cell senescence has become a promising strategy for anti-tumor immunotherapy,but fibrotic matrix severely blocks senescence inducers penetration and immune cells infiltration.Herein,we designed a ca...Induction of tumor cell senescence has become a promising strategy for anti-tumor immunotherapy,but fibrotic matrix severely blocks senescence inducers penetration and immune cells infiltration.Herein,we designed a cancer-associated fibroblasts(CAFs)triggered structure-transformable nano-assembly(HSD-P@V),which can directionally deliver valsartan(Val,CAFs regulator)and doxorubicin(DOX,senescence inducer)to the specific targets.In detail,DOX is conjugated with hyaluronic acid(HA)via diselenide bonds(Se-Se)to form HSD micelles,while CAFs-sensitive peptide is grafted onto the HSD to form a hydrophilic polymer,which is coated on Val nanocrystals(VNs)surface for improving the stability and achieving responsive release.Once arriving at tumor microenvironment and touching CAFs,HSD-P@V disintegrates into VNs and HSD micelles due to sensitive peptide detachment.VNs can degrade the extracellularmatrix,leading to the enhanced penetration of HSD.HSD targets tumor cells,releases DOX to induce senescence,and recruits effector immune cells.Furthermore,senescent cells are cleared by the recruited immune cells to finish the integrated anti-tumor therapy.In vitro and in vivo results show that the nanoassembly remarkably inhibits tumor growth as well as lungmetastasis,and extends tumorbearing mice survival.This work provides a promising paradigm of programmed delivering multi-site nanomedicine for cancer immunotherapy.展开更多
pH-responsive charge reversal loaded miRNA nanocomposite was prepared by electrostatic self-assembly.The morphology,particle size and zeta potential of the nanocomposites were analyzed by transmission electron microsc...pH-responsive charge reversal loaded miRNA nanocomposite was prepared by electrostatic self-assembly.The morphology,particle size and zeta potential of the nanocomposites were analyzed by transmission electron microscopy and dynamic light scattering.The synthesis of the polymer was analyzed by^(1)H-NMR.The zeta-potential changes and cellular uptake effects of the nanocomplexes under different pH environments were investigated.The experimental results show that the surface morphology of the nanocomposite is spherical,and the average particle size is about 135 nm.As the pH value of the solution gradually decreases,the surface charge of the nanocomposite reverses from negative charge to positive charge(from-9.4 to+17.1 mV).Cellular uptake mediated by pH-responsive nanocomposite is selective for tumor cells,and the cellular uptake effect in tumor cells at pH 6.5 was approximately 3 times higher than that at pH 7.4.This pH responsive charge reversal nanocomposite has promising application prospects for gene delivery in the weak acid environment of tumors.展开更多
Plasma-enhanced transdermal drug delivery(TDD) presents advantages over traditional methods,including painless application, minimal skin damage, and rapid recovery of permeability. To harness its clinical potential, f...Plasma-enhanced transdermal drug delivery(TDD) presents advantages over traditional methods,including painless application, minimal skin damage, and rapid recovery of permeability. To harness its clinical potential, factors related to plasma’s unique properties, such as reactive species and electric fields, must be carefully considered.This review provides a concise summary of conventional TDD methods and subsequently offers a comprehensive examination of the current state-of-the-art in plasma-enhanced TDD. This includes an analysis of the impact of plasma on HaCaT human keratinocyte cells, ex vivo/in vivo studies, and clinical research on plasma-assisted TDD. Moreover, the review explores the effects of plasma on skin physical characteristics such as microhole formation, transepidermal water loss(TEWL), molecular structure of the stratum corneum(SC), and skin resistance. Additionally, it discusses the involvement of various reactive agents in plasma-enhanced TDD, encompassing electric fields,charged particles, UV/VUV radiation, heat, and reactive species. Lastly, the review briefly addresses the temporal behavior of the skin after plasma treatment, safety considerations, and potential risks associated with plasma-enhanced TDD.展开更多
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro...In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.展开更多
Cellular senescence is the results of aging and age-related diseases,and the development of anti-aging methods may improve health and extend longevity.The natural flavonol fisetin has been shown to antagonize senescen...Cellular senescence is the results of aging and age-related diseases,and the development of anti-aging methods may improve health and extend longevity.The natural flavonol fisetin has been shown to antagonize senescence in vitro and increases longevity in vivo,but has poor water solubility and limited bioavailability.In this study,a food-grade and senescent cell-targeted delivery system for fisetin was developed based on whey protein isolate-galactooligosaccharides(WPI-GOS)Maillard conjugate,which could recognize senescence associatedβ-galactosidase in senescent cells.The fisetin nanoparticles possessed a high encapsulation efficiency,excellent dispersibility in water,good storage stability and well biocompatibility.Moreover,they could effectively accumulate and retain in senescent cells with excellent senescent cell-targeting efficacy,and inhibit the oxidative stress-induced cellular senescence in vitro.Thus,this novel nanoparticle system based on WPI-GOS Maillard conjugate showed promise to deliver hydrophobic bioactive ingredients like fisetin to senescent cells to improve their bioavailability and anti-senescence effect.展开更多
The main aim of antineoplastic treatment is to maximize patient benefit by augmenting the drug accumulation within affected organs and tissues,thus incrementing drug effects and,at the same time,reducing the damage of...The main aim of antineoplastic treatment is to maximize patient benefit by augmenting the drug accumulation within affected organs and tissues,thus incrementing drug effects and,at the same time,reducing the damage of non-involved tissues to cytotoxic agents.Mesenchymal stromal cells(MSC)represent a group of undifferentiated multipotent cells presenting wide self-renewal features and the capacity to differentiate into an assortment of mesenchymal family cells.During the last year,they have been proposed as natural carriers for the selective release of antitumor drugs to malignant cll,s thus optimizing cytotoxic action on cancer cll,while significantly reducing adverse side efect on healthy cells.MSC chemotherapeutic drug loading and delivery is an encouraging new area of cell therapy for several tumors,especially for those with unsatisfactory prognosis and limited treatment options available.Although some experim ental models have been sucesfuly developed,phase I dinical studies are needed to confirm this potential application of cell therapy,in particular in the case of primary and secondary lung cancers.展开更多
Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of act...Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs;as novel solvents for improving the solubility of drugs in carriers;as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs;and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.展开更多
Package delivery via ridesharing provides appealing benefits of lower delivery cost and efficient vehicle usage.Most existing ridesharing systems operate the matching of ridesharing in a centralized manner,which may r...Package delivery via ridesharing provides appealing benefits of lower delivery cost and efficient vehicle usage.Most existing ridesharing systems operate the matching of ridesharing in a centralized manner,which may result in the single point of failure once the controller breaks down or is under attack.To tackle such problems,our goal in this paper is to develop a blockchain-based package delivery ridesharing system,where decentralization is adopted to remove intermediaries and direct transactions between the providers and the requestors are allowed.To complete the matching process under decentralized structure,an Event-Triggered Distributed Deep Reinforcement Learning(ETDDRL)algorithm is proposed to generate/update the real-time ridesharing orders for the new coming ridesharing requests from a local view.Simulation results reveal the vast potential of the ETDDRL matching algorithm under the blockchain framework for the promotion of the ridesharing profits.Finally,we develop an application for Android-based terminals to verify the ETDDRL matching algorithm.展开更多
BACKGROUND In 2016,the Food and Drug Administration approved the first hybrid closed-loop(HCL)insulin delivery system for adults with type 1 diabetes(T1D).There is limited information on the impact of using HCL system...BACKGROUND In 2016,the Food and Drug Administration approved the first hybrid closed-loop(HCL)insulin delivery system for adults with type 1 diabetes(T1D).There is limited information on the impact of using HCL systems on patient-reported outcomes(PROs)in patients with T1D in real-world clinical practice.In this independent study,we evaluated glycemic parameters and PROs over one year of continuous use of Medtronic’s 670G HCL in real-world clinical practice.AIM To assess the effects of hybrid closed loop system on glycemic control and quality of life in adults with T1D.METHODS We evaluated 71 patients with T1D(mean age:45.5±12.1 years;59%females;body weight:83.8±18.7 kg,body mass index:28.7±5.6 kg/m2,A1C:7.6%±0.8%)who were treated with HCL at Joslin Clinic from 2017 to 2019.We measured A1C and percent of glucose time-in-range(%TIR)at baseline and 12 months.We measured percent time in auto mode(%TiAM)for the last two weeks preceding the final visit and assessed PROs through several validated quality-of-life surveys related to general health and diabetes management.RESULTS At 12 mo,A1C decreased by 0.3%±0.1%(P=0.001)and%TIR increased by 8.1%±2.5%(P=0.002).The average%TiAM was only 64.3%±32.8%and was not associated with A1C,%TIR or PROs.PROs,provided at baseline and at the end of the study,showed that the physical functioning submodule of 36Item Short-Form Health Survey increased significantly by 22.9%(P<0.001).Hypoglycemia fear survey/worry scale decreased significantly by 24.9%(P<0.000);Problem Areas In Diabetes reduced significantly by-17.2%(P=0.002).The emotional burden submodules of dietary diversity score reduced significantly by-44.7%(P=0.001).Furthermore,analysis of Clarke questionnaire showed no increase in awareness of hypoglycemic episodes.WHO-5 showed no improvements in subject’s wellbeing among participants after starting the 670G HCL system.Finally,analysis of Pittsburgh Sleep Quality Index showed no difference in sleep quality,sleep latency,or duration of sleep from baseline to 12 mo.CONCLUSION The use of HCL in real-world clinical practice for one year was associated with significant improvements in A1C,%TIR,physical functioning,hypoglycemia fear,emotional distress,and emotional burden related to diabetes management.However,these changes were not associated with time in auto mode.展开更多
In view of the problems of inconsistent data semantics,inconsistent data formats,and difficult data quality assurance between the railway engineering design phase and the construction and operation phase,as well as th...In view of the problems of inconsistent data semantics,inconsistent data formats,and difficult data quality assurance between the railway engineering design phase and the construction and operation phase,as well as the difficulty in fully realizing the value of design results,this paper proposes a design and implementation scheme for a railway engineering collaborative design platform.The railway engineering collaborative design platform mainly includes functional modules such as metadata management,design collaboration,design delivery management,model component library,model rendering services,and Building Information Modeling(BIM)application services.Based on this,research is conducted on multi-disciplinary parameterized collaborative design technology for railway engineering,infrastructure data management and delivery technology,and design multi-source data fusion and application technology.The railway engineering collaborative design platform is compared with other railway design software to further validate its advantages and advanced features.The platform has been widely applied in multiple railway construction projects,greatly improving the design and project management efficiency.展开更多
Background: Nigeria, a nation grappling with rapid population growth, economic intricacies, and complex healthcare challenges, particularly in Lagos State, the economic hub and most populous state, faces the challenge...Background: Nigeria, a nation grappling with rapid population growth, economic intricacies, and complex healthcare challenges, particularly in Lagos State, the economic hub and most populous state, faces the challenge of ensuring quality healthcare access. The overview of the effect of quality improvement initiatives in this paper focuses on private healthcare providers in Lagos State, Nigeria. The study assesses the impact of donor-funded quality improvement projects on these private healthcare facilities. It explores the level of participation, perceived support, and tangible effects of the initiatives on healthcare delivery within private healthcare facilities. It also examines how these initiatives influence patient inflow and facility ratings, and bring about additional benefits and improvements, provides insights into the challenges faced by private healthcare providers in implementing quality improvement projects and elicits recommendations for improving the effectiveness of such initiatives. Methods: Qualitative research design was employed for in-depth exploration, utilizing semi-structured interviews. Private healthcare providers in Lagos involved in the SP4FP Quality Improvement Project were purposively sampled for diversity. Face-to-face interviews elicited insights into participation, perceived support, and project effects. Questions covered participation levels, support perception, changes observed, challenges faced, and recommendations. Thematic analysis identified recurring themes from interview transcripts. Adherence to ethical guidelines ensured participant confidentiality and informed consent. Results: Respondents affirmed active involvement in the SP4FP Quality Improvement Project, echoing literature emphasizing private-sector collaboration with the public sector. While acknowledging positive influences on facility ratings, respondents highlighted challenges within the broader Nigerian healthcare landscape affecting patient numbers. Respondents cited tangible improvements, particularly in staff management and patient care processes, validating the positive influence of quality improvement projects. Financial constraints emerged as a significant challenge, aligning with existing literature emphasizing the pragmatic difficulties faced by private healthcare providers. Conclusions: This study illuminates the complex landscape of private healthcare provision in Lagos State, emphasizing the positive impact of donor-funded quality improvement projects. The findings provide nuanced insights, guiding policymakers, healthcare managers, and practitioners toward collaborative, sustainable improvements. As Nigeria progresses, these lessons will be crucial in shaping healthcare policies prioritizing population well-being.展开更多
Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to disp...Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.展开更多
基金financially supported by the National Natural Science Foundation of China(grant no.8217070298)Guangdong Basic and Applied Basic Research Foundation(grant no.2020A1515110770,2021A1515220011,2022A1515010335).
文摘Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinical use up to now,biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment.Polyethylene glycol(PEG)-modification(or PEGylation)has been regarded as the gold standard for stabilising nDDS in complex biological environment.However,the accelerated blood clearance(ABC)of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications.Zwitterionic polymer,a novel family of antifouling materials,have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility.Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues.More impressively,zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution,pressure gradients,impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications.The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS,which could facilitate their better clinical translation.Herein,we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlyingmechanisms.Finally,prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.
基金supported by the grants from University of Macao,China,Nos.MYRG2022-00221-ICMS(to YZ)and MYRG-CRG2022-00011-ICMS(to RW)the Natural Science Foundation of Guangdong Province,No.2023A1515010034(to YZ)。
文摘Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
基金supported by the National Key Research and Development Program of China(No.2022YFA1104600)the National Natural Science Foundation of China(NSFC)Program(Nos.32201183,31927801,32101105)the Science and Technology Program of Guangzhou(SL2022A04J00774).
文摘Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers,that are promising for tissue engineering and regenerative medicine.Microgels can also be aggregated into microporous scaffolds,promoting cell infiltration and proliferation for tissue repair.This review gives an overview of recent developments in the fabrication techniques and applications of microgels.A series of conventional and novel strategies including emulsification,microfluidic,lithography,electrospray,centrifugation,gas-shearing,three-dimensional bioprinting,etc.are discussed in depth.The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy.Additionally,we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering.Through stimulating innovative ideas,the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
基金supported by the National Key Research and Development Program of China under Grant No.2019YFB1802800the National Natural Science Foundation of China under Grant No.62002055,62032013,61872073,62202247.
文摘The rapid development of 5G/6G and AI enables an environment of Internet of Everything(IoE)which can support millions of connected mobile devices and applications to operate smoothly at high speed and low delay.However,these massive devices will lead to explosive traffic growth,which in turn cause great burden for the data transmission and content delivery.This challenge can be eased by sinking some critical content from cloud to edge.In this case,how to determine the critical content,where to sink and how to access the content correctly and efficiently become new challenges.This work focuses on establishing a highly efficient content delivery framework in the IoE environment.In particular,the IoE environment is re-constructed as an end-edge-cloud collaborative system,in which the concept of digital twin is applied to promote the collaboration.Based on the digital asset obtained by digital twin from end users,a content popularity prediction scheme is firstly proposed to decide the critical content by using the Temporal Pattern Attention(TPA)enabled Long Short-Term Memory(LSTM)model.Then,the prediction results are input for the proposed caching scheme to decide where to sink the critical content by using the Reinforce Learning(RL)technology.Finally,a collaborative routing scheme is proposed to determine the way to access the content with the objective of minimizing overhead.The experimental results indicate that the proposed schemes outperform the state-of-the-art benchmarks in terms of the caching hit rate,the average throughput,the successful content delivery rate and the average routing overhead.
基金supported by Natural Science Foundation of Beijing Municipality(L212013)National Key Research and Development Program of China(No.2022YFA1206104)+2 种基金AI+Health Collaborative Innovation Cultivation Project(Z211100003521002)National Natural Science Foundation of China(81971718,82073786,81872809,U20A20412,81821004)Beijing Natural Science Foundation(7222020).
文摘Achieving increasingly finely targeted drug delivery to organs,tissues,cells,and even to intracellular biomacromolecules is one of the core goals of nanomedicines.As the delivery destination is refined to cellular and subcellular targets,it is essential to explore the delivery of nanomedicines at the molecular level.However,due to the lack of technical methods,the molecular mechanism of the intracellular delivery of nanomedicines remains unclear to date.Here,we develop an enzyme-induced proximity labeling technology in nanoparticles(nano-EPL)for the real-time monitoring of proteins that interact with intracellular nanomedicines.Poly(lactic-co-glycolic acid)nanoparticles coupled with horseradish peroxidase(HRP)were fabricated as a model(HRP(+)-PNPs)to evaluate the molecular mechanism of nano delivery in macrophages.By adding the labeling probe biotin-phenol and the catalytic substrate H_(2)O_(2)at different time points in cellular delivery,nano-EPL technology was validated for the real-time in situ labeling of proteins interacting with nanoparticles.Nano-EPL achieves the dynamic molecular profiling of 740 proteins to map the intracellular delivery of HRP(+)-PNPs in macrophages over time.Based on dynamic clustering analysis of these proteins,we further discovered that different organelles,including endosomes,lysosomes,the endoplasmic reticulum,and the Golgi apparatus,are involved in delivery with distinct participation timelines.More importantly,the engagement of these organelles differentially affects the drug delivery efficiency,reflecting the spatial–temporal heterogeneity of nano delivery in cells.In summary,these findings highlight a significant methodological advance toward understanding the molecular mechanisms involved in the intracellular delivery of nanomedicines.
基金financially supported by the National Postdoctoral Foundation of China(No.2023M730375)Liaoning Province Department of Education Project(No.LJKMZ20221365)the State Key Laboratory of Natural and Biomimetic Drugs(No.K202215)。
文摘Flurbiprofen(FB),a nonsteroidal anti-inflammatory drug,is widely employed in treating ocular inflammation owing to its remarkable anti-inflammatory effects.However,the racemic nature of its commercially available formulation(Ocufen^(R))limits the full potential of its therapeutic activity,as the(S)-enantiomer is responsible for the desired antiinflammatory effects.Additionally,the limited corneal permeability of FB significantly restricts its bioavailability.In this study,we successfully separated the chiral isomers of FB to obtain the highly active(S)-FB.Subsequently,utilizing ion-pairing technology,we coupled(S)-FB with various counter-ions,such as sodium,diethylamine,trimethamine(TMA),and l-arginine,to enhance its ocular bioavailability.A comprehensive evaluation encompassed balanced solubility,octanol-water partition coefficient,corneal permeability,ocular pharmacokinetics,tissue distribution,and in vivo ocular anti-inflammatory activity of each chiral isomer salt.Among the various formulations,S-FBTMA exhibited superior water solubility(about 1–12 mg/ml),lipid solubility(1<lgP_(ow)<3)and corneal permeability.In comparison to Ocufen^(R),S-FBTMA demonstrated significantly higher in vivo antiinflammatory activity and lower ocular irritability(such as conjunctival congestion and tingling).The findings from this research highlight the potential of chiral separation and ion-pair enhanced permeation techniques in providing pharmaceutical enterprises focused on drug development with a valuable avenue for improving therapeutic outcomes.
基金Under the auspices of National Natural Science Foundation of China (No.42330510)。
文摘The rise in online home delivery services(OHDS)has had a significant impact on how urban services are supplied and used in recent years.Studies on the spatial accessibility of OHDS are emerging,but few is known about the temporal dimension of OHDS accessibility as well as the geographic and socioeconomic differences in the spatiotemporal accessibility of OHDS.This study measures the spatiotemporal accessibility of four types of OHDS,namely leisure,fresh and convenient,medical,and catering services.The geographic and socioeconomic disparities in the spatiotemporal accessibility of these four types of OHDS are then identified using spatial statistical methods and the Kruskal-Wallis test(K-W test).The case study in Nanjing,China,suggests that:1)spatiotemporal accessibility better reflects the temporal variation of OHDS accessibility and avoids overestimation of OHDS accessibility when only considering its spatial dimension.2)The spatiotemporal accessibility of OHDS varies geographically and socioeconomically.Neighborhoods located in the main city or neighborhoods with higher housing prices,higher population density,and higher point of interest(POI)mix have better OHDS spatiotemporal accessibility.Our study contributes to the understanding of OHDS accessibility from a spatiotemporal perspective,and the empirical insights can assist policymakers in creating intervention plans that take into account variations in OHDS spatiotemporal accessibility.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,61831008)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297,2021A1515011572)Shenzhen Science and Technology Program ZDSYS20210623091808025,Stable Support Plan Program GXWD20231129102638002.
文摘Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.
基金was supported by National Natural Science Foundation of China(81972893,82172719)Natural Science Foundation of Henan(212300410071)Training program for young key teachers in Henan Province(2020GGJS019).
文摘Induction of tumor cell senescence has become a promising strategy for anti-tumor immunotherapy,but fibrotic matrix severely blocks senescence inducers penetration and immune cells infiltration.Herein,we designed a cancer-associated fibroblasts(CAFs)triggered structure-transformable nano-assembly(HSD-P@V),which can directionally deliver valsartan(Val,CAFs regulator)and doxorubicin(DOX,senescence inducer)to the specific targets.In detail,DOX is conjugated with hyaluronic acid(HA)via diselenide bonds(Se-Se)to form HSD micelles,while CAFs-sensitive peptide is grafted onto the HSD to form a hydrophilic polymer,which is coated on Val nanocrystals(VNs)surface for improving the stability and achieving responsive release.Once arriving at tumor microenvironment and touching CAFs,HSD-P@V disintegrates into VNs and HSD micelles due to sensitive peptide detachment.VNs can degrade the extracellularmatrix,leading to the enhanced penetration of HSD.HSD targets tumor cells,releases DOX to induce senescence,and recruits effector immune cells.Furthermore,senescent cells are cleared by the recruited immune cells to finish the integrated anti-tumor therapy.In vitro and in vivo results show that the nanoassembly remarkably inhibits tumor growth as well as lungmetastasis,and extends tumorbearing mice survival.This work provides a promising paradigm of programmed delivering multi-site nanomedicine for cancer immunotherapy.
基金Funded by the National Key R&D Program of China(No.2023YFC2412300)the Natural Science Foundation of Hubei Province(No.2022CFB386)the National Natural Science Foundation of China(No.52073222)。
文摘pH-responsive charge reversal loaded miRNA nanocomposite was prepared by electrostatic self-assembly.The morphology,particle size and zeta potential of the nanocomposites were analyzed by transmission electron microscopy and dynamic light scattering.The synthesis of the polymer was analyzed by^(1)H-NMR.The zeta-potential changes and cellular uptake effects of the nanocomplexes under different pH environments were investigated.The experimental results show that the surface morphology of the nanocomposite is spherical,and the average particle size is about 135 nm.As the pH value of the solution gradually decreases,the surface charge of the nanocomposite reverses from negative charge to positive charge(from-9.4 to+17.1 mV).Cellular uptake mediated by pH-responsive nanocomposite is selective for tumor cells,and the cellular uptake effect in tumor cells at pH 6.5 was approximately 3 times higher than that at pH 7.4.This pH responsive charge reversal nanocomposite has promising application prospects for gene delivery in the weak acid environment of tumors.
基金supported by National Natural Science Foundation of China(Nos.52277150,51977096,12005076 and 52130701)the National Key Research and Development Program of China(No.2021YFE0114700)。
文摘Plasma-enhanced transdermal drug delivery(TDD) presents advantages over traditional methods,including painless application, minimal skin damage, and rapid recovery of permeability. To harness its clinical potential, factors related to plasma’s unique properties, such as reactive species and electric fields, must be carefully considered.This review provides a concise summary of conventional TDD methods and subsequently offers a comprehensive examination of the current state-of-the-art in plasma-enhanced TDD. This includes an analysis of the impact of plasma on HaCaT human keratinocyte cells, ex vivo/in vivo studies, and clinical research on plasma-assisted TDD. Moreover, the review explores the effects of plasma on skin physical characteristics such as microhole formation, transepidermal water loss(TEWL), molecular structure of the stratum corneum(SC), and skin resistance. Additionally, it discusses the involvement of various reactive agents in plasma-enhanced TDD, encompassing electric fields,charged particles, UV/VUV radiation, heat, and reactive species. Lastly, the review briefly addresses the temporal behavior of the skin after plasma treatment, safety considerations, and potential risks associated with plasma-enhanced TDD.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472137 and U2141246)。
文摘In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.
基金supported by Dalian Youth Science and Technology Star Project(2020RQ121)the National Science Fund for Distinguished Young Scholars of China(31925031)+1 种基金Doctoral Scientific Research Foundation of Liaoning Province(2020-BS-211)Liaoning Province Education Administration(J2020101)。
文摘Cellular senescence is the results of aging and age-related diseases,and the development of anti-aging methods may improve health and extend longevity.The natural flavonol fisetin has been shown to antagonize senescence in vitro and increases longevity in vivo,but has poor water solubility and limited bioavailability.In this study,a food-grade and senescent cell-targeted delivery system for fisetin was developed based on whey protein isolate-galactooligosaccharides(WPI-GOS)Maillard conjugate,which could recognize senescence associatedβ-galactosidase in senescent cells.The fisetin nanoparticles possessed a high encapsulation efficiency,excellent dispersibility in water,good storage stability and well biocompatibility.Moreover,they could effectively accumulate and retain in senescent cells with excellent senescent cell-targeting efficacy,and inhibit the oxidative stress-induced cellular senescence in vitro.Thus,this novel nanoparticle system based on WPI-GOS Maillard conjugate showed promise to deliver hydrophobic bioactive ingredients like fisetin to senescent cells to improve their bioavailability and anti-senescence effect.
文摘The main aim of antineoplastic treatment is to maximize patient benefit by augmenting the drug accumulation within affected organs and tissues,thus incrementing drug effects and,at the same time,reducing the damage of non-involved tissues to cytotoxic agents.Mesenchymal stromal cells(MSC)represent a group of undifferentiated multipotent cells presenting wide self-renewal features and the capacity to differentiate into an assortment of mesenchymal family cells.During the last year,they have been proposed as natural carriers for the selective release of antitumor drugs to malignant cll,s thus optimizing cytotoxic action on cancer cll,while significantly reducing adverse side efect on healthy cells.MSC chemotherapeutic drug loading and delivery is an encouraging new area of cell therapy for several tumors,especially for those with unsatisfactory prognosis and limited treatment options available.Although some experim ental models have been sucesfuly developed,phase I dinical studies are needed to confirm this potential application of cell therapy,in particular in the case of primary and secondary lung cancers.
基金funded by the National Natural Science Foundation of China(82273881 and 82304386)Guangdong Basic and Applied Basic Research Foundation(2022A1515110476)+1 种基金the Open Fund of Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology(GDKL202214)SUMC Scientiffc Research Initiation Grant(510858046 and 510858056).
文摘Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs;as novel solvents for improving the solubility of drugs in carriers;as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs;and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.
基金supported by National Natural Science Foundation of China(Grant No.62271073 and 61971066)Beijing Natural Science Foundation(L212003)the National Youth Top-notch Talent Support Program.
文摘Package delivery via ridesharing provides appealing benefits of lower delivery cost and efficient vehicle usage.Most existing ridesharing systems operate the matching of ridesharing in a centralized manner,which may result in the single point of failure once the controller breaks down or is under attack.To tackle such problems,our goal in this paper is to develop a blockchain-based package delivery ridesharing system,where decentralization is adopted to remove intermediaries and direct transactions between the providers and the requestors are allowed.To complete the matching process under decentralized structure,an Event-Triggered Distributed Deep Reinforcement Learning(ETDDRL)algorithm is proposed to generate/update the real-time ridesharing orders for the new coming ridesharing requests from a local view.Simulation results reveal the vast potential of the ETDDRL matching algorithm under the blockchain framework for the promotion of the ridesharing profits.Finally,we develop an application for Android-based terminals to verify the ETDDRL matching algorithm.
文摘BACKGROUND In 2016,the Food and Drug Administration approved the first hybrid closed-loop(HCL)insulin delivery system for adults with type 1 diabetes(T1D).There is limited information on the impact of using HCL systems on patient-reported outcomes(PROs)in patients with T1D in real-world clinical practice.In this independent study,we evaluated glycemic parameters and PROs over one year of continuous use of Medtronic’s 670G HCL in real-world clinical practice.AIM To assess the effects of hybrid closed loop system on glycemic control and quality of life in adults with T1D.METHODS We evaluated 71 patients with T1D(mean age:45.5±12.1 years;59%females;body weight:83.8±18.7 kg,body mass index:28.7±5.6 kg/m2,A1C:7.6%±0.8%)who were treated with HCL at Joslin Clinic from 2017 to 2019.We measured A1C and percent of glucose time-in-range(%TIR)at baseline and 12 months.We measured percent time in auto mode(%TiAM)for the last two weeks preceding the final visit and assessed PROs through several validated quality-of-life surveys related to general health and diabetes management.RESULTS At 12 mo,A1C decreased by 0.3%±0.1%(P=0.001)and%TIR increased by 8.1%±2.5%(P=0.002).The average%TiAM was only 64.3%±32.8%and was not associated with A1C,%TIR or PROs.PROs,provided at baseline and at the end of the study,showed that the physical functioning submodule of 36Item Short-Form Health Survey increased significantly by 22.9%(P<0.001).Hypoglycemia fear survey/worry scale decreased significantly by 24.9%(P<0.000);Problem Areas In Diabetes reduced significantly by-17.2%(P=0.002).The emotional burden submodules of dietary diversity score reduced significantly by-44.7%(P=0.001).Furthermore,analysis of Clarke questionnaire showed no increase in awareness of hypoglycemic episodes.WHO-5 showed no improvements in subject’s wellbeing among participants after starting the 670G HCL system.Finally,analysis of Pittsburgh Sleep Quality Index showed no difference in sleep quality,sleep latency,or duration of sleep from baseline to 12 mo.CONCLUSION The use of HCL in real-world clinical practice for one year was associated with significant improvements in A1C,%TIR,physical functioning,hypoglycemia fear,emotional distress,and emotional burden related to diabetes management.However,these changes were not associated with time in auto mode.
基金supported by the National Key Research and Development Program of China(2021YFB2600405).
文摘In view of the problems of inconsistent data semantics,inconsistent data formats,and difficult data quality assurance between the railway engineering design phase and the construction and operation phase,as well as the difficulty in fully realizing the value of design results,this paper proposes a design and implementation scheme for a railway engineering collaborative design platform.The railway engineering collaborative design platform mainly includes functional modules such as metadata management,design collaboration,design delivery management,model component library,model rendering services,and Building Information Modeling(BIM)application services.Based on this,research is conducted on multi-disciplinary parameterized collaborative design technology for railway engineering,infrastructure data management and delivery technology,and design multi-source data fusion and application technology.The railway engineering collaborative design platform is compared with other railway design software to further validate its advantages and advanced features.The platform has been widely applied in multiple railway construction projects,greatly improving the design and project management efficiency.
文摘Background: Nigeria, a nation grappling with rapid population growth, economic intricacies, and complex healthcare challenges, particularly in Lagos State, the economic hub and most populous state, faces the challenge of ensuring quality healthcare access. The overview of the effect of quality improvement initiatives in this paper focuses on private healthcare providers in Lagos State, Nigeria. The study assesses the impact of donor-funded quality improvement projects on these private healthcare facilities. It explores the level of participation, perceived support, and tangible effects of the initiatives on healthcare delivery within private healthcare facilities. It also examines how these initiatives influence patient inflow and facility ratings, and bring about additional benefits and improvements, provides insights into the challenges faced by private healthcare providers in implementing quality improvement projects and elicits recommendations for improving the effectiveness of such initiatives. Methods: Qualitative research design was employed for in-depth exploration, utilizing semi-structured interviews. Private healthcare providers in Lagos involved in the SP4FP Quality Improvement Project were purposively sampled for diversity. Face-to-face interviews elicited insights into participation, perceived support, and project effects. Questions covered participation levels, support perception, changes observed, challenges faced, and recommendations. Thematic analysis identified recurring themes from interview transcripts. Adherence to ethical guidelines ensured participant confidentiality and informed consent. Results: Respondents affirmed active involvement in the SP4FP Quality Improvement Project, echoing literature emphasizing private-sector collaboration with the public sector. While acknowledging positive influences on facility ratings, respondents highlighted challenges within the broader Nigerian healthcare landscape affecting patient numbers. Respondents cited tangible improvements, particularly in staff management and patient care processes, validating the positive influence of quality improvement projects. Financial constraints emerged as a significant challenge, aligning with existing literature emphasizing the pragmatic difficulties faced by private healthcare providers. Conclusions: This study illuminates the complex landscape of private healthcare provision in Lagos State, emphasizing the positive impact of donor-funded quality improvement projects. The findings provide nuanced insights, guiding policymakers, healthcare managers, and practitioners toward collaborative, sustainable improvements. As Nigeria progresses, these lessons will be crucial in shaping healthcare policies prioritizing population well-being.
文摘Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.