期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
MSADCN:Multi-Scale Attentional Densely Connected Network for Automated Bone Age Assessment
1
作者 Yanjun Yu Lei Yu +2 位作者 Huiqi Wang Haodong Zheng Yi Deng 《Computers, Materials & Continua》 SCIE EI 2024年第2期2225-2243,共19页
Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate resul... Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods. 展开更多
关键词 Bone age assessment deep learning attentional densely connected network muti-scale
下载PDF
Attention-based neural network for end-to-end music separation
2
作者 Jing Wang Hanyue Liu +3 位作者 Haorong Ying Chuhan Qiu Jingxin Li Muhammad Shahid Anwar 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第2期355-363,共9页
The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sa... The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sampling rate,how to model longsequence data and make rational use of the relevant information between channels is also an urgent problem to be solved.In order to solve the above problems,the performance of the end-to-end music separation algorithm is enhanced by improving the network structure.Our main contributions include the following:(1)A more reasonable densely connected U-Net is designed to capture the long-term characteristics of music,such as main melody,tone and so on.(2)On this basis,the multi-head attention and dualpath transformer are introduced in the separation module.Channel attention units are applied recursively on the feature map of each layer of the network,enabling the network to perform long-sequence separation.Experimental results show that after the introduction of the channel attention,the performance of the proposed algorithm has a stable improvement compared with the baseline system.On the MUSDB18 dataset,the average score of the separated audio exceeds that of the current best-performing music separation algorithm based on the time-frequency domain(T-F domain). 展开更多
关键词 channel attention densely connected network end-to-end music separation
下载PDF
A New Malicious Code Classification Method for the Security of Financial Software
3
作者 Xiaonan Li Qiang Wang +2 位作者 Conglai Fan Wei Zhan Mingliang Zhang 《Computer Systems Science & Engineering》 2024年第3期773-792,共20页
The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financia... The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financial system and individual clients.Nevertheless,present detection models encounter limitations in their ability to identify malevolent code and its variations,all while encompassing a multitude of parameters.To overcome these obsta-cles,we introduce a lean model for classifying families of malevolent code,formulated on Ghost-DenseNet-SE.This model integrates the Ghost module,DenseNet,and the squeeze-and-excitation(SE)channel domain attention mechanism.It substitutes the standard convolutional layer in DenseNet with the Ghost module,thereby diminishing the model’s size and augmenting recognition speed.Additionally,the channel domain attention mechanism assigns distinctive weights to feature channels,facilitating the extraction of pivotal characteristics of malevolent code and bolstering detection precision.Experimental outcomes on the Malimg dataset indicate that the model attained an accuracy of 99.14%in discerning families of malevolent code,surpassing AlexNet(97.8%)and The visual geometry group network(VGGNet)(96.16%).The proposed model exhibits reduced parameters,leading to decreased model complexity alongside enhanced classification accuracy,rendering it a valuable asset for categorizing malevolent code. 展开更多
关键词 Malicious code lightweight convolution densely connected network channel domain attention mechanism
下载PDF
Road Damage Detection and Classification Using Mask R-CNN with DenseNet Backbone 被引量:3
4
作者 Qiqiang Chen Xinxin Gan +2 位作者 Wei Huang Jingjing Feng H.Shim 《Computers, Materials & Continua》 SCIE EI 2020年第12期2201-2215,共15页
Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.... Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.In recent years,deep convolutional neural network based methods have been used to address the challenges of road damage detection and classification.In this paper,we propose a new approach to address those challenges.This approach uses densely connected convolution networks as the backbone of the Mask R-CNN to effectively extract image feature,a feature pyramid network for combining multiple scales features,a region proposal network to generate the road damage region,and a fully convolutional neural network to classify the road damage region and refine the region bounding box.This method can not only detect and classify the road damage,but also create a mask of the road damage.Experimental results show that the proposed approach can achieve better results compared with other existing methods. 展开更多
关键词 Road damage detection road damage classification Mask R-CNN framework densely connected network
下载PDF
Automated stratigraphic correlation of well logs using Attention Based Dense Network
5
作者 Yang Yang Jingyu Wang +4 位作者 Zhuo Li Naihao Liu Rongchang Liu Jinghuai Gao Tao Wei 《Artificial Intelligence in Geosciences》 2023年第1期128-136,共9页
The stratigraphic correlation of well logs plays an essential role in characterizing subsurface reservoirs.However,it suffers from a small amount of training data and expensive computing time.In this work,we propose t... The stratigraphic correlation of well logs plays an essential role in characterizing subsurface reservoirs.However,it suffers from a small amount of training data and expensive computing time.In this work,we propose the Attention Based Dense Network(ASDNet)for the stratigraphic correlation of well logs.To implement the suggested model,we first employ the attention mechanism to the input well logs,which can effectively generate the weighted well logs to serve for further feature extraction.Subsequently,the DenseNet is utilized to achieve good feature reuse and avoid gradient vanishing.After model training,we employ the ASDNet to the testing data set and evaluate its performance based on the well log data set from Northwest China.Finally,the numerical results demonstrate that the suggested ASDNet provides higher prediction accuracy for automated stratigraphic correlation of well logs than state-of-the-art contrastive UNet and SegNet. 展开更多
关键词 Automated stratigraphic correlation Attention Based Dense network densely connected convolutional network Squeeze and Excitation Block
下载PDF
Diagnosis of focal liver lesions with deep learning-based multichannel analysis of hepatocyte-specific contrast-enhanced magnetic resonance imaging 被引量:8
6
作者 Róbert Stollmayer Bettina K Budai +6 位作者 Ambrus Tóth IldikóKalina Erika Hartmann Péter Szoldán Viktor Bérczi Pál Maurovich-Horvat Pál N Kaposi 《World Journal of Gastroenterology》 SCIE CAS 2021年第35期5978-5988,共11页
BACKGROUND The nature of input data is an essential factor when training neural networks.Research concerning magnetic resonance imaging(MRI)-based diagnosis of liver tumors using deep learning has been rapidly advanci... BACKGROUND The nature of input data is an essential factor when training neural networks.Research concerning magnetic resonance imaging(MRI)-based diagnosis of liver tumors using deep learning has been rapidly advancing.Still,evidence to support the utilization of multi-dimensional and multi-parametric image data is lacking.Due to higher information content,three-dimensional input should presumably result in higher classification precision.Also,the differentiation between focal liver lesions(FLLs)can only be plausible with simultaneous analysis of multisequence MRI images.AIM To compare diagnostic efficiency of two-dimensional(2D)and three-dimensional(3D)-densely connected convolutional neural networks(DenseNet)for FLLs on multi-sequence MRI.METHODS We retrospectively collected T2-weighted,gadoxetate disodium-enhanced arterial phase,portal venous phase,and hepatobiliary phase MRI scans from patients with focal nodular hyperplasia(FNH),hepatocellular carcinomas(HCC)or liver metastases(MET).Our search identified 71 FNH,69 HCC and 76 MET.After volume registration,the same three most representative axial slices from all sequences were combined into four-channel images to train the 2D-DenseNet264 network.Identical bounding boxes were selected on all scans and stacked into 4D volumes to train the 3D-DenseNet264 model.The test set consisted of 10-10-10 tumors.The performance of the models was compared using area under the receiver operating characteristic curve(AUROC),specificity,sensitivity,positive predictive values(PPV),negative predictive values(NPV),and f1 scores.RESULTS The average AUC value of the 2D model(0.98)was slightly higher than that of the 3D model(0.94).Mean PPV,sensitivity,NPV,specificity and f1 scores(0.94,0.93,0.97,0.97,and 0.93)of the 2D model were also superior to metrics of the 3D model(0.84,0.83,0.92,0.92,and 0.83).The classification metrics of FNH were 0.91,1.00,1.00,0.95,and 0.95 using the 2D and 0.90,0.90,0.95,0.95,and 0.90 using the 3D models.The 2D and 3D networks'performance in the diagnosis of HCC were 1.00,0.80,0.91,1.00,and 0.89 and 0.88,0.70,0.86,0.95,and 0.78,respectively;while the evaluation of MET lesions resulted in 0.91,1.00,1.00,0.95,and 0.95 and 0.75,0.90,0.94,0.85,and 0.82 using the 2D and 3D networks,respectively.CONCLUSION Both 2D and 3D-DenseNets can differentiate FNH,HCC and MET with good accuracy when trained on hepatocyte-specific contrast-enhanced multi-sequence MRI volumes. 展开更多
关键词 Artificial intelligence Multi-parametric magnetic resonance imaging Hepatocyte-specific contrast densely connected convolutional network Hepatocellular carcinoma Focal nodular hyperplasia
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部