The rapid cooling of a metallic liquid(ML)results in short-range order(SRO)among the atomic arrangements and a disordered structure in the resulting metallic glass(MG).These phenomena cause various possible features i...The rapid cooling of a metallic liquid(ML)results in short-range order(SRO)among the atomic arrangements and a disordered structure in the resulting metallic glass(MG).These phenomena cause various possible features in the microscopic structure of the MG,presenting a puzzle about the nature of the MGs’microscopic structure beyond SRO.In this study,the nanoscale density gradient(NDG)originating from a sequential arrangement of clusters with different atomic packing densities(APDs),representing the medium-range structural heterogeneity in Zr_(60)Cu_(30)Al_(10)MG,was characterized using electron tomography(ET)combined with image simulations based on structure modeling.The coarse polyhedrons with distinct facets identified in the three-dimensional images coincide with icosahedron-like clusters and represent the spatial positions of clusters with high APDs.Rearrangements of the different clusters according to descending APD order in the glass-forming process are responsible for the NDG that stabilizes both the supercooled ML and the amorphous states and acts as a hidden rule in the transition from ML to MG.展开更多
Aim: To 1) compare post-wash and post-thaw parameters of sperm processed with PureSperm density gradient technique and swim-up method; and 2) test the efficacy of two commonly available density gradient media PureSper...Aim: To 1) compare post-wash and post-thaw parameters of sperm processed with PureSperm density gradient technique and swim-up method; and 2) test the efficacy of two commonly available density gradient media PureSperm and ISolate. Methods: This prospective study used semen specimens from 22 patients. Specimens from nine patients were processed by both PureSperm density gradient and swim-up method. These specimens were then cryopreserved. Thirteen specimens were processed by both PureSperm (40 % and 80 %) and Isolate (50 % and 90 %) double density gradient techniques. The two fractions processed by both PureSperm and swim-up were analyzed for post-wash sperm characteristics. Post-thaw analysis was done after 24 hours. Sperm fractions obtained after processing with PureSperm and ISolate were compared for post-wash sperm characteristics and ROS levels. Results: Specimens prepared with PureSperm had significantly higher median total motile sperm counts (TMSC) (32.2 x 10~6 vs. 17.6 x 10~6), recovery rates (69.2 % vs. 50.0 %), and longevity at 4 hours (83.0 % vs. 55.0 %) compared to specimen prepared by swim-up. Post-thaw specimens also had a higher recovery and longevity at 4 hours with PureSperm as compared to the swim-up. Semen specimens processed by PureSperm had significantly higher total sperm count, TMSC, and percentage recovery rates (30.0 % vs. 19.7 %) than ISolate. Conclusion: Semen quality is better preserved in fresh and cryopreserved semen prepared with PureSperm density gradient compared to swim-up. A significant enrichment of sperm is observed with PureSperm compared to ISolate. Higher recovery rates of mature motile sperm obtained after PureSperm sperm preparation may be beneficial for successful ART. i展开更多
We modeled the effect of the deformation of a Density Gradient Zone (DGZ) on a local gravity field using a cubical model and introduced a new method to simulate a complex DGZ (CDGZ). Then, we analyzed the features...We modeled the effect of the deformation of a Density Gradient Zone (DGZ) on a local gravity field using a cubical model and introduced a new method to simulate a complex DGZ (CDGZ). Then, we analyzed the features of the model for the influence of the deformation of the DGZ on the local gravity field. We concluded that land-based gravity is not sensitive to the thickness of the DGZ and that the magnitude of the contribution of the DGZ is one order less than that of the volume strain with the same displacement.展开更多
A general solution of the electrostatic potential that determines the maximum light-ion energy is derived for the test-particle acceleration model by taking into account the influence of the substrate-ion density grad...A general solution of the electrostatic potential that determines the maximum light-ion energy is derived for the test-particle acceleration model by taking into account the influence of the substrate-ion density gradient. It is shown that the substrate-ion density structure is also dependent on laser pulse duration. In the picosecond or sub-picosecond regime, the decreasing density gradient of the substrate-ions leads to an evident reduction in the acceleration efficiency of the light-ions. However, this kind of influence is negligible in the ultrashort regime.展开更多
Objective To find out a specific method for diagnosis of malignant pleural effusions (MPEs)with higher sensitivity and practicality. Methods The diagnosis of MPEs were made using density gradient cen-trifugation(DGC) ...Objective To find out a specific method for diagnosis of malignant pleural effusions (MPEs)with higher sensitivity and practicality. Methods The diagnosis of MPEs were made using density gradient cen-trifugation(DGC) , smear cytologic examination( SCE) and pleural needle biopsy (PNB). Comparisons between these results and those of benign pleural effusions were also made. Results The positive rates of DGC,SCE and PNB for diagnosing MPEs were 94. 3% ,62. 9% and 44. 6% , respectively, and the positive rate of SCE combined with PNB for diagnosing MPEs was 73. 2%. The positive rate of the exfoliative tumor cells ( ETCs ) by DGC was much higher than that of SCE or/and PNB with no false-positive. Conclusion The ETCs isolated by DGC from the MPEs is quite specific for the diagnosis of malignant tumors with higher sensitivity and practicality in clinico-patho-logical practice.展开更多
This work is to study a role of the fluctuating density gradient in the compressible flows tbr the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and...This work is to study a role of the fluctuating density gradient in the compressible flows tbr the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups proportional to the mean velocity, proportional to the mean strain rate, and proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vortices in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.展开更多
Objective:Sperm preparation techniques and cryopreservation are widely used in assisted reproductive techniques(ART).How to improve the quality of sperm management is a matter of great concern.Phospholipase C-zeta(PLC...Objective:Sperm preparation techniques and cryopreservation are widely used in assisted reproductive techniques(ART).How to improve the quality of sperm management is a matter of great concern.Phospholipase C-zeta(PLCζ)is considered a sperm-specific agent that activates oocyte activation and thus playing a crucial role in male fertility.However,the potential mechanisms by which semen processing and cryopreservation on PLCζcontribute to keyhole have not been addressed.Methods:In this study,semen samples were taken from have not been addressed 10 normozoospermic men.Each semen sample was assigned to the following groups:density gradient centrifugation(DGC)as control,microfluidic sorting,and cryopreservation.Sperm parameters of molity,viability,membrane integrity,and intracellular ROS were evaluated during sperm preparation and cryopreservation.The expression of PLCζin human sperm was determined by immunofluorescence and western blotting.Results:The results showed that molity,viability,and membrane integrity decreased in cryopreservation group.Intracellular ROS were also significantly increased compared to the the control group.There was no significant difference between DGC and microfluidic sorting group.Our investigation revealed that total levels of PLCζwere comparable between DGC and microfluidic sorting,but there were significantly reduced levels of PLCζafter cryopreservation as quantified by both immunofluorescenceand immunoblotting.PLCζimmunofluorescence in sperm revealed different PLCζlocalization patterns around the acrosomal(Ac),equatorial(Eq),post-acrosomal(PA)areas of sperm heads,and their combination.The predominant patterns of PLCζlocalization in DGC were similar to that of microfluidic sorting,with strong,with staining.In contrast,PLCζstaining in freeze-thawed sperm was considerably weaker fluorescence intensity.Conclusion:This study clarified the mechanism of sperm preparation and cryopreservation underlying effect on sperm characteristic,accompanied with PLCζexpresion.We demonstrated that microfluidic sorting provides a highly efficient preparation method for clinical selection of PLCζ-expressing sperm comparable to DGC gene expression.It is suggested that the cryopreservation of sperm has a significant detrimental effect on PLCζ.展开更多
Based on the dynamic shock response of the material and structure,the hypervelocity impact processes and mechanisms of long composite rods with axial density/impedance gradients penetration into fourlayer targets were...Based on the dynamic shock response of the material and structure,the hypervelocity impact processes and mechanisms of long composite rods with axial density/impedance gradients penetration into fourlayer targets were studied through experiments and numerical simulation methods.The propagation law of the shock waves,together with the structural responses of the projectiles and targets,the formation and evolution of the fragment groups formed during the processes and their distributions were described.The damage of each target plate was quantitatively analysed by comparing the results of the experiment and numerical simulation.The results showed that the axial density/impedance gradient projectiles could decrease the impact pressure to a certain extent,and the degree of damage to the target plate decreased layer by layer when the head density/impedance of the projectile was high.When the head density/impedance of the projectile was low,the degree of target damage first increased layer by layer until the projectile was completely eroded and then it decreased.The results can provide a reference for the design and application of long rods with axial composite structure for velocities ranging from 6 to 10 Ma or greater.展开更多
Traditional post-treatment of colloidal nanoparticles (NPs) usually involves repeated centrifugation-wash-sonication processes to separate NPs from the original synthetic environment; however, such separation proces...Traditional post-treatment of colloidal nanoparticles (NPs) usually involves repeated centrifugation-wash-sonication processes to separate NPs from the original synthetic environment; however, such separation processes have either high energy cost or low efficiency and tend to cause aggregation. Here we show a general and scalable colloid post-processing technique based on density gradient centrifugation through water/oil interfaces. Such a one-step technique can switch the solvent in a colloid at almost any concentration without aggregation, and meanwhile purify colloidal nanoparticles by separating them from by-products and environmental impurities. Droplet sedimentation was shown to be the mechanism of this one-step concentration/purification process, and mathematical modeling was established to quantify the accumulation and sedimentation velocities of different NPs.展开更多
We present a systematic study of the effects of surfactants in the separation of single-walled carbon nanotubes (SWNTs) by density gradient ultracentrifugation (DGU). Through analysis of the buoyant densities, lay...We present a systematic study of the effects of surfactants in the separation of single-walled carbon nanotubes (SWNTs) by density gradient ultracentrifugation (DGU). Through analysis of the buoyant densities, layer positions, and optical absorbance spectra of SWNT separations using the bile salt sodium deoxycholate (DOC) and the anionic salt sodium dodecyl sulfate (SDS), we clarify the roles and interactions of these two surfactants in yielding different DGU outcomes. The separation mechanism described here can also help in designing new DGU experiments by qualitatively predicting outcomes of different starting recipes, improving the efficacy of DGU and simplifying post-DGU fractionation.展开更多
High quality gold nanorods (NRs) with a monodisperse size and aspect ratio are essential for many applications. Here, we describe how nearly monodisperse gold NRs can be separated from polydisperse samples using den...High quality gold nanorods (NRs) with a monodisperse size and aspect ratio are essential for many applications. Here, we describe how nearly monodisperse gold NRs can be separated from polydisperse samples using density gradient ultracentrifugation. Size and dimension analysis by transmission electron microscopy (TEM) and absorption spectroscopy revealed that the Au NRs were separated mainly as a function of their aspect ratio The surface-enhanced Raman scattering (SERS) activity of Au NRs with lower aspect ratio is notably stronger than that of NRs with higher aspect ratio under 633 nm laser excitation, due to the size-dependent absorption of the longitudinal plasmon band. The separation approach provides a method to improve the quality of NRs produced by large scale synthetic methods.展开更多
In this article,we review the advancement in nanoseparation and concomitant purification of nanoparticles(NPs) by using density gradient ultracentrifugation technique(DGUC) and demonstrated by taking several typical e...In this article,we review the advancement in nanoseparation and concomitant purification of nanoparticles(NPs) by using density gradient ultracentrifugation technique(DGUC) and demonstrated by taking several typical examples.Study emphasizes the conceptual advances in classification,mechanism of DGUC and synthesis-structure-property relationships of NPs to provide the significant clue for the further synthesis optimization.Separation,concentration,and purification of NPs by DGUC can be achieved at the same time by introducing the water/oil interfaces into the separation chamber.We can develop an efficient method ‘‘lab in a tube" by introducing a reaction zone or an assembly zone in the gradient to find the surface reaction and assembly mechanism of NPs since the reaction time can be precisely controlled and the chemical environment change can be extremely fast.Finally,to achieve the best separation parameters for the colloidal systems,we gave the mathematical descriptions and computational optimized models as a new direction for making practicable and predictable DGUC separation method.Thus,it can be helpful for an efficient separation as well as for the synthesis optimization,assembly and surface reactions as a potential cornerstone for the future development in the nanotechnology and this review can be served as a plethora of advanced notes on the DGUC separation method.展开更多
Understanding the flame structure for different combustion in industries has drawn the increasing attention around the world.Particularly,for increasing the recent interest of using the hydrogen fuelled vehicles in re...Understanding the flame structure for different combustion in industries has drawn the increasing attention around the world.Particularly,for increasing the recent interest of using the hydrogen fuelled vehicles in recent world,structural analysis of flame in combustion chamber has attracted the attention of researchers.However,the high flame temperature and strong flame emissions increase the experimental difficulties,especially,in all kinds of intrusive measurement systems for determining the flame structures and flame temperatures.Therefore,a non-intrusive laser interferometer technique based on Shack-Hartmann optical system has been proposed to measure the thermal characteristic of a flame structure.In the present study,a low-stretched diffusion flame of methanol burner has been used.Shack-Hartmann optical system is a type of wave front sensor.It is commonly used in adaptive optical systems.It consists of an array of lenses to focus the image onto a photon sensor (photo-detector) at the focal plane and measures the wave front tilt.The major objective of the present study is to develop a laser interferometer measurement technique for analyzing the flame structure and its temperature propagation by measuring the density gradient of the flame.Optical interferometer technique is a potential candidate for the non-invasive measurement.In the present paper,a novel method for the measurement of density gradient in flame by using Shack-Hartmann optical system is proposed.A collimated laser beam that has been passed through the flame is tilted due to the density gradient inside the flame.A CCD camera (CCD photo sensor) has been used to observe the wave front tilts at the focal plane.展开更多
Objective:The purpose of this study was to evaluate the sperm motility and DNA integrity at different temperatures to analyze whether the sperms are suitable on the second day for insemination of in vitro matured oocy...Objective:The purpose of this study was to evaluate the sperm motility and DNA integrity at different temperatures to analyze whether the sperms are suitable on the second day for insemination of in vitro matured oocytes by intra-cytoplasmic sperm injection(ICSI)following density gradient centrifugation(DGC)and swim-up(SU)procedures.Methods:Semen samples were collected from 30 outpatients who visited the Center for Reproductive Medicine for semen analyses.Following sperm selection by DGC and SU procedures,the liquified semen samples were divided into three groups and incubated at 4,25,and 37°C,respectively.Following incubation for 24,48,and 72 hours,the sperm motility and sperm DNA fragmentation index(DFI)were analyzed.Results:Following the combination of DGC and SU procedures,the sperm motility(91.8%±8.6%vs.50.8%±13.1%)and DFI(5.1%±7.9%vs.13.0%±11.6%)were significantly improved(P<0.01)compared to those without any treatment.The sperm motility of the 3 groups significantly declined(P<0.05)post-incubation compared to that of the groups prior incubation.However,sperm motility significantly increased(76.9%±10.4%)(P<0.05)at 25°C compared to that of the other 2 groups(53.5%±11.0%and 47.6%±10.2%).Sperm DFI significantly increased(P<0.05)at 37°C following incubation for 24 and 72 hours in comparison to that of the other 2 groups.However,the sperm DFI did not significantly increase when the sperm samples were incubated at 4(5.7%±5.9%)and 25°C(6.8%±5.6%)for 24 hours compared to that before incubation(5.1%±7.9%).Conclusions:These results indicate that the sperm quality,in terms of motility and DFI,can be efficiently improved by DGC in combination with SU.Following which,the sperm samples can be incubated at 25°C and be used on the second day for insemination of in vitro matured oocytes by ICSI.展开更多
A three-dimensional density model of the crust and uppermost mantle is determined by the inversion of a set of GOCE gravity and gradients residual anomalies beneath the eastern margin of the Tibetan Plateau and its su...A three-dimensional density model of the crust and uppermost mantle is determined by the inversion of a set of GOCE gravity and gradients residual anomalies beneath the eastern margin of the Tibetan Plateau and its surrounding areas. In our work, we choose five independent gravity gradients (Txx, Tzz, Txy, Txz, Tyz) to perform density inversion. Objective function is given based on Tikhonov regularization theory. Seismic S-wave velocities play the role of initial constraint for the inversion based on a relationship between density and S-wave velocity. Damped Least Square method is used during the inversion. The final density results offer some insights into understanding the underlying geodynamic processes: (1) Low densities in the margin of the Tibet, along with low wave velocity and resistivity results, yield conversions from soft and weak Tibet to the hard and rigid cratons. (2)The lowest densities are found in the boundary of the plateau, instead of the whole Tibet indicates that the effects of extrusion stress environment in the margin affect the changes of the substance there. The substances and environments conditioning for the earthquake preparations and strong deformation in this transitional zone. (3) Evident low-D anomaly in the upper and middle crust in the Lasha terrane and Songpan-Ganzi terrane illustrated the eastward sub-ducted of southeastern Tibet, which could be accounts for the frequent volcano and earthouakes there.展开更多
The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter functi...The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform,parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and "bumpon-tail" profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould(TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution.展开更多
Density-graded cellular materials have tremendous potential in structural applications where impact resistance is required.Cellular materials subjected to high impact loading result in a compaction type deformation,us...Density-graded cellular materials have tremendous potential in structural applications where impact resistance is required.Cellular materials subjected to high impact loading result in a compaction type deformation,usually modeled using continuum-based shock theory.The resulting governing differential equation of the shock model is nonlinear,and the density gradient further complicates the problem.Earlier studies have employed numerical methods to obtain the solution.In this study,an analytical closed-form solution is proposed to predict the response of density-graded cellular materials subjected to a rigid body impact.Solutions for the velocity of the impinging rigid body mass,energy absorption capacity of the cellular material,and the incident stress are obtained for a single shock propagation.The results obtained are in excellent agreement with the existing numerical solutions found in the literature.The proposed analytical solution can be potentially used for parametric studies and for effectively designing graded structures to mitigate impact.展开更多
Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grai...Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grain boundaries produce a pinning atmosphere that exerts a drag pressure on the boundary motion,which strongly affects the grain growth behavior during annealing.In the current work,the characteristics of grain growth in an annealed Mg-1 wt.%Mn-1 wt.%Nd magnesium alloy were investigated by advanced experimental and modeling techniques.Systematic quasi in-situ orientation mappings with a scanning electron microscope were performed to track the evolution of local and global microstructural characteristics as a function of annealing time.Solute segregation at targeted grain boundaries was measured using three-dimensional atom probe tomography.Level-set computer simulations were carried with different setups of driving forces to explore their contribution to the microstructure development with and without solute drag.The results showed that the favorable growth advantage for some grains leading to a transient stage of abnormal grain growth is controlled by several drivers with varying importance at different stages of annealing.For longer annealing times,residual dislocation density gradients between large and smaller grains are no longer important,which leads to microstructure stability due to predominant solute drag.Local fluctuations in residual dislocation energy and solute concentration near grain boundaries cause different boundary segments to migrate at different rates,which affects the average growth rate of large grains and their evolved shape.展开更多
Appropriate semen processing and assessment are critical for successful infertility treatment. We investigated whether laboratory procedures including semen preparation and incubation affect sperm DNA integrity. A tot...Appropriate semen processing and assessment are critical for successful infertility treatment. We investigated whether laboratory procedures including semen preparation and incubation affect sperm DNA integrity. A total of 153 infertile men were involved. Conventional semen parameters and sperm chromatin structure assay (SCSA) parameters, that is, DNA fragmentation index (%DFI) and high DNA stainability (%HDS), were assessed on the flesh ejaculated semen samples, which were treated and incubated under different conditions. Negative correlations were identified between the %DFI and sperm concentration, motility, progressive motility and morphology. A lower percentage of DFI was detected in spermatozoa when density gradient centrifugation (DGC) was followed by swimup treatment in comparison with DGC alone (P 〈 0.01). Although the %DFI increased in a time-dependent manner with incubation both at room temperature (RT) and at 37℃ in air, the %DFI after 24 h at RT was significantly lower than that at 37℃ (P 〈 0.05). Incubation with 5% CO2 was effective in maintaining sperm motility (P 〈 0.01); however, it induced further elevation of %DFI (P 〈 0.001). Thus, sperm DNA damage was associated with longer incubation periods. Interestingly, common culture conditions, such as maintaining pH and temperature, compromised the sperm DNA integrity.展开更多
Caveolae and non-caveolar lipid rafts are two types of membrane lipid microdomains that play important roles in insulin-stimulated glucose uptake in adipocytes. In order to ascertain their specific functions in this p...Caveolae and non-caveolar lipid rafts are two types of membrane lipid microdomains that play important roles in insulin-stimulated glucose uptake in adipocytes. In order to ascertain their specific functions in this process, caveolae were ablated by caveolin-1 RNA interference. In Cav-1 RNAi adipocytes, neither insulin-stimulated glucose uptake nor Glut-4 (glucose transporter 4) translocation to membrane lipid microdomains was affected by the ablation of caveolae. With a modified sucrose density gradient, caveolae and non-caveolar lipid rafts could be separated. In the wild-type 3T3- L l adipocytes, Glut-4 was found to be translocated into both caveolae and non-caveolar lipid rafts. However, in Cav1 RNAi adipocytes, Glut-4 was localized predominantly in non-caveolar lipid rafts. After the removal of insulin, caveolaelocalized Glut-4 was internalized faster than non-caveolar lipid raft-associated Glut-4. The internalization of Glut-4 from plasma membrane was significantly decreased in Cav-1 RNAi adipocytes. These results suggest that insulin-stimulated Glut-4 translocation and glucose uptake are caveolae-independent events. Caveolae play a role in the internalization of Glut-4 from plasma membrane after the removal of insulin.展开更多
基金supported by the National Natural Science Foundation of China(51971093,52192603,and 51501043)。
文摘The rapid cooling of a metallic liquid(ML)results in short-range order(SRO)among the atomic arrangements and a disordered structure in the resulting metallic glass(MG).These phenomena cause various possible features in the microscopic structure of the MG,presenting a puzzle about the nature of the MGs’microscopic structure beyond SRO.In this study,the nanoscale density gradient(NDG)originating from a sequential arrangement of clusters with different atomic packing densities(APDs),representing the medium-range structural heterogeneity in Zr_(60)Cu_(30)Al_(10)MG,was characterized using electron tomography(ET)combined with image simulations based on structure modeling.The coarse polyhedrons with distinct facets identified in the three-dimensional images coincide with icosahedron-like clusters and represent the spatial positions of clusters with high APDs.Rearrangements of the different clusters according to descending APD order in the glass-forming process are responsible for the NDG that stabilizes both the supercooled ML and the amorphous states and acts as a hidden rule in the transition from ML to MG.
文摘Aim: To 1) compare post-wash and post-thaw parameters of sperm processed with PureSperm density gradient technique and swim-up method; and 2) test the efficacy of two commonly available density gradient media PureSperm and ISolate. Methods: This prospective study used semen specimens from 22 patients. Specimens from nine patients were processed by both PureSperm density gradient and swim-up method. These specimens were then cryopreserved. Thirteen specimens were processed by both PureSperm (40 % and 80 %) and Isolate (50 % and 90 %) double density gradient techniques. The two fractions processed by both PureSperm and swim-up were analyzed for post-wash sperm characteristics. Post-thaw analysis was done after 24 hours. Sperm fractions obtained after processing with PureSperm and ISolate were compared for post-wash sperm characteristics and ROS levels. Results: Specimens prepared with PureSperm had significantly higher median total motile sperm counts (TMSC) (32.2 x 10~6 vs. 17.6 x 10~6), recovery rates (69.2 % vs. 50.0 %), and longevity at 4 hours (83.0 % vs. 55.0 %) compared to specimen prepared by swim-up. Post-thaw specimens also had a higher recovery and longevity at 4 hours with PureSperm as compared to the swim-up. Semen specimens processed by PureSperm had significantly higher total sperm count, TMSC, and percentage recovery rates (30.0 % vs. 19.7 %) than ISolate. Conclusion: Semen quality is better preserved in fresh and cryopreserved semen prepared with PureSperm density gradient compared to swim-up. A significant enrichment of sperm is observed with PureSperm compared to ISolate. Higher recovery rates of mature motile sperm obtained after PureSperm sperm preparation may be beneficial for successful ART. i
基金supported by the Special Earthquake Research Project of China Earthquake Administration(201208009)and the National Natural Science Foundation of China(41274083)
文摘We modeled the effect of the deformation of a Density Gradient Zone (DGZ) on a local gravity field using a cubical model and introduced a new method to simulate a complex DGZ (CDGZ). Then, we analyzed the features of the model for the influence of the deformation of the DGZ on the local gravity field. We concluded that land-based gravity is not sensitive to the thickness of the DGZ and that the magnitude of the contribution of the DGZ is one order less than that of the volume strain with the same displacement.
基金supported by the National Natural Science Foundation of China (Grant No. 10734080)the National Basic Research Program of China (Grant No. 2006CB806000)+1 种基金the Chinese Academy of Sciences,the Shanghai Commission of Science and Technology (Grant Nos. 06DZ22015 and 0652nm005)the Hunan Provincial Natural Science Foundation of China (GrantNo. 09JJ3012)
文摘A general solution of the electrostatic potential that determines the maximum light-ion energy is derived for the test-particle acceleration model by taking into account the influence of the substrate-ion density gradient. It is shown that the substrate-ion density structure is also dependent on laser pulse duration. In the picosecond or sub-picosecond regime, the decreasing density gradient of the substrate-ions leads to an evident reduction in the acceleration efficiency of the light-ions. However, this kind of influence is negligible in the ultrashort regime.
文摘Objective To find out a specific method for diagnosis of malignant pleural effusions (MPEs)with higher sensitivity and practicality. Methods The diagnosis of MPEs were made using density gradient cen-trifugation(DGC) , smear cytologic examination( SCE) and pleural needle biopsy (PNB). Comparisons between these results and those of benign pleural effusions were also made. Results The positive rates of DGC,SCE and PNB for diagnosing MPEs were 94. 3% ,62. 9% and 44. 6% , respectively, and the positive rate of SCE combined with PNB for diagnosing MPEs was 73. 2%. The positive rate of the exfoliative tumor cells ( ETCs ) by DGC was much higher than that of SCE or/and PNB with no false-positive. Conclusion The ETCs isolated by DGC from the MPEs is quite specific for the diagnosis of malignant tumors with higher sensitivity and practicality in clinico-patho-logical practice.
文摘This work is to study a role of the fluctuating density gradient in the compressible flows tbr the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups proportional to the mean velocity, proportional to the mean strain rate, and proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vortices in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.
基金Grant sponsor:the Science and Technology Projects of Quanzhou,grant number:2019N085Sgrant sponsor:Startup Fund for Scientific Research,Fujian Medical University,grant number:2018QH1100
文摘Objective:Sperm preparation techniques and cryopreservation are widely used in assisted reproductive techniques(ART).How to improve the quality of sperm management is a matter of great concern.Phospholipase C-zeta(PLCζ)is considered a sperm-specific agent that activates oocyte activation and thus playing a crucial role in male fertility.However,the potential mechanisms by which semen processing and cryopreservation on PLCζcontribute to keyhole have not been addressed.Methods:In this study,semen samples were taken from have not been addressed 10 normozoospermic men.Each semen sample was assigned to the following groups:density gradient centrifugation(DGC)as control,microfluidic sorting,and cryopreservation.Sperm parameters of molity,viability,membrane integrity,and intracellular ROS were evaluated during sperm preparation and cryopreservation.The expression of PLCζin human sperm was determined by immunofluorescence and western blotting.Results:The results showed that molity,viability,and membrane integrity decreased in cryopreservation group.Intracellular ROS were also significantly increased compared to the the control group.There was no significant difference between DGC and microfluidic sorting group.Our investigation revealed that total levels of PLCζwere comparable between DGC and microfluidic sorting,but there were significantly reduced levels of PLCζafter cryopreservation as quantified by both immunofluorescenceand immunoblotting.PLCζimmunofluorescence in sperm revealed different PLCζlocalization patterns around the acrosomal(Ac),equatorial(Eq),post-acrosomal(PA)areas of sperm heads,and their combination.The predominant patterns of PLCζlocalization in DGC were similar to that of microfluidic sorting,with strong,with staining.In contrast,PLCζstaining in freeze-thawed sperm was considerably weaker fluorescence intensity.Conclusion:This study clarified the mechanism of sperm preparation and cryopreservation underlying effect on sperm characteristic,accompanied with PLCζexpresion.We demonstrated that microfluidic sorting provides a highly efficient preparation method for clinical selection of PLCζ-expressing sperm comparable to DGC gene expression.It is suggested that the cryopreservation of sperm has a significant detrimental effect on PLCζ.
基金supported by the National Natural Science Foundation of China(Grant No.11772269)。
文摘Based on the dynamic shock response of the material and structure,the hypervelocity impact processes and mechanisms of long composite rods with axial density/impedance gradients penetration into fourlayer targets were studied through experiments and numerical simulation methods.The propagation law of the shock waves,together with the structural responses of the projectiles and targets,the formation and evolution of the fragment groups formed during the processes and their distributions were described.The damage of each target plate was quantitatively analysed by comparing the results of the experiment and numerical simulation.The results showed that the axial density/impedance gradient projectiles could decrease the impact pressure to a certain extent,and the degree of damage to the target plate decreased layer by layer when the head density/impedance of the projectile was high.When the head density/impedance of the projectile was low,the degree of target damage first increased layer by layer until the projectile was completely eroded and then it decreased.The results can provide a reference for the design and application of long rods with axial composite structure for velocities ranging from 6 to 10 Ma or greater.
文摘Traditional post-treatment of colloidal nanoparticles (NPs) usually involves repeated centrifugation-wash-sonication processes to separate NPs from the original synthetic environment; however, such separation processes have either high energy cost or low efficiency and tend to cause aggregation. Here we show a general and scalable colloid post-processing technique based on density gradient centrifugation through water/oil interfaces. Such a one-step technique can switch the solvent in a colloid at almost any concentration without aggregation, and meanwhile purify colloidal nanoparticles by separating them from by-products and environmental impurities. Droplet sedimentation was shown to be the mechanism of this one-step concentration/purification process, and mathematical modeling was established to quantify the accumulation and sedimentation velocities of different NPs.
基金Acknowledgements Part of this work was financially supported by Grant- in-Aid for Scientific Research (No. 22226006 and 19054003), "Development of Nanoelectronic Device Technology" of New Energy and Industrial Technology Development Organization (NEDO), and the Global Centers of Excellence (COE) Program "Global Center for Excellence for Mechanical Systems Innovation". P. Z. acknowledges a scholarship granted by the China Scholarship Council and G. L. acknowledges support from the NanoJapan program funded by the National Science Foundation.
文摘We present a systematic study of the effects of surfactants in the separation of single-walled carbon nanotubes (SWNTs) by density gradient ultracentrifugation (DGU). Through analysis of the buoyant densities, layer positions, and optical absorbance spectra of SWNT separations using the bile salt sodium deoxycholate (DOC) and the anionic salt sodium dodecyl sulfate (SDS), we clarify the roles and interactions of these two surfactants in yielding different DGU outcomes. The separation mechanism described here can also help in designing new DGU experiments by qualitatively predicting outcomes of different starting recipes, improving the efficacy of DGU and simplifying post-DGU fractionation.
基金Acknowledgements This work was financially supported by the National Natural Science Foundation of China (NSFC), Beijing Natural Science Foundation (No. 2102033), the Programfor New Century Excellent Talents in Universities, and the 973 Program (No. 2009CB939801).
文摘High quality gold nanorods (NRs) with a monodisperse size and aspect ratio are essential for many applications. Here, we describe how nearly monodisperse gold NRs can be separated from polydisperse samples using density gradient ultracentrifugation. Size and dimension analysis by transmission electron microscopy (TEM) and absorption spectroscopy revealed that the Au NRs were separated mainly as a function of their aspect ratio The surface-enhanced Raman scattering (SERS) activity of Au NRs with lower aspect ratio is notably stronger than that of NRs with higher aspect ratio under 633 nm laser excitation, due to the size-dependent absorption of the longitudinal plasmon band. The separation approach provides a method to improve the quality of NRs produced by large scale synthetic methods.
基金supported by the National Natural Science Foundation of China(NSFC)the National Key Research and Development Project of China(2016YFF0204402)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in the University(IRT1205)the Fundamental Research Funds for the Central Universities,the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of PRC
文摘In this article,we review the advancement in nanoseparation and concomitant purification of nanoparticles(NPs) by using density gradient ultracentrifugation technique(DGUC) and demonstrated by taking several typical examples.Study emphasizes the conceptual advances in classification,mechanism of DGUC and synthesis-structure-property relationships of NPs to provide the significant clue for the further synthesis optimization.Separation,concentration,and purification of NPs by DGUC can be achieved at the same time by introducing the water/oil interfaces into the separation chamber.We can develop an efficient method ‘‘lab in a tube" by introducing a reaction zone or an assembly zone in the gradient to find the surface reaction and assembly mechanism of NPs since the reaction time can be precisely controlled and the chemical environment change can be extremely fast.Finally,to achieve the best separation parameters for the colloidal systems,we gave the mathematical descriptions and computational optimized models as a new direction for making practicable and predictable DGUC separation method.Thus,it can be helpful for an efficient separation as well as for the synthesis optimization,assembly and surface reactions as a potential cornerstone for the future development in the nanotechnology and this review can be served as a plethora of advanced notes on the DGUC separation method.
文摘Understanding the flame structure for different combustion in industries has drawn the increasing attention around the world.Particularly,for increasing the recent interest of using the hydrogen fuelled vehicles in recent world,structural analysis of flame in combustion chamber has attracted the attention of researchers.However,the high flame temperature and strong flame emissions increase the experimental difficulties,especially,in all kinds of intrusive measurement systems for determining the flame structures and flame temperatures.Therefore,a non-intrusive laser interferometer technique based on Shack-Hartmann optical system has been proposed to measure the thermal characteristic of a flame structure.In the present study,a low-stretched diffusion flame of methanol burner has been used.Shack-Hartmann optical system is a type of wave front sensor.It is commonly used in adaptive optical systems.It consists of an array of lenses to focus the image onto a photon sensor (photo-detector) at the focal plane and measures the wave front tilt.The major objective of the present study is to develop a laser interferometer measurement technique for analyzing the flame structure and its temperature propagation by measuring the density gradient of the flame.Optical interferometer technique is a potential candidate for the non-invasive measurement.In the present paper,a novel method for the measurement of density gradient in flame by using Shack-Hartmann optical system is proposed.A collimated laser beam that has been passed through the flame is tilted due to the density gradient inside the flame.A CCD camera (CCD photo sensor) has been used to observe the wave front tilts at the focal plane.
基金Ministry of Science and Technology of China,National Key R&D Program of China(No.2017YFC1002003 and No.2017YFC1001601)
文摘Objective:The purpose of this study was to evaluate the sperm motility and DNA integrity at different temperatures to analyze whether the sperms are suitable on the second day for insemination of in vitro matured oocytes by intra-cytoplasmic sperm injection(ICSI)following density gradient centrifugation(DGC)and swim-up(SU)procedures.Methods:Semen samples were collected from 30 outpatients who visited the Center for Reproductive Medicine for semen analyses.Following sperm selection by DGC and SU procedures,the liquified semen samples were divided into three groups and incubated at 4,25,and 37°C,respectively.Following incubation for 24,48,and 72 hours,the sperm motility and sperm DNA fragmentation index(DFI)were analyzed.Results:Following the combination of DGC and SU procedures,the sperm motility(91.8%±8.6%vs.50.8%±13.1%)and DFI(5.1%±7.9%vs.13.0%±11.6%)were significantly improved(P<0.01)compared to those without any treatment.The sperm motility of the 3 groups significantly declined(P<0.05)post-incubation compared to that of the groups prior incubation.However,sperm motility significantly increased(76.9%±10.4%)(P<0.05)at 25°C compared to that of the other 2 groups(53.5%±11.0%and 47.6%±10.2%).Sperm DFI significantly increased(P<0.05)at 37°C following incubation for 24 and 72 hours in comparison to that of the other 2 groups.However,the sperm DFI did not significantly increase when the sperm samples were incubated at 4(5.7%±5.9%)and 25°C(6.8%±5.6%)for 24 hours compared to that before incubation(5.1%±7.9%).Conclusions:These results indicate that the sperm quality,in terms of motility and DFI,can be efficiently improved by DGC in combination with SU.Following which,the sperm samples can be incubated at 25°C and be used on the second day for insemination of in vitro matured oocytes by ICSI.
基金the Major State Basic Research Development Program of China 973 Program(2013CB733301)the National Natural Science Fund(41274025) for supporting the work
文摘A three-dimensional density model of the crust and uppermost mantle is determined by the inversion of a set of GOCE gravity and gradients residual anomalies beneath the eastern margin of the Tibetan Plateau and its surrounding areas. In our work, we choose five independent gravity gradients (Txx, Tzz, Txy, Txz, Tyz) to perform density inversion. Objective function is given based on Tikhonov regularization theory. Seismic S-wave velocities play the role of initial constraint for the inversion based on a relationship between density and S-wave velocity. Damped Least Square method is used during the inversion. The final density results offer some insights into understanding the underlying geodynamic processes: (1) Low densities in the margin of the Tibet, along with low wave velocity and resistivity results, yield conversions from soft and weak Tibet to the hard and rigid cratons. (2)The lowest densities are found in the boundary of the plateau, instead of the whole Tibet indicates that the effects of extrusion stress environment in the margin affect the changes of the substance there. The substances and environments conditioning for the earthquake preparations and strong deformation in this transitional zone. (3) Evident low-D anomaly in the upper and middle crust in the Lasha terrane and Songpan-Ganzi terrane illustrated the eastward sub-ducted of southeastern Tibet, which could be accounts for the frequent volcano and earthouakes there.
基金supported by National Natural Science Foundation of China(No.11405271)
文摘The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform,parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and "bumpon-tail" profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould(TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution.
基金the financial support provided by the US Army Research Office under grant number W911NF-18-1-0023.
文摘Density-graded cellular materials have tremendous potential in structural applications where impact resistance is required.Cellular materials subjected to high impact loading result in a compaction type deformation,usually modeled using continuum-based shock theory.The resulting governing differential equation of the shock model is nonlinear,and the density gradient further complicates the problem.Earlier studies have employed numerical methods to obtain the solution.In this study,an analytical closed-form solution is proposed to predict the response of density-graded cellular materials subjected to a rigid body impact.Solutions for the velocity of the impinging rigid body mass,energy absorption capacity of the cellular material,and the incident stress are obtained for a single shock propagation.The results obtained are in excellent agreement with the existing numerical solutions found in the literature.The proposed analytical solution can be potentially used for parametric studies and for effectively designing graded structures to mitigate impact.
基金support of the Deutsche Forschungsgemeinschaft(DFG),Grant no.AL 1343/7–1,AL 1343/8–1,Yi 103/3–1。
文摘Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grain boundaries produce a pinning atmosphere that exerts a drag pressure on the boundary motion,which strongly affects the grain growth behavior during annealing.In the current work,the characteristics of grain growth in an annealed Mg-1 wt.%Mn-1 wt.%Nd magnesium alloy were investigated by advanced experimental and modeling techniques.Systematic quasi in-situ orientation mappings with a scanning electron microscope were performed to track the evolution of local and global microstructural characteristics as a function of annealing time.Solute segregation at targeted grain boundaries was measured using three-dimensional atom probe tomography.Level-set computer simulations were carried with different setups of driving forces to explore their contribution to the microstructure development with and without solute drag.The results showed that the favorable growth advantage for some grains leading to a transient stage of abnormal grain growth is controlled by several drivers with varying importance at different stages of annealing.For longer annealing times,residual dislocation density gradients between large and smaller grains are no longer important,which leads to microstructure stability due to predominant solute drag.Local fluctuations in residual dislocation energy and solute concentration near grain boundaries cause different boundary segments to migrate at different rates,which affects the average growth rate of large grains and their evolved shape.
文摘Appropriate semen processing and assessment are critical for successful infertility treatment. We investigated whether laboratory procedures including semen preparation and incubation affect sperm DNA integrity. A total of 153 infertile men were involved. Conventional semen parameters and sperm chromatin structure assay (SCSA) parameters, that is, DNA fragmentation index (%DFI) and high DNA stainability (%HDS), were assessed on the flesh ejaculated semen samples, which were treated and incubated under different conditions. Negative correlations were identified between the %DFI and sperm concentration, motility, progressive motility and morphology. A lower percentage of DFI was detected in spermatozoa when density gradient centrifugation (DGC) was followed by swimup treatment in comparison with DGC alone (P 〈 0.01). Although the %DFI increased in a time-dependent manner with incubation both at room temperature (RT) and at 37℃ in air, the %DFI after 24 h at RT was significantly lower than that at 37℃ (P 〈 0.05). Incubation with 5% CO2 was effective in maintaining sperm motility (P 〈 0.01); however, it induced further elevation of %DFI (P 〈 0.001). Thus, sperm DNA damage was associated with longer incubation periods. Interestingly, common culture conditions, such as maintaining pH and temperature, compromised the sperm DNA integrity.
文摘Caveolae and non-caveolar lipid rafts are two types of membrane lipid microdomains that play important roles in insulin-stimulated glucose uptake in adipocytes. In order to ascertain their specific functions in this process, caveolae were ablated by caveolin-1 RNA interference. In Cav-1 RNAi adipocytes, neither insulin-stimulated glucose uptake nor Glut-4 (glucose transporter 4) translocation to membrane lipid microdomains was affected by the ablation of caveolae. With a modified sucrose density gradient, caveolae and non-caveolar lipid rafts could be separated. In the wild-type 3T3- L l adipocytes, Glut-4 was found to be translocated into both caveolae and non-caveolar lipid rafts. However, in Cav1 RNAi adipocytes, Glut-4 was localized predominantly in non-caveolar lipid rafts. After the removal of insulin, caveolaelocalized Glut-4 was internalized faster than non-caveolar lipid raft-associated Glut-4. The internalization of Glut-4 from plasma membrane was significantly decreased in Cav-1 RNAi adipocytes. These results suggest that insulin-stimulated Glut-4 translocation and glucose uptake are caveolae-independent events. Caveolae play a role in the internalization of Glut-4 from plasma membrane after the removal of insulin.