With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th...With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.展开更多
Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the...Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the equivalent relationship between magnetic anisotropy energy and heat energy;then the relationship between the magnetic anisotropy constant and saturation magnetization is considered.Finally,we formulate a temperature-dependent model for saturation magnetization,revealing the inherent relationship between temperature and saturation magnetization.Our model predicts the saturation magnetization for nine different magnetic metallic materials at different temperatures,exhibiting satisfactory agreement with experimental data.Additionally,the experimental data used as reference points are at or near room temperature.Compared to other phenomenological theoretical models,this model is considerably more accessible than the data required at 0 K.The index included in our model is set to a constant value,which is equal to 10/3 for materials other than Fe,Co,and Ni.For transition metals(Fe,Co,and Ni in this paper),the index is 6 in the range of 0 K to 0.65T_(cr)(T_(cr) is the critical temperature),and 3 in the range of 0.65T_(cr) to T_(cr),unlike other models where the adjustable parameters vary according to each material.In addition,our model provides a new way to design and evaluate magnetic metallic materials with superior magnetic properties over a wide range of temperatures.展开更多
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr...Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.展开更多
This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of t...This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of the product based on the time truncated life test employing theWeibull distribution.The control chart developed supports the examination of the mean lifespan variation for a particular product in the process of manufacturing.Three control limit levels are used:the warning control limit,inner control limit,and outer control limit.Together,they enhance the capability for variation detection.A genetic algorithm can be used for optimization during the in-control process,whereby the optimal parameters can be established for the proposed control chart.The control chart performance is assessed using the average run length,while the influence of the model parameters upon the control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design withmultiple linear regression.A comparative study was conducted based on the out-of-control average run length,in which the developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller samples on average than is the case for existing control charts.Finally,to exhibit the utility of the developed control chart,this paper presents its application using simulated data with parameters drawn from the real set of data.展开更多
Species is a fundamental concept in evolutionary biology and biodiversity.However,existing species definitions are often influenced by artificial factors or are challenging in practical application,leading to confusio...Species is a fundamental concept in evolutionary biology and biodiversity.However,existing species definitions are often influenced by artificial factors or are challenging in practical application,leading to confusion in species classification.Due to uncertain environmental changes and random genetic drift,the fitness expectations of a population may shift,causing species to evolve to a new evolutionary state based on their current instantaneous fitness within a dynamic fitness landscape.This contrasts with the classic static fitness landscape,where fitness expectations are constant.In a dynamic fitness landscape,speciation may exhibit path dependence,where the evolution of traits follows a probabilistic path,creating feedback that shapes evolutionary trajectories.The path-dependent evolutionary mechanism suggests that species survival within an ecosystem is not directly determined by their fitness but by the probability of their evolutionary pathways.This model also indicates that species can coexist with varying probabilities under limited environmental pressures.Consequently,new species,cryptic species,or sympatric species may emerge via path-dependent evolutionary processes.Within this framework,we developed a mathematical species concept,which may guide future species classification methodologies.展开更多
Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boun...Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boundary conditions are made dimensionless using a set of non-dimensional parameters. The governing equations are solved numerically using the finite difference method. Numerical results are obtained for various values of viscosity variation parameter, Prandtl number, magnetic parameter, and conjugate conduction parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and heat transfer rate along the surface.展开更多
The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fu...The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fully backlogged. Fuzzy optimal solution is obtained by considering hexagonal fuzzy numbers and for defuzzification Graded Mean Integration Representation Method. A numerical example is provided for the illustration of crisp and fuzzy, both models. To observe the effect of changes in parameters, sensitivity analysis is carried out.展开更多
This study utilizes the enzyme-substrate complex theory to predict the clinical efficacy of COVID-19 treatments at the biological systems level, using molecular docking stability indicators. Experimental data from the...This study utilizes the enzyme-substrate complex theory to predict the clinical efficacy of COVID-19 treatments at the biological systems level, using molecular docking stability indicators. Experimental data from the Protein Data Bank and molecular structures generated by AlphaFold 3 were used to create macromolecular complex templates. Six templates were developed, including the holo nsp7-nsp8-nsp12 (RNA-dependent RNA polymerase) complex with dsRNA primers (holo-RdRp-RNA). The study evaluated several ligands—Favipiravir-RTP, Remdesivir, Abacavir, Ribavirin, and Oseltamivir—as potential viral RNA polymerase inhibitors. Notably, the first four of these ligands have been clinically employed in the treatment of COVID-19, allowing for comparative analysis. Molecular docking simulations were performed using AutoDock 4, and statistical differences were assessed through t-tests and Mann-Whitney U tests. A review of the literature on COVID-19 treatment outcomes and inhibitors targeting RNA polymerase enzymes was conducted, and the inhibitors were ranked according to their clinical efficacy: Remdesivir > Favipiravir-RTP > Oseltamivir. Docking results obtained from the second and third templates aligned with clinical observations. Furthermore, Abacavir demonstrated a predicted efficacy comparable to Favipiravir-RTP, while Ribavirin exhibited a predicted efficacy similar to that of Remdesivir. This research, focused on inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase, establishes a framework for screening AI-generated drug templates based on clinical outcomes. Additionally, it develops a drug screening platform based on molecular docking binding energy, enabling the evaluation of novel or repurposed drugs and potentially accelerating the drug development process.展开更多
The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA)....The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.展开更多
In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem an...In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.展开更多
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal ...In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal graph.Most GCNs define the graph topology by physical relations of the human joints.However,this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs,resulting in a low recognition rate for specific actions with implicit correlation between joint pairs.In addition,existing methods ignore the trend correlation between adjacent frames within an action and context clues,leading to erroneous action recognition with similar poses.Therefore,this study proposes a learnable GCN based on behavior dependence,which considers implicit joint correlation by constructing a dynamic learnable graph with extraction of specific behavior dependence of joint pairs.By using the weight relationship between the joint pairs,an adaptive model is constructed.It also designs a self-attention module to obtain their inter-frame topological relationship for exploring the context of actions.Combining the shared topology and the multi-head self-attention map,the module obtains the context-based clue topology to update the dynamic graph convolution,achieving accurate recognition of different actions with similar poses.Detailed experiments on public datasets demonstrate that the proposed method achieves better results and realizes higher quality representation of actions under various evaluation protocols compared to state-of-the-art methods.展开更多
A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multi...A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multiple dependent state sampling plan(MDSSP)concepts.Under accelerated conditions,the lifetime of a product follows the Weibull distribution with a known shape parameter,while the scale parameter can be determined using the acceleration factor(AF).The Arrhenius model is used to estimate AF when the damaging process is temperature-sensitive.An economic design of the proposed sampling plan was also considered for the ALT.A genetic algorithm with nonlinear optimization was used to estimate optimal plan parameters to minimize the average sample number(ASN)and total cost of inspection(TC)under both producer’s and consumer’s risks.Numerical results are presented to support the AMDSSP for the ALT,while performance comparisons between the AMDSSP,the MDSSP and a single sampling plan(SSP)for the ALT are discussed.Results indicated that the AMDSSP was more flexible and efficient for ASN and TC than the MDSSP and SSP plans under accelerated conditions.The AMDSSP also had a higher operating characteristic(OC)curve than both the existing sampling plans.Two real datasets of electronic devices for the ALT at high temperatures demonstrated the practicality and usefulness of the proposed sampling plan.展开更多
In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the d...In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the density,it is proven that the system is exactly locally controllable to a constant target trajectory by using boundary control functions.展开更多
Understanding of the heat transport within living biological tissues is crucial to effective heat treatments. The heat transport properties of living biological tissues with temperature-dependent properties are explor...Understanding of the heat transport within living biological tissues is crucial to effective heat treatments. The heat transport properties of living biological tissues with temperature-dependent properties are explored in this paper. Taking into account of variable physical properties, the governing equation of temperature is first derived in the context of the dualphase-lags model(DPL). An effective method, according to the Laplace transform and a linearization technique, is then employed to solve this nonlinear governing equation. The temperature distribution of a biological tissue exposed to a pulsed heat flux on its exterior boundary, which frequently happens in various heat treatments, is predicted and analyzed. The results state that a lower temperature can be predicted when temperature dependence is considered in the heating process.The contributions of key thermal parameters are different and dependent on the ratio of phase lag and the amplitude of the exterior pulsed heat flux.展开更多
Dependent competing risks model is a practical model in the analysis of lifetime and failure modes.The dependence can be captured using a statistical tool to explore the re-lationship among failure causes.In this pape...Dependent competing risks model is a practical model in the analysis of lifetime and failure modes.The dependence can be captured using a statistical tool to explore the re-lationship among failure causes.In this paper,an Archimedean copula is chosen to describe the dependence in a constant-stress accelerated life test.We study the Archimedean copula based dependent competing risks model using parametric and nonparametric methods.The parametric likelihood inference is presented by deriving the general expression of likelihood function based on assumed survival Archimedean copula associated with the model parameter estimation.Combining the nonparametric estimation with progressive censoring and the non-parametric copula estimation,we introduce a nonparametric reliability estimation method given competing risks data.A simulation study and a real data analysis are conducted to show the performance of the estimation methods.展开更多
In this article we improve a goodness-of-fit test, of the Kolmogorov-Smirnov type, for equally distributed- but not stationary-strongly dependent data. The test is based on the asymptotic behavior of the empirical pro...In this article we improve a goodness-of-fit test, of the Kolmogorov-Smirnov type, for equally distributed- but not stationary-strongly dependent data. The test is based on the asymptotic behavior of the empirical process, which is much more complex than in the classical case. Applications to simulated data and discussion of the obtained results are provided. This is, to the best of our knowledge, the first result providing a general goodness of fit test for non-weakly dependent data.展开更多
We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phas...We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phase transition behaviors and parameter thresholds of this model under random attacks are analyzed theoretically on both random regular(RR)networks and Erd¨os-Renyi(ER)networks,and computer simulations are performed to verify the results.In this EINDDL model,a fractionβof connectivity links within network B depends on network A and a fraction(1-β)of connectivity links within network A depends on network B.It is found that randomly removing a fraction(1-p)of connectivity links in network A at the initial state,network A exhibits different types of phase transitions(first order,second order and hybrid).Network B is rarely affected by cascading failure whenβis small,and network B will gradually converge from the first-order to the second-order phase transition asβincreases.We present the critical values ofβfor the phase change process of networks A and B,and give the critical values of p andβfor network B at the critical point of collapse.Furthermore,a cascading prevention strategy is proposed.The findings are of great significance for understanding the robustness of EINDDLs.展开更多
In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results a...In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results apply to all nonlinear scalar conservation laws and to nonlinear hyperbolic systems of two equations.展开更多
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.
基金Project supported by the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0391)。
文摘Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the equivalent relationship between magnetic anisotropy energy and heat energy;then the relationship between the magnetic anisotropy constant and saturation magnetization is considered.Finally,we formulate a temperature-dependent model for saturation magnetization,revealing the inherent relationship between temperature and saturation magnetization.Our model predicts the saturation magnetization for nine different magnetic metallic materials at different temperatures,exhibiting satisfactory agreement with experimental data.Additionally,the experimental data used as reference points are at or near room temperature.Compared to other phenomenological theoretical models,this model is considerably more accessible than the data required at 0 K.The index included in our model is set to a constant value,which is equal to 10/3 for materials other than Fe,Co,and Ni.For transition metals(Fe,Co,and Ni in this paper),the index is 6 in the range of 0 K to 0.65T_(cr)(T_(cr) is the critical temperature),and 3 in the range of 0.65T_(cr) to T_(cr),unlike other models where the adjustable parameters vary according to each material.In addition,our model provides a new way to design and evaluate magnetic metallic materials with superior magnetic properties over a wide range of temperatures.
基金the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.
文摘Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.
基金the Science,Research and Innovation Promotion Funding(TSRI)(Grant No.FRB660012/0168)managed under Rajamangala University of Technology Thanyaburi(FRB66E0646O.4).
文摘This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of the product based on the time truncated life test employing theWeibull distribution.The control chart developed supports the examination of the mean lifespan variation for a particular product in the process of manufacturing.Three control limit levels are used:the warning control limit,inner control limit,and outer control limit.Together,they enhance the capability for variation detection.A genetic algorithm can be used for optimization during the in-control process,whereby the optimal parameters can be established for the proposed control chart.The control chart performance is assessed using the average run length,while the influence of the model parameters upon the control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design withmultiple linear regression.A comparative study was conducted based on the out-of-control average run length,in which the developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller samples on average than is the case for existing control charts.Finally,to exhibit the utility of the developed control chart,this paper presents its application using simulated data with parameters drawn from the real set of data.
基金supported by the NSFC-Yunnan United fund(U2102221)National Natural Science Foundation of China(32171482)。
文摘Species is a fundamental concept in evolutionary biology and biodiversity.However,existing species definitions are often influenced by artificial factors or are challenging in practical application,leading to confusion in species classification.Due to uncertain environmental changes and random genetic drift,the fitness expectations of a population may shift,causing species to evolve to a new evolutionary state based on their current instantaneous fitness within a dynamic fitness landscape.This contrasts with the classic static fitness landscape,where fitness expectations are constant.In a dynamic fitness landscape,speciation may exhibit path dependence,where the evolution of traits follows a probabilistic path,creating feedback that shapes evolutionary trajectories.The path-dependent evolutionary mechanism suggests that species survival within an ecosystem is not directly determined by their fitness but by the probability of their evolutionary pathways.This model also indicates that species can coexist with varying probabilities under limited environmental pressures.Consequently,new species,cryptic species,or sympatric species may emerge via path-dependent evolutionary processes.Within this framework,we developed a mathematical species concept,which may guide future species classification methodologies.
文摘Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boundary conditions are made dimensionless using a set of non-dimensional parameters. The governing equations are solved numerically using the finite difference method. Numerical results are obtained for various values of viscosity variation parameter, Prandtl number, magnetic parameter, and conjugate conduction parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and heat transfer rate along the surface.
文摘The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fully backlogged. Fuzzy optimal solution is obtained by considering hexagonal fuzzy numbers and for defuzzification Graded Mean Integration Representation Method. A numerical example is provided for the illustration of crisp and fuzzy, both models. To observe the effect of changes in parameters, sensitivity analysis is carried out.
文摘This study utilizes the enzyme-substrate complex theory to predict the clinical efficacy of COVID-19 treatments at the biological systems level, using molecular docking stability indicators. Experimental data from the Protein Data Bank and molecular structures generated by AlphaFold 3 were used to create macromolecular complex templates. Six templates were developed, including the holo nsp7-nsp8-nsp12 (RNA-dependent RNA polymerase) complex with dsRNA primers (holo-RdRp-RNA). The study evaluated several ligands—Favipiravir-RTP, Remdesivir, Abacavir, Ribavirin, and Oseltamivir—as potential viral RNA polymerase inhibitors. Notably, the first four of these ligands have been clinically employed in the treatment of COVID-19, allowing for comparative analysis. Molecular docking simulations were performed using AutoDock 4, and statistical differences were assessed through t-tests and Mann-Whitney U tests. A review of the literature on COVID-19 treatment outcomes and inhibitors targeting RNA polymerase enzymes was conducted, and the inhibitors were ranked according to their clinical efficacy: Remdesivir > Favipiravir-RTP > Oseltamivir. Docking results obtained from the second and third templates aligned with clinical observations. Furthermore, Abacavir demonstrated a predicted efficacy comparable to Favipiravir-RTP, while Ribavirin exhibited a predicted efficacy similar to that of Remdesivir. This research, focused on inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase, establishes a framework for screening AI-generated drug templates based on clinical outcomes. Additionally, it develops a drug screening platform based on molecular docking binding energy, enabling the evaluation of novel or repurposed drugs and potentially accelerating the drug development process.
文摘The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.
文摘In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
基金supported in part by the 2023 Key Supported Project of the 14th Five Year Plan for Education and Science in Hunan Province with No.ND230795.
文摘In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal graph.Most GCNs define the graph topology by physical relations of the human joints.However,this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs,resulting in a low recognition rate for specific actions with implicit correlation between joint pairs.In addition,existing methods ignore the trend correlation between adjacent frames within an action and context clues,leading to erroneous action recognition with similar poses.Therefore,this study proposes a learnable GCN based on behavior dependence,which considers implicit joint correlation by constructing a dynamic learnable graph with extraction of specific behavior dependence of joint pairs.By using the weight relationship between the joint pairs,an adaptive model is constructed.It also designs a self-attention module to obtain their inter-frame topological relationship for exploring the context of actions.Combining the shared topology and the multi-head self-attention map,the module obtains the context-based clue topology to update the dynamic graph convolution,achieving accurate recognition of different actions with similar poses.Detailed experiments on public datasets demonstrate that the proposed method achieves better results and realizes higher quality representation of actions under various evaluation protocols compared to state-of-the-art methods.
基金This research was supported by The Science,Research and Innovation Promotion Funding(TSRI)(Grant No.FRB650070/0168)This research block grants was managed under Rajamangala University of Technology Thanyaburi(FRB65E0634M.3).
文摘A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multiple dependent state sampling plan(MDSSP)concepts.Under accelerated conditions,the lifetime of a product follows the Weibull distribution with a known shape parameter,while the scale parameter can be determined using the acceleration factor(AF).The Arrhenius model is used to estimate AF when the damaging process is temperature-sensitive.An economic design of the proposed sampling plan was also considered for the ALT.A genetic algorithm with nonlinear optimization was used to estimate optimal plan parameters to minimize the average sample number(ASN)and total cost of inspection(TC)under both producer’s and consumer’s risks.Numerical results are presented to support the AMDSSP for the ALT,while performance comparisons between the AMDSSP,the MDSSP and a single sampling plan(SSP)for the ALT are discussed.Results indicated that the AMDSSP was more flexible and efficient for ASN and TC than the MDSSP and SSP plans under accelerated conditions.The AMDSSP also had a higher operating characteristic(OC)curve than both the existing sampling plans.Two real datasets of electronic devices for the ALT at high temperatures demonstrated the practicality and usefulness of the proposed sampling plan.
基金partially supported by the National Science Foundation of China(11971320,11971496)the National Key R&D Program of China(2020YFA0712500)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010530)。
文摘In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the density,it is proven that the system is exactly locally controllable to a constant target trajectory by using boundary control functions.
基金Project supported by the National Science Foundation of China (Grant Nos.51676086 and 51575247)。
文摘Understanding of the heat transport within living biological tissues is crucial to effective heat treatments. The heat transport properties of living biological tissues with temperature-dependent properties are explored in this paper. Taking into account of variable physical properties, the governing equation of temperature is first derived in the context of the dualphase-lags model(DPL). An effective method, according to the Laplace transform and a linearization technique, is then employed to solve this nonlinear governing equation. The temperature distribution of a biological tissue exposed to a pulsed heat flux on its exterior boundary, which frequently happens in various heat treatments, is predicted and analyzed. The results state that a lower temperature can be predicted when temperature dependence is considered in the heating process.The contributions of key thermal parameters are different and dependent on the ratio of phase lag and the amplitude of the exterior pulsed heat flux.
基金Supported by the National Natural Science Foundation of China(12101476,12061091,11901134)the Fundamental Research Funds for the Central Universities(ZYTS23054,QTZX22054)+1 种基金the Yunnan Funda-mental Research Projects(202101AT070103)the Natural Science Basic Research Program of Shaanxi Province(2020JQ-285).
文摘Dependent competing risks model is a practical model in the analysis of lifetime and failure modes.The dependence can be captured using a statistical tool to explore the re-lationship among failure causes.In this paper,an Archimedean copula is chosen to describe the dependence in a constant-stress accelerated life test.We study the Archimedean copula based dependent competing risks model using parametric and nonparametric methods.The parametric likelihood inference is presented by deriving the general expression of likelihood function based on assumed survival Archimedean copula associated with the model parameter estimation.Combining the nonparametric estimation with progressive censoring and the non-parametric copula estimation,we introduce a nonparametric reliability estimation method given competing risks data.A simulation study and a real data analysis are conducted to show the performance of the estimation methods.
文摘In this article we improve a goodness-of-fit test, of the Kolmogorov-Smirnov type, for equally distributed- but not stationary-strongly dependent data. The test is based on the asymptotic behavior of the empirical process, which is much more complex than in the classical case. Applications to simulated data and discussion of the obtained results are provided. This is, to the best of our knowledge, the first result providing a general goodness of fit test for non-weakly dependent data.
基金the National Natural Science Foundation of China(Grant Nos.61973118,51741902,11761033,12075088,and 11835003)Project in JiangXi Province Department of Science and Technology(Grant Nos.20212BBE51010 and 20182BCB22009)the Natural Science Foundation of Zhejiang Province(Grant No.Y22F035316)。
文摘We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phase transition behaviors and parameter thresholds of this model under random attacks are analyzed theoretically on both random regular(RR)networks and Erd¨os-Renyi(ER)networks,and computer simulations are performed to verify the results.In this EINDDL model,a fractionβof connectivity links within network B depends on network A and a fraction(1-β)of connectivity links within network A depends on network B.It is found that randomly removing a fraction(1-p)of connectivity links in network A at the initial state,network A exhibits different types of phase transitions(first order,second order and hybrid).Network B is rarely affected by cascading failure whenβis small,and network B will gradually converge from the first-order to the second-order phase transition asβincreases.We present the critical values ofβfor the phase change process of networks A and B,and give the critical values of p andβfor network B at the critical point of collapse.Furthermore,a cascading prevention strategy is proposed.The findings are of great significance for understanding the robustness of EINDDLs.
文摘In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results apply to all nonlinear scalar conservation laws and to nonlinear hyperbolic systems of two equations.