期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Driving lithium to deposit inside structured lithium metal anodes:A phase field model 被引量:3
1
作者 Rui Zhang Xin Shen +3 位作者 Hao-Tian Ju Jun-Dong Zhang Yu-Tong Zhang Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期285-291,I0007,共8页
Lithium metal anode is one of the most important anode materials for next-generation high-specificenergy secondary batteries.Structured lithium metal anodes have received extensive attention in the development of prac... Lithium metal anode is one of the most important anode materials for next-generation high-specificenergy secondary batteries.Structured lithium metal anodes have received extensive attention in the development of practical lithium metal batteries.Methods of driving lithium metal to deposit inside the pores of structured lithium metal anodes have always been one of the most concerned issues,especially for highly conductive frameworks.An electrochemical phase field theory with galvanostatic lithium plating process is employed in this work,the mechanism that illustrates the preference of lithium metal to deposit at the top of the framework structure has been revealed,and through the simulation analysis of various regulating strategies,the strategies that can efficiently drive lithium to deposit inside structured pores are summarized.This work presents the theoretical calculation and analysis methods that can be used for the rational design of lithium metal batteries. 展开更多
关键词 Lithium metal batteries Lithium metal anodes Phase field theory Finite element method deposition sites Gradient design Diffusion coefficient
下载PDF
A robust interface enabled by electrospun membrane with optimal resistance in lithium metal batteries 被引量:1
2
作者 Chen Dong Zhenkang Lin +7 位作者 Yuxin Yin Yaoxuan Qiao Wei Wang Qibing Wu Chengxiang Yang David Rooney Cheng Fan Kening Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期1-9,共9页
A uniform diffusion layer is essential for non-dendritic deposition of lithium in high-density lithium batteries.However,natural pristine solid electrolyte interface(SEI)is always porous and inhomogeneous because of r... A uniform diffusion layer is essential for non-dendritic deposition of lithium in high-density lithium batteries.However,natural pristine solid electrolyte interface(SEI)is always porous and inhomogeneous because of repeated breakdown and repair cycles,whereas ideal materials with excellent mechanical property for artificial SEIs remain a challenge.Herein,a robust and stable interface is achieved by spinning soft polymer associated with few MoO_(3) into fibers,and thus mechanical property of fibers other than materials determines mechanical performance of the interface which can be optimized by adjusting parameters.Furthermore,lithium deposited underneath the layer is enabled by constructing an optimal resistance to make the membrane serve as an artificial SEI rather than lithium host.As a result,dendritefree lithium was observed underneath the membrane,and stable interface for long-term cycling was also indicated by EIS measurements.The lithium iron phosphate(LiFePO_(4))full-cell with coated electrode demonstrated an initial capacity of 155.2 m Ah g^(-1),and 80%of its original capacity was retained after 500 cycles at 2.0℃ without any additive in carbonate-based electrolyte. 展开更多
关键词 Lithium metal battery Dendrite-free Interfacial stability Uniform diffusion layer deposition site
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部