期刊文献+
共找到210篇文章
< 1 2 11 >
每页显示 20 50 100
Alterations of sleep deprivation on brain function:A coordinatebased resting-state functional magnetic resonance imaging metaanalysis
1
作者 Qin Zhang Yong-Zhe Hou +6 位作者 Hui Ding Yan-Ping Shu Jing Li Xi-Zhao Chen Jia-Lin Li Qin Lou Dai-Xing Wang 《World Journal of Psychiatry》 SCIE 2024年第2期315-329,共15页
BACKGROUND Sleep deprivation is a prevalent issue that impacts cognitive function.Although numerous neuroimaging studies have explored the neural correlates of sleep loss,inconsistencies persist in the reported result... BACKGROUND Sleep deprivation is a prevalent issue that impacts cognitive function.Although numerous neuroimaging studies have explored the neural correlates of sleep loss,inconsistencies persist in the reported results,necessitating an investigation into the consistent brain functional changes resulting from sleep loss.AIM To establish the consistency of brain functional alterations associated with sleep deprivation through systematic searches of neuroimaging databases.Two metaanalytic methods,signed differential mapping(SDM)and activation likelihood estimation(ALE),were employed to analyze functional magnetic resonance imaging(fMRI)data.METHODS A systematic search performed according to PRISMA guidelines was conducted across multiple databases through July 29,2023.Studies that met specific inclusion criteria,focused on healthy subjects with acute sleep deprivation and reported whole-brain functional data in English were considered.A total of 21 studies were selected for SDM and ALE meta-analyses.RESULTS Twenty-one studies,including 23 experiments and 498 subjects,were included.Compared to pre-sleep deprivation,post-sleep deprivation brain function was associated with increased gray matter in the right corpus callosum and decreased activity in the left medial frontal gyrus and left inferior parietal lobule.SDM revealed increased brain functional activity in the left striatum and right central posterior gyrus and decreased activity in the right cerebellar gyrus,left middle frontal gyrus,corpus callosum,and right cuneus.CONCLUSION This meta-analysis consistently identified brain regions affected by sleep deprivation,notably the left medial frontal gyrus and corpus callosum,shedding light on the neuropathology of sleep deprivation and offering insights into its neurological impact. 展开更多
关键词 Sleep deprivation Resting-state-functional magnetic resonance imaging Activation likelihood estimation-meta Signed differential mapping-meta
下载PDF
Overexpression of Sirt6 ameliorates sleep deprivation induced-cognitive impairment by modulating glutamatergic neuron function 被引量:1
2
作者 Jinpiao Zhu Chang Chen +15 位作者 Zhen Li Xiaodong Liu Jingang He Ziyue Zhao Mengying He Binbin Nie Zili Liu Yingying Chen Kuanpin Su Xiang Li Juxiang Chen Hongbing Xiang Fuqiang Xu Kangguang Lin Zongze Zhang Jie Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2449-2458,共10页
Sleep benefits the restoration of energy metabolism and thereby suppo rts neuronal plasticity and cognitive behaviors.Sirt6 is a NAD+-dependent protein deacetylase that has been recognized as an essential regulator of... Sleep benefits the restoration of energy metabolism and thereby suppo rts neuronal plasticity and cognitive behaviors.Sirt6 is a NAD+-dependent protein deacetylase that has been recognized as an essential regulator of energy metabolism because it modulates various transcriptional regulators and metabolic enzymes.The aim of this study was to investigate the influence of Sirt6 on cerebral function after chronic sleep deprivation(CSD).We assigned C57BL/6J mice to control or two CSD groups and subjected them to AAV2/9-CMV-EGFP or AAV2/9-CMV-Sirt6-EGFP infection in the prelimbic cortex(PrL).We then assessed cerebral functional connectivity(FC) using resting-state functional MRI,neuron/astrocyte metabolism using a metabolic kinetics analysis;dendritic spine densities using sparse-labeling;and miniature excitato ry postsynaptic currents(mEPSCs) and action potential(AP) firing rates using whole-cell patchclamp recordings.In addition,we evaluated cognition via a comprehensive set of behavioral tests.Compared with controls,Sirt6 was significantly decreased(P<0.05) in the PrL after CSD,accompanied by cognitive deficits and decreased FC between the PrL and accumbens nucleus,piriform cortex,motor co rtex,somatosensory co rtex,olfactory tubercle,insular cortex,and cerebellum.Sirt6 ove rexpression reve rsed CSD-induced cognitive impairment and reduced FC.Our analysis of metabolic kinetics using [1-13C] glucose and [2-13C] acetate showed that CSD reduced neuronal Glu4and GABA2synthesis,which could be fully restored via forced Sirt6 expression.Furthermore,Sirt6 ove rexpression reversed CSD-induced decreases in AP firing rates as well as the frequency and amplitude of mEPSCs in PrL pyramidal neurons.These data indicate that Sirt6 can improve cognitive impairment after CSD by regulating the PrL-associated FC network,neuronal glucose metabolism,and glutamatergic neurotransmission.Thus,Sirt6 activation may have potential as a novel strategy for treating sleep disorder-related diseases. 展开更多
关键词 chronic sleep deprivation cognitive impairment functional connectivity glutamatergic neurons metabolic kinetics neuronal-astrocytic glucose metabolism prelimbic cortex REM sleep Sirt6 synaptic function
下载PDF
Neuroprotective effects of neural stem cells pretreated with neuregulin1β on PC12 cells exposed to oxygen-glucose deprivation/reoxygenation 被引量:1
3
作者 Qiu-Yue Zhai Yuan-Hua Ye +4 位作者 Yu-Qian Ren Zhen-Hua Song Ke-Li Ge Bao-He Cheng Yun-Liang Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期618-625,共8页
Studies on ischemia/reperfusion(I/R)injury suggest that exogenous neural stem cells(NSCs)are ideal candidates for stem cell therapy reperfusion injury.However,NSCs are difficult to obtain owing to ethical limitations.... Studies on ischemia/reperfusion(I/R)injury suggest that exogenous neural stem cells(NSCs)are ideal candidates for stem cell therapy reperfusion injury.However,NSCs are difficult to obtain owing to ethical limitations.In addition,the survival,differentiation,and proliferation rates of transplanted exogenous NSCs are low,which limit their clinical application.Our previous study showed that neuregulin1β(NRG1β)alleviated cerebral I/R injury in rats.In this study,we aimed to induce human umbilical cord mesenchymal stem cells into NSCs and investigate the improvement effect and mechanism of NSCs pretreated with 10 nM NRG1βon PC12 cells injured by oxygen-glucose deprivation/reoxygenation(OGD/R).Our results found that 5 and 10 nM NRG1βpromoted the generation and proliferation of NSCs.Co-culture of NSCs and PC12 cells under condition of OGD/R showed that pretreatment of NSCs with NRG1βimproved the level of reactive oxygen species,malondialdehyde,glutathione,superoxide dismutase,nicotinamide adenine dinucleotide phosphate,and nuclear factor erythroid 2-related factor 2(Nrf2)and mitochondrial damage in injured PC12 cells;these indexes are related to ferroptosis.Research has reported that p53 and solute carrier family 7 member 11(SLC7A11)play vital roles in ferroptosis caused by cerebral I/R injury.Our data show that the expression of p53 was increased and the level of glutathione peroxidase 4(GPX4)was decreased after RNA interference-mediated knockdown of SLC7A11 in PC12 cells,but this change was alleviated after co-culturing NSCs with damaged PC12 cells.These findings suggest that NSCs pretreated with NRG1βexhibited neuroprotective effects on PC12 cells subjected to OGD/R through influencing the level of ferroptosis regulated by p53/SLC7A11/GPX4 pathway. 展开更多
关键词 ferroptosis p53 SLC7A11 GPX4 human umbilical cord-mesenchymal stem cells neural stem cells neuregulin1β NEUROPROTECTION oxygen-glucose deprivation/reoxygenation PC12 cell
下载PDF
Salidroside attenuates oxygen and glucose deprivation-induced neuronal injury by inhibiting ferroptosis
4
作者 Ying-Zhi Li Ai-Ping Wu +2 位作者 Dan-Dan Wang Pan-Pan Yang Bin Sheng 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2023年第2期70-79,共10页
Objective: To evaluate the effect of salidroside on oxygen and glucose deprivation(OGD)-treated NT2 cells and its underlying mechanisms of action.Methods: Retinoic acid was used to induce the differentiation of NT2 ce... Objective: To evaluate the effect of salidroside on oxygen and glucose deprivation(OGD)-treated NT2 cells and its underlying mechanisms of action.Methods: Retinoic acid was used to induce the differentiation of NT2 cells into neurons. The effects of salidroside on survival, apoptosis, inflammatory response, and oxidative stress of neurons undergoing OGD were evaluated. Using precursor cells as controls, the effect of salidroside on the differentiation progression of OGDtreated cells was evaluated. In addition, the effect of erastin, a ferroptosis inducer, on NT2 cells was examined to investigate the underlying mechanisms of neuroprotective action of salidroside.Results: Salidroside alleviated the effects of OGD on neuronal survival, apoptosis, inflammation, and oxidative stress, and promoted NT2 cell differentiation. Moreover, salidroside prevented ferroptosis of OGD-treated cells, which was abolished following erastin treatment, indicating that ferroptosis mediated the regulatory pathway of salidroside.Conclusions: Salidroside attenuates OGD-induced neuronal injury by inhibiting ferroptosis and promotes neuronal differentiation. 展开更多
关键词 SALIDROSIDE Rhodiola rosea Ferroptosis Oxygen and glucose deprivation Neuronal differentiation Ischemic stroke
下载PDF
Local digital lending development and the incidence of deprivation in Kenya
5
作者 Godsway Korku Tetteh 《Financial Innovation》 2023年第1期2856-2881,共26页
In the developing world,vulnerable communities often lack access to regular income sources to cope with unforeseen events.Recent advancements in financial technology have enabled microcredit to be delivered via digita... In the developing world,vulnerable communities often lack access to regular income sources to cope with unforeseen events.Recent advancements in financial technology have enabled microcredit to be delivered via digital platforms.Although digital credit may quicken remote access to consumer credit without the need for collateral,little is known about its contribution to the welfare of underserved communities.This study examines the effects of local digital lending development on deprivation and explores the implications of these effects on rural inhabitants.The results show a negative association between local digital lending development and food deprivation on one hand and health deprivation on the other.The evidence suggests that local digital lending development can reduce the probability of food and health deprivation.Furthermore,the evidence reveals that inhabitants of rural communities benefit more from digital lending development.This study recommends the decentralization of financial inclusion policies as a pathway to promote digital lending at the local level. 展开更多
关键词 MICROFINANCE Fintech Digital lending deprivation
下载PDF
Protective effect of ginsenoside Rg1 on 661W cells exposed to oxygen-glucose deprivation/reperfusion via keap1/nrf2 pathway
6
作者 Ming Zhou Xin-Qi Ma +4 位作者 Yi-Yu Xie Jia-Bei Zhou Xie-Lan Kuang Huang-Xuan Shen Chong-De Long 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第7期1026-1033,共8页
AIM:To construct an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R)induced injury to the optic nerve and to study the oxidative damage mechanism of ischemia-reperfusion(I/R)injury in 661W cells and the... AIM:To construct an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R)induced injury to the optic nerve and to study the oxidative damage mechanism of ischemia-reperfusion(I/R)injury in 661W cells and the protective effect of ginsenoside Rg1.METHODS:The 661W cells were treated with different concentrations of Na2S2O4 to establish OGD/R model in vitro.Apoptosis,intracellular reactive oxygen species(ROS)levels and superoxide dismutase(SOD)levels were measured at different time points during the reperfusion injury process.The injury model was pretreated with graded concentrations of ginsenoside Rg1.Real-time polymerase chain reaction(PCR)was used to measure the expression levels of cytochrome C(cyt C)/B-cell lymphoma-2(Bcl2)/Bcl2 associated protein X(Bax),heme oxygenase-1(HO-1),caspase9,nuclear factor erythroid 2-related factor 2(nrf2),kelch-like ECH-associated protein 1(keap1)and other genes.Western blot was used to detect the expression of nrf2,phosphorylated nrf2(pnrf2)and keap1 protein levels.RESULTS:Compared to the untreated group,the cell activity of 661W cells treated with Na2S2O4 for 6 and 8h decreased(P<0.01).Additionally,the ROS content increased and SOD levels decreased significantly(P<0.01).In contrast,treatment with ginsenoside Rg1 reversed the cell viability and SOD levels in comparison to the Na_(2)S_(2)O_(4)treated group(P<0.01).Moreover,Rg1 reduced the levels of caspase3,caspase9,and cyt C,while increasing the Bcl2/Bax level.These differences were all statistically significant(P<0.05).Western blot analysis showed no significant difference in the protein expression levels of keap1 and nrf2 with Rg1 treatment,however,Rg1 significantly increased the ratio of pnrf2/nrf2 protein expression compared to the Na_(2)S_(2)O_(4)treated group(P<0.001).CONCLUSION:The OGD/R process is induced in 661W cells using Na_(2)S_(2)O_(4).Rg1 inhibits OGD/R-induced oxidative damage and alleviates the extent of apoptosis in 661W cells through the keap1/nrf2 pathway.These results suggest a potential protective effect of Rg1 against retinal I/R injury. 展开更多
关键词 oxygen-glucose deprivation/reoxygenation ginsenoside Rg1 oxidative stress phosphorylated nrf2
原文传递
Establishment of oxygen glucose deprivation reperfusion model of senescent SH-SY5Y cells
7
作者 ZHANG Qiao-tian JIANG Chang-yue +3 位作者 ZHU GE Xiang-zhen LI De-li HU Wan-Xiang XIE Lu 《Journal of Hainan Medical University》 CAS 2023年第6期1-7,共7页
Obejective:To explore the establishment of an oxygen glucose deprivation/reperfusion model of senescent SH-SY5Y cells.Methods:SH-SY5Y cells were randomly divided into control(D-galactose 0 mmol/L group),D-galactose(25... Obejective:To explore the establishment of an oxygen glucose deprivation/reperfusion model of senescent SH-SY5Y cells.Methods:SH-SY5Y cells were randomly divided into control(D-galactose 0 mmol/L group),D-galactose(25 mmol/L,50 mmol/L,100 mmol/L,200 mmol/L,400 mmol/L)groups,and treated with corresponding concentrations of D-galactose for 48 h.The changes of cell morphology,β-galactosidase,the cell morphology,β-galactosidase activity by microscopic observation,cell proliferation rate by EdU kit and cell survival rate by CCK-8 assay were used to determine the decaying concentration of D-galactose and to establish the senescence model.The senescent SH-SY5Y cells were randomly divided into control group(oxygen glucose deprivation without treatment group),oxygen glucose deprivation treatment(0.5 h,1 h,1.5 h,2 h)group,followed by re-glucose reoxygenation for 24 h,and CCK-8 assay for the survival rate of senescent SH-SY5Y cells.Results:There were no significant changes in cell morphology and β-gal activity in the 25 mmol/L and 50 mmol/L groups compared with the control group(P>0.05),cytosolic hypertrophy was seen in the cells of the 100 mmol/L group,chromatin fixation in the cells of the 200 mmol/L group,and massive vacuolization in the cells of the 400 mmol/L group;the positive rate ofβ-galactosidase staining in the cells of the(100-400 mmol/L)group was significantly higher compared with the control group(P<0.05),with little difference between the 100 mmol/L and 200 mmol/L groups(P>0.05);the cell proliferation ability of the(100-400 mmol/L)group was significantly decreased in a concentration-dependent manner(P<0.05);the cell survival rate was decreased in a concentration-dependent manner(P<0.05),with IC_(50) between 100 mmol/L and 200 mmol/L.The survival of senescent SH-SY5Y cells showed a time-dependent decrease in oxygen-glucose deprivation(P<0.05),with an IC_(50) close to 1 h.Conclusion:D-gal concentration of 100 mmoL/L and 48 h of cell action could establish a survival rate of about 50%of senescent SH-SY5Y cells,and oxygen glucose deprivation of senescent SH-SY5Y cells for 1 h and reperfusion for 24 h could establish an oxygen glucose deprivation/reperfusion model of senescent SH-SY5Y cells with a survival rate close to 50%. 展开更多
关键词 Cerebral ischemia-reperfusion injury Oxygen glucose deprivation reperfusion AGING D-GALACTOSE SH-SY5Y cell
下载PDF
Intermittent androgen deprivation therapy in patients with prostate cancer: Connecting the dots 被引量:1
8
作者 Per-Anders Abrahamsson 《Asian Journal of Urology》 2017年第4期208-222,共15页
Intermittent androgen deprivation therapy(IADT)is now being increasingly opted by the treating physicians and patients with prostate cancer.The most common reason driving this is the availability of an off-treatment p... Intermittent androgen deprivation therapy(IADT)is now being increasingly opted by the treating physicians and patients with prostate cancer.The most common reason driving this is the availability of an off-treatment period to the patients that provides some relief from treatment-related side-effects,and reduced treatment costs.IADT may also delay the progression to castration-resistant prostate cancer.However,the use of IADT in the setting of prostate cancer has not been strongly substantiated by data from clinical trials.Multiple factors seem to contribute towards this inadequacy of supportive data for the use of IADT in patients with prostate cancer,e.g.,population characteristics(both demographic and clinical),study design,treatment regimen,on-and off-treatment criteria,duration of active treatment,endpoints,and analysis.The present review article focuses on seven clinical trials that evaluated the efficacy of IADT vs.continuous androgen deprivation therapy for the treatment of prostate cancer.The results from these clinical trials have been discussed in light of the factors that may impact the treatment outcomes,especially the disease(tumor)burden.Based on evidence,potential candidate population for IADT has been suggested along with recommendations for the use of IADT in patients with prostate cancer. 展开更多
关键词 Continuous androgen deprivation therapy Intermittent androgen deprivation therapy Prostate cancer Study designs and outcomes Tumor burden
下载PDF
Sleep deprivation increase the expression of inducible heat shock protein 70 in rat gastric mucosa 被引量:14
9
作者 Xi-Zhong Shen Marcel W.L. Koo Chi-Hin Cho Department of Gastroenterology,Zhongshan Hospital,Fudan University,136 Yixueyuan Road,Shanghai 200032,ChinaDepartment of Pharmacology.Faculty of Medicine,University of Hong Kong,5 Sassoon Road,Pokfulam,Hong Kong,ChinaSupported by .Dr.Marcel W.L.Koo,Department of Pharmacology,FacuLty of Medicine,the University of Hong Kong,5 Sassoon Road,Hong Kong,China.Wlkoo@hkusua.hku.hk 《World Journal of Gastroenterology》 SCIE CAS CSCD 2001年第4期496-499,共4页
AIM To .investigate if sleep deprivation is able to increase the expression of inducible heat shock protein 70 in gastric mucosa and its possible role in mucosal defense.METHODS Rats for sleep disruption were placed i... AIM To .investigate if sleep deprivation is able to increase the expression of inducible heat shock protein 70 in gastric mucosa and its possible role in mucosal defense.METHODS Rats for sleep disruption were placed inside a computerized rotating drum, gastric mucosa was taken from rats with 1, 3 and 7 d sleep deprivation. RT-PCR,immunohistochemistry and Western blotting were used to determine the expression of heat shock protein 70.Ethanol (500 mL@ L 1, I.g.) was used to induce gastric muceea damage.RESULTS RT-PCR, Western blotting and immunostaining confirmed that the sleep deprivation as a stress resulted in significantly greater expression of inducible heat shock protein 70 in gastric mucosa of rats. After the 500mL@ L-1 ethanol challenge, the ulcer area found in the rats with 7 d sleep deprivation (19.15 ± 4.2) mm2 was significantly lower (P<0.01) than the corresponding control (53.7 ± 8.1) mm2.CONCLUSION Sleep deprivation as a stress, in addition to lowering the gastric mucosal barrier, is able to stimulate the expression of inducible heat shock protein 70 in gastric mucosa of rats, the heat shock protein 70 may play an important role in gastric mucosal protection. 展开更多
关键词 SLEEP deprivation heat shock proteins 70/biosynthesis GASTRIC MUCOSA rats
下载PDF
Hyodeoxycholic acid protects the neurovascular unit against oxygen-glucose deprivation and reoxygenation-induced injury in vitro 被引量:13
10
作者 Chang-Xiang Li Xue-Qian Wang +3 位作者 Fa-Feng Cheng Xin Yan Juan Luo Qing-Guo Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第11期1941-1949,共9页
Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid(HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin an... Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid(HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin and jas-minoidin, HDCA prevents hypoxia-reoxygenation-induced brain injury by suppressing endoplasmic reticulum stress-mediated apoptotic signaling. However, the effects of HDCA in ischemic stroke injury have not yet been studied. Neurovascular unit(NVU) dysfunction occurs in ischemic stroke. Therefore, in this study, we investigated the effects of HDCA on the NVU under ischemic conditions in vitro. We co-cultured primary brain microvascular endothelial cells, neurons and astrocytes using a transwell chamber co-culture system. The NVU was pre-treated with 10.16 or 2.54 μg/mL HDCA for 24 hours before exposure to oxygen-glucose deprivation for 1 hour. The cell counting kit-8 assay was used to detect cell activity. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to assess apoptosis. Enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor-α, and neurotrophic factors, including brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Oxidative stress-related factors, such as superoxide dismutase, nitric oxide, malondialdehyde and γ-glutamyltransferase, were measured using kits. Pretreatment with HDCA significantly decreased blood-brain barrier permeability and neuronal apoptosis, significantly increased transendothelial electrical resistance and γ-glutamyltransferase activity, attenuated oxidative stress damage and the release of inflammatory cytokines, and increased brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression. Our findings suggest that HDCA maintains NVU morphological integrity and function by modulating inflammation, oxidation stress, apoptosis, and the expression of neurotrophic factors. Therefore, HDCA may have therapeutic potential in the clinical management of ischemic stroke. This study was approved by the Ethics Committee of Experimental Animals of Beijing University of Chinese Medicine(approval No. BUCM-3-2016040201-2003) in April 2016. 展开更多
关键词 hyodeoxycholic acid oxygen glucose deprivation and REOXYGENATION blood-brain barrier permeability anti-oxidative anti-inflammatory ANTI-APOPTOTIC BRAIN-DERIVED NEUROTROPHIC FACTOR glial cell line-derived NEUROTROPHIC FACTOR ischemic stroke in vitro NEUROVASCULAR unit
下载PDF
Shuxuetong injection protects cerebral microvascular endothelial cells against oxygen-glucose deprivation reperfusion 被引量:12
11
作者 Zuo-Yan Sun Fu-Jiang Wang +6 位作者 Hong Guo Lu Chen Li-Juan Chai Rui-Lin Li Li-Min Hu Hong Wang Shao-Xia Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第5期783-793,共11页
Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotect... Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotective mechanism of Shuxuetong injection remains poorly understood. Here, cerebral microvascular endothelial cells(bEnd.3) were incubated in glucose-free Dulbecco's modified Eagle's medium containing 95% N_2/5% CO_2 for 6 hours, followed by high-glucose medium containing 95% O_2 and 5% CO_2 for 18 hours to establish an oxygen-glucose deprivation/reperfusion model. This in vitro cell model was administered Shuxuetong injection at 1/32, 1/64, and 1/128 concentrations(diluted 32-, 64-, and 128-times). Cell Counting Kit-8 assay was used to evaluate cell viability. A fluorescence method was used to measure lactate dehydrogenase, and a fluorescence microplate reader used to detect intracellular reactive oxygen species. A fluorescent probe was also used to measure mitochondrial superoxide production. A cell resistance meter was used to measure transepithelial resistance and examine integrity of monolayer cells. The fluorescein isothiocyanate-dextran test was performed to examine blood-brain barrier permeability. Real-time reverse transcription polymerase chain reaction was performed to analyze mRNA expression levels of tumor necrosis factor alpha, interleukin-1β, interleukin-6, and inducible nitric oxide synthase. Western blot assay was performed to analyze expression of caspase-3, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, occludin, vascular endothelial growth factor, cleaved caspase-3, B-cell lymphoma 2, phosphorylated extracellular signal-regulated protein kinase, extracellular signal-regulated protein kinase, nuclear factor-κB p65, I kappa B alpha, phosphorylated I kappa B alpha, I kappa B kinase, phosphorylated I kappa B kinase, claudin-5, and zonula occludens-1. Our results show that Shuxuetong injection increases bEnd.3 cell viability and B-cell lymphoma 2 expression, reduces cleaved caspase-3 expression, inhibits production of reactive oxygen species and mitochondrial superoxide, suppresses expression of tumor necrosis factor alpha, interleukin-1β, interleukin-6, inducible nitric oxide synthase mRNA, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, markedly increases transepithelial resistance, decreases blood-brain barrier permeability, upregulates claudin-5, occludin, and zonula occludens-1 expression, reduces nuclear factor-κB p65 and vascular endothelial growth factor expression, and reduces I kappa B alpha, extracellular signal-regulated protein kinase 1/2, and I kappa B kinase phosphorylation levels. Overall, these findings suggest that Shuxuetong injection has protective effects on brain microvascular endothelial cells after oxygen-glucose deprivation/reperfusion. Moreover, its protective effect is associated with reduction of mitochondrial superoxide production, inhibition of the inflammatory response, and inhibition of vascular endothelial growth factor, extracellular signal-regulated protein kinase 1/2, and the nuclear factor-κB p65 signaling pathway. 展开更多
关键词 nerve REGENERATION SHUXUETONG injection brain MICROVASCULAR endothelial cells oxygen-glucose deprivation/reperfusion tight junction proteins mitochondrial function inflammatory factors blood-brain barrier neuroprotection neural REGENERATION
下载PDF
IcarisideⅡ alleviates oxygen-glucose deprivation and reoxygenation-induced PC12 celloxidative injury by activating Nrf2 / SIRT3signaling pathway 被引量:11
12
作者 FENG Lin-ying GAO Jian-mei +2 位作者 LIU Yuan-gui SHI Jing-shan GONG Qi-hai 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2018年第9期667-668,共2页
OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxy... OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxygen-glucose deprivation/reoxygenation(OGD/R) 2 h/24 h in PC12 cells.N-acetyl-lcysteine(NAC),a classical anti-oxidant,was used as positive control.Pharmacodynamic experimental study groups as follows:control,control+ICS Ⅱ50 μmol·L^(-1),OGD/R,OGD/R+ICSⅡ 12.5 μmol·L^(-1),OGD/R + ICS Ⅱ 25 μmol·L^(-1),OGD/R + ICS Ⅱ50 μmol·L^(-1),and OGD/R+NAC 100 μmol·L^(-1) groups.Cell viability and lactate dehydrogenase(LDH) leakage rate were measured by MTT assay and LDH ELISA kit,respectively.Moreover,reactive oxygen species(ROS) ELISA kit was used for detection of intracellular ROS generation,Mito-SOX fluorescence staining was used for detecting production of ROS in mitochondria and mitochondrial membrane potential(MMP)was detected by rhodamine 123 dye.In addition,PC12 cells apoptosis was detected by one-step TUNEL assay.Furthermore,the expressions of nuclear factor erythroid 2-related factors(Nrf2),Keap1,HO^(-1),NQO^(-1),silent information regulator 3(SIRT3),IDH2,Bax,Bcl-2 and caspase 3 were detected by Western blotting analysis.RESULTS The results of MTT and LDH assay showed that OGD/R reduced the cell viability and improved LDH release compared with the control or ICSⅡ 50 μmol·L^(-1) alone(P<0.01).Meanwhile,OGD/R not only increased intracellular and mitochondrial ROS generation,but also elevated the fluorescence intensity of TUNEL staining,at the same time,the MMP was declined when challenged by OGD/R.Furthermore,the Western blotting results showed that OGD/R induced the increase in the expression of cytoplasm-Nrf2,Keap1,Bax and cleaved-caspase 3 level,while the decrease in the expression of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).However,ICS Ⅱ significantly increased the viability of PC12 cells and reduced LDH leakage(P<0.01).Notably,ICS Ⅱ also suppressed ROS generation both in the intracellular and mitochondria,as well as restored MMP.It was also worthy to note that ICS Ⅱ decreased the expressions of cytoplasmNrf2,Keap1,Bax and the level of cleaved-caspase3,whereas,it increased the expressions of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).CONCLUSION ICSⅡ reduced OGD/Rinduced oxidative damage in PC12 cells under the laboratory conditions,and its underlying mechanism may be related to the regulation of Nrf2/SIRT3 signaling pathway. 展开更多
关键词 icariside oxygen-glucose deprivation REOXYGENATION oxidative injury apoptosis nuclear factor ERYTHROID 2-related factors SILENT information regulator 3
下载PDF
Relationship between monocularly deprivation and amblyopia rats and visual system development 被引量:6
13
作者 Yu Ma 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2014年第7期568-571,共4页
Objective:To explore the changes of lateral geniculate body and visual cortex in monocular strabismus and form deprived amblyopic rat,and visual development plastic stage and visual plasticity in adult rats.Methods:A ... Objective:To explore the changes of lateral geniculate body and visual cortex in monocular strabismus and form deprived amblyopic rat,and visual development plastic stage and visual plasticity in adult rats.Methods:A total of 60 SD rats ages 13 d were randomly divided into A,B,C three groups with 20 in each group,group A was set as the normal control group without any processing,group B was strabismus amblyopic group,using the unilateral extraocular rectus resection to establish the strabismus amblyopia model,group C was monocular form deprivation amblyopia group using unilateral eyelid edge resection+lid suture.At visual developmental early phase(P2S),meta phase(P3S),late phase(P45)and adult phase(P120),the lateral geniculate body and visual cortex area 17 of five rats in each group were exacted for C-fos Immunocytochemistry.Neuron morphological changes in lateral geniculate body and visual cortex was observed,the positive neurons differences of C-fos expression induced by light stimulation was measured in each group,and the condition of radiation development of P120 amblyopic adult rats was observed.Results:In groups B and C,C-fos positive cells were significantly lower than the control group at P25(P<0.05),there was no statistical difference of C-fos protein positive cells between group B and group A(P>0.05),C-fos protein positive cells level of group B was significantly lower than that of group A(P<0.05).The binoculus C-fos protein positive cells level of groups B and C were significantly higher than that of control group at P35,P4S and P120 with statistically significant differences(P<0.05).Conclusions:The increasing of C-fos expression in geniculate body and visual cortex neurons of adult amblyopia suggests the visual cortex neurons exist a certain degree of visual plasticity. 展开更多
关键词 deprivation AMBLYOPIA MONOCULAR STRABISMUS Visual development C-FOS
下载PDF
Knocking down TRPM2 expression reduces cell injury and NLRP3 inflammasome activation in PC12 cells subjected to oxygen-glucose deprivation 被引量:5
14
作者 Tao Pan Qiu-Jiao Zhu +5 位作者 Li-Xiao Xu Xin Ding Jian-Qin Li Bin Sun Jun Hua Xing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第11期2154-2161,共8页
Transient receptor potential melastatin 2(TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression... Transient receptor potential melastatin 2(TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression can help repair cerebral injury, and if so what the mechanism underlying this process involves. This study investigated the protective effect of reducing TRPM2 expression on pheochromocytoma(PC12) cells injured by oxygen-glucose deprivation(OGD). PC12 cells were transfected with plasmid encoding TRPM2 shRNAS, then subjected to OGD by incubation in glucose-free medium under hypoxic conditions for 8 hours, after which the cells were allowed to reoxygenate for 24 hours. Apoptotic cells, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels were detected using flow cytometry. The relative expression of C-X-C motif chemokine ligand 2(CXCL2), NACHT, LRR, and PYD domain–containing protein 3(NALP3), and caspase-1 were detected using fluorescence-based quantitative reverse transcription-polymerase chain reaction and western blotting. The rates of apoptosis, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels in the TRPM2-shRNA + OGD group were lower than those observed in the OGD group. Taken together, these results suggest that TRPM2 knockdown reduces OGD-induced neuronal injury, potentially by inhibiting apoptosis and reducing oxidative stress levels, mitochondrial membrane potentials, intracellular calcium concentrations, and NLRP3 inflammasome activation. 展开更多
关键词 apoptosis calcium caspase-1 NLRP3 mitochondrial IMPAIRMENT oxidative stress oxygen-glucose deprivation PC12 shRNA TRPM2
下载PDF
Gene expression profiles in gastric mucosa of sleep deprivation rats 被引量:4
15
作者 Jenny F.L.Chow Marcel W.L.Koo Chi-Hin Cho 《World Journal of Gastroenterology》 SCIE CAS CSCD 2000年第5期754-758,共5页
INTRODUCTIONStress has been shown to induce gastric mucosallesions and lower the effectiveness of the mucosa asa barrier.In rats,gastric ulcers can beproduced by cold-restraint stress and it isfrequently employed as a... INTRODUCTIONStress has been shown to induce gastric mucosallesions and lower the effectiveness of the mucosa asa barrier.In rats,gastric ulcers can beproduced by cold-restraint stress and it isfrequently employed as a model for the study of themechanisms of stress on ulcer formation.Cold-restraint stress however is not normally 展开更多
关键词 gene expression MUCOSA gastric stress ULCER GI TRACT SLEEP deprivation cDNA ethanol
下载PDF
Silencing Huwe1 reduces apoptosis of cortical neurons exposed to oxygen-glucose deprivation and reperfusion 被引量:5
16
作者 Guo-Qian He Wen-Ming Xu +3 位作者 Hui-Juan Liao Chuan Jiang Chang-Qing Li Wei Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第11期1977-1985,共9页
HECT, UBA and WWE domain-containing 1(Huwe1), an E3 ubiquitin ligase involved in the ubiquitin-proteasome system, is widely expressed in brain tissue. Huwe1 is involved in the turnover of numerous substrates, includin... HECT, UBA and WWE domain-containing 1(Huwe1), an E3 ubiquitin ligase involved in the ubiquitin-proteasome system, is widely expressed in brain tissue. Huwe1 is involved in the turnover of numerous substrates, including p53, Mcl-1, Cdc6 and N-myc, thereby playing a critical role in apoptosis and neurogenesis. However, the role of Huwe1 in brain ischemia and reperfusion injury remains unclear. Therefore, in this study, we investigated the role of Huwe1 in an in vitro model of ischemia and reperfusion injury. At 3 days in vitro, primary cortical neurons were transduced with a control or shRNA-Huwe1 lentiviral vector to silence expression of Huwe1. At 7 days in vitro, the cells were exposed to oxygen-glucose deprivation for 3 hours and reperfusion for 24 hours. To examine the role of the c-Jun N-terminal kinase(JNK)/p38 pathway, cortical neurons were pretreated with a JNK inhibitor(SP600125) or a p38 MAPK inhibitor(SB203508) for 30 minutes at 7 days in vitro, followed by ischemia and reperfusion. Neuronal apoptosis was assessed by TUNEL assay. Protein expression levels of JNK and p38 MAPK and of apoptosis-related proteins(p53, Gadd45 a, cleaved caspase-3, Bax and Bcl-2) were measured by western blot assay. Immunofluorescence labeling for cleaved caspase-3 was performed. We observed a significant increase in neuronal apoptosis and Huwe1 expression after ischemia and reperfusion. Treatment with the shRNA-Huwe1 lentiviral vector markedly decreased Huwe1 levels, and significantly decreased the number of TUNEL-positive cells after ischemia and reperfusion. The silencing vector also downregulated the pro-apoptotic proteins Bax and cleaved caspase-3, and upregulated the anti-apoptotic proteins Gadd45 a and Bcl-2. Silencing Huwe1 also significantly reduced p-JNK levels and increased p-p38 levels. Our findings show that downregulating Huwe1 affects the JNK and p38 MAPK signaling pathways as well as the expression of apoptosis-related genes to provide neuroprotection during ischemia and reperfusion. All animal experiments and procedures were approved by the Animal Ethics Committee of Sichuan University, China in January 2018(approval No. 2018013). 展开更多
关键词 nerve REGENERATION ischemic stroke oxygen-glucose deprivation and REPERFUSION ischemia/reperfusion cortical neuron ubiquitin proteasome system Huwe1 APOPTOSIS therapeutic targets CELL culture CELL death neural REGENERATION
下载PDF
Proprotein convertase 1/3-mediated down-regulation of brain-derived neurotrophic factor in cortical neurons induced by oxygen-glucose deprivation 被引量:3
17
作者 Xiang-Yang Zhang Feng Liu +2 位作者 Yan Chen Wei-Chun Guo Zhao-Hui Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第6期1066-1070,共5页
Brain-derived neurotrophic factor(BDNF)has robust effects on synaptogenesis,neuronal differentiation and synaptic transmission and plasticity.The maturation of BDNF is a complex process.Proprotein convertase 1/3(PC1/3... Brain-derived neurotrophic factor(BDNF)has robust effects on synaptogenesis,neuronal differentiation and synaptic transmission and plasticity.The maturation of BDNF is a complex process.Proprotein convertase 1/3(PC1/3)has a key role in the cleavage of protein precursors that are directed to regulated secretory pathways;however,it is not clear whether PC1/3 mediates the change in BDNF levels caused by ischemia.To clarify the role of PC1/3 in BDNF maturation in ischemic cortical neurons,primary cortical neurons from fetal rats were cultured in a humidified environment of 95%N_2 and 5%CO_2 in a glucose-free Dulbecco's modified Eagle's medium at 37℃for3 hours.Enzyme-linked immunosorbent assays and western blotting showed that after oxygen-glucose deprivation,the secreted and intracellular levels of BDNF were significantly reduced and the intracellular level of PC1/3 was decreased.Transient transfection of cortical neurons with a PC1/3 overexpression plasmid followed by oxygen-glucose deprivation resulted in increased PC1/3 levels and increased BDNF levels.When levels of the BDNF precursor protein were reduced,the concentration of BDNF in the culture medium was increased.These results indicate that PC 1/3 cleavage of BDNF is critical for the conversion of pro-BDNF in rat cortical neurons during ischemia.The study was approved by the Animal Ethics Committee of Wuhan University School of Basic Medical Sciences. 展开更多
关键词 cortical neuron ischemia NEUROTROPHIN oxygen-glucose deprivation precursor protein of BRAIN-DERIVED NEUROTROPHIC factor PROPROTEIN CONVERTASE PROPROTEIN CONVERTASE 1/3
下载PDF
Effects of extracellular vesicles from mesenchymal stem cells on oxygen-glucose deprivation/reperfusioninduced neuronal injury 被引量:5
18
作者 Shuang-shuang Gu Xiu-wen Kang +4 位作者 Jun Wang Xiao-fang Guo Hao Sun Lei Jiang Jin-song Zhang 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2021年第1期61-67,共7页
BACKGROUND: Small extracellular vesicles (sEVs) from bone marrow mesenchymal stemcells (BMSCs) have shown therapeutic potential for cerebral ischemic diseases. However, themechanisms by which BMSC-derived sEVs (BMSC-s... BACKGROUND: Small extracellular vesicles (sEVs) from bone marrow mesenchymal stemcells (BMSCs) have shown therapeutic potential for cerebral ischemic diseases. However, themechanisms by which BMSC-derived sEVs (BMSC-sEVs) protect neurons against cerebral ischemia/reperfusion (I/R) injury remain unclear. In this study, we explored the neuroprotective effects ofBMSC-sEVs in the primary culture of rat cortical neurons exposed to oxygen-glucose deprivation andreperfusion (OGD/R) injury.METHODS: The primary cortical neuron OGD/R model was established to simulate the processof cerebral I/R in vitro. Based on this model, we examined whether the mechanism through whichBMSC-sEVs could rescue OGD/R-induced neuronal injury.RESULTS: BMSC-sEVs (20 μg/mL, 40 μg/mL) significantly decreased the reactive oxygenspecies (ROS) productions, and increased the activities of superoxide dismutase (SOD) and glutathioneperoxidase (GPx). Additionally, BMSC-sEVs prevented OGD/R-induced neuronal apoptosis in vivo, asindicated by increased cell viability, reduced lactate dehydrogenase (LDH) leakage, decreased terminaldeoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining-positivecells, down-regulated cleaved caspase-3, and up-regulated Bcl-2/Bax ratio. Furthermore, Westernblot and flow cytometry analysis indicated that BMSC-sEV treatment decreased the expression ofphosphorylated calcium/calmodulin-dependent kinase II (p-CaMK II)/CaMK II, suppressed the increaseof intracellular calcium concentration ([Ca2+]i) caused by OGD/R in neurons.CONCLUSIONS: These results demonstrate that BMSC-sEVs have signifi cant neuroprotectiveeff ects against OGD/R-induced cell injury by suppressing oxidative stress and apoptosis, and Ca2+/CaMK II signaling pathways may be involved in this process. 展开更多
关键词 Oxygen-glucose deprivation and reperfusion Cortical neurons Oxidative stress Small extracellular vesicles
下载PDF
Glucose deprivation induces chemoresistance in colorectal cancer cells by increasing ATF4 expression 被引量:3
19
作者 Ya-Ling Hu Yuan Yin +7 位作者 He-Yong Liu Yu-Yang Feng Ze-Hua Bian Le-Yuan Zhou Ji-Wei Zhang Bo-Jian Fei Yu-Gang Wang Zhao-Hui Huang 《World Journal of Gastroenterology》 SCIE CAS 2016年第27期6235-6245,共11页
AIM: To investigate the role of activating transcription factor 4(ATF4) in glucose deprivation(GD) induced colorectal cancer(CRC) drug resistance and the mechanism involved.METHODS: Chemosensitivity and apoptosis were... AIM: To investigate the role of activating transcription factor 4(ATF4) in glucose deprivation(GD) induced colorectal cancer(CRC) drug resistance and the mechanism involved.METHODS: Chemosensitivity and apoptosis were measured under the GD condition. Inhibition of ATF4 using short hairpin RNA in CRC cells under the GD condition and in ATF4-overexpressing CRC cells was performed to identify the role of ATF4 in the GD induced chemoresistance. Quantitative real-time RTPCR and Western blot were used to detect the mR NA and protein expression of drug resistance gene 1(MDR1), respectively.RESULTS: GD protected CRC cells from drug-induced apoptosis(oxaliplatin and 5-fluorouracil) and induced the expression of ATF4, a key gene of the unfolded protein response. Depletion of ATF4 in CRC cells under the GD condition can induce apoptosis and drug resensitization. Similarly, inhibition of ATF4 in the ATF4-overexpressing CRC cells reintroduced therapeutic sensitivity and apoptosis. In addition, increased MDR1 expression was observed in GD-treated CRC cells. CONCLUSION: These data indicate that GD promotes chemoresistance in CRC cells through up-regulating ATF4 expression. 展开更多
关键词 GLUCOSE deprivation ATF4 OXALIPLATIN 5-FLUOROURACIL CHEMORESISTANCE
下载PDF
Maternal sleep deprivation induces gut microbial dysbiosis and neuroinflammation in offspring rats 被引量:3
20
作者 Zheng-Yu Yao Xiao-Huan Li +4 位作者 Li Zuo Qian Xiong Wen-Ting He Dong-Xu Li Zhi-Fang Dong 《Zoological Research》 SCIE CAS CSCD 2022年第3期380-390,共11页
Maternal sleep deprivation(MSD)is a global public health problem that affects the physical and mental development of pregnant women and their newborns.The latest research suggests that sleep deprivation(SD)disrupts th... Maternal sleep deprivation(MSD)is a global public health problem that affects the physical and mental development of pregnant women and their newborns.The latest research suggests that sleep deprivation(SD)disrupts the gut microbiota,leading to neuroinflammation and psychological disturbances.However,it is unclear whether MSD affects the establishment of gut microbiota and neuroinflammation in the newborns.In the present study,MSD was performed on pregnant SpragueDawley rats in the third trimester of pregnancy(gestational days 15-21),after which intestinal contents and brain tissues were collected from offspring at different postnatal days(P1,P7,P14,and P56).Based on microbial profiling,microbial diversity and richness increased in pregnant rats subjected to MSD,as reflected by the significant increase in the phylum Firmicutes.In addition,microbial dysbiosis marked by abundant Firmicutes bacteria was observed in the MSD offspring.Furthermore,quantitative real-time polymerase chain reaction(q RT-PCR)and enzyme-linked immunosorbent assay(ELISA)showed that the expression levels of proinflammatory cytokines interleukin 1β(IL-1β)and tumor necrosis factorα(TNF-α)were significantly higher in the MSD offspring at adulthood(P56)than in the control group.Through Spearman correlation analysis,IL-1βand TNF-αwere also shown to be positively correlated with Ruminococcus_1 and Ruminococcaceae_UCG-005 at P56,which may determine the microbiota-host interactions in MSDrelated neuroinflammation.Collectively,these results indicate that MSD changes maternal gut microbiota and affects the establishment of neonatal gut microbiota,leading to neuroinflammation in MSD offspring.Therefore,understanding the role of gut microbiota during physiological development may provide potential interventions for cognitive dysfunction in MSD-impacted offspring. 展开更多
关键词 Maternal sleep deprivation Gut microbiota NEUROINFLAMMATION Gut-brain axis Cognitive function FIRMICUTES
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部