This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to th...This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to the response spectrum procedure defined in the 2009 International Building Code (IBC'09). Two ensembles of ground motion records with 10% and 2% probability of exceedance in 50 years (10/50 and 2/50, respectively) are used. The nonlinear dynamic resPonses to the earthquake records are computed using IDARC-2D. Key seismic design parameters are evaluated; namely, response modification factor (R), deflection amplification factor (Cd), system overstrength factor (Ωo), and response modification factor for ductility (Rd) in addition to inelastic interstory drift. The evaluated seismic design factors are found to significantly depend on the considered ground motion (10/50 versus 2/50). Consequently, resolution to the controversy of Dubai seismicity is urged. The seismic design factors for the 2/50 records show an increase over their counterparts for the 10/50 records in the range of 200%-400%, except for the D~ factor, which shows a mere 30% increase. Based on the observed trends, perioddependent R and Cd factors are recommended if consistent collapse probability (or collapse prevention performance) in moment frames with varying heights is to be expected.展开更多
The hadal zone(ocean depths of 6 – 11 km) is one of the least-understood habitats on Earth because of its extreme conditions such as high pressure, darkness, and low temperature. With the development of deep-sea vehi...The hadal zone(ocean depths of 6 – 11 km) is one of the least-understood habitats on Earth because of its extreme conditions such as high pressure, darkness, and low temperature. With the development of deep-sea vehicles such as China's 7000 m manned submersible Jiaolong, abyssal science has received greater attention. For decades, gravity-piston corers have been widely used to collect loose subsea-sediment long-core samples. However, the weight and length of the gravity sampler cables and the operating environment limit sampling capacity at full ocean depths. Therefore, a new self-floating sediment sampler with a spring-loaded auto-trigger release and that incorporates characteristics from traditional gravity-driven samplers is designed. This study analyzes the process by which a gravity-piston corer penetrates the sediment and the factors that affect it. A formula for obtaining the penetration depth is deduced. A method of optimizing the sampling depth is then developed based on structure design and parametric factor modeling. The parameters considered in the modeling include the sampling depth, balance weight, ultimate stress friction coefficient, dimensions of the sampler, and material properties. Thus, a new deep-sea floating parametric sampler designed based on virtual prototyping is proposed. Accurate values for all the design factors are derived from calculations based on the conservation of energy with penetration depth, analyses of the factors affecting the penetration depth, and analyses of the pressure bar stability. Finally, experimental data are used to verify the penetration-depth function and to provide theoretical guidance for the design of sediment samplers.展开更多
Fourteen SAE standards related to accommodation and occupant' packaging for vehicle interior are studied. The influencing factors, key reference accommodation points and major design dimensions and their relationship...Fourteen SAE standards related to accommodation and occupant' packaging for vehicle interior are studied. The influencing factors, key reference accommodation points and major design dimensions and their relationships of occupant packaging and ergonomics during the vehicle interior layout design and development are analyzed. Prototypes are presented to verify the results and how to achieve the packaging is shown. Auto- mobile designers can achieve significant practical guidance for human safety, efficiency accommodation and occupant packaging of all passengers during the vehicle design process.展开更多
S<span>everal challenges are associated </span></span><span style="font-family:"">with</span><span style="font-family:""> the development, adoption and...S<span>everal challenges are associated </span></span><span style="font-family:"">with</span><span style="font-family:""> the development, adoption and de</span><span style="font-family:"">ployment of biogas digesters in developing countries. Amongst these challenges is a comprehensive and systematic procedure for the design of digesters suitable for rural communities. This paper proposes the Flexible Biogas Digester System (FBDS) as a viable option for rural communities in developing countries and provide</span><span style="font-family:"">s</span><span style="font-family:""> a detailed step-by-step procedure for it</span><span style="font-family:"">s</span><span style="font-family:""> design. The biogas production process is a function of the digester operating factors which may be grouped into physical, process and performance parameters. The physical design parameters include</span><span style="font-family:""> </span><span style="font-family:"">the digester volume, the volume of the biogas storage tank, and the volume of the installation pit. The process parameters include total solid content of the slurry (TS), organic loading rate (OLR), digester operating temperatures, pH of the slurry inside the digester. The performance parameters include</span><span style="font-family:""> </span><span style="font-family:"">biogas production rate, biogas productivity and biogas quality. The Net Present Value and the Levelised Cost of Energy are presented for simple economic evaluation of the FBDS.展开更多
Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress...Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress levels over 72% SMYS have not presented problems in USA and Canada, and design factor does not control incidents or the safety of pipelines. Enhancing pipeline safety management level is most important for decreasing incident rate. The application history of higher design factors in the U.S and Canada was reviewed. And the effect of higher factors to the critical flaw size, puncture resistance, change of reliability with time, risk level and the arrest toughness requirements of pipeline were analyzed here. The comparison of pipeline failure rates and risk levels between two design factors (0.72 and 0.8) has shown that a change in design factor from 0.72 to 0.8 would bring little effect on failure rates and risk levels. On the basis of the analysis result, the application feasibility of design factor of 0.8 in China was discussed and the related suggestions were proposed. When an operator wishes to apply design factor 0.8 to gas pipeline, the following process is recommended: stress level of line pipe hydro test should be up to 100% SMYS, reliability and risk assessment at the design feasibility or conceptual stage should be conducted, Charpy impact energy should meet the need of pipeline crack arrest; and establish and execute risk based integrity management plan. The technology of pipeline steel metallurgy, line pipe fabrication and pipeline construction, and line pipe quality control level in China achieved tremendous progresses, and line pipe product standards and property indexes have come up to international advanced level. Furthermore, pipeline safety management has improved greatly in China. Consequently, the research for the feasibility of application of design factor of 0.8 in China has fundamental basis.展开更多
In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of...In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of typical dead load and frequent vehicular loads. Various extreme load effects, such as earthquake and vessel collision, are on the same reliability-based platform. Since these extreme loads are time variables, combining them with not considered frequent. non- extreme loads is a significant challenge. The number of design limit state equations based on these failure probabilities can be unrealistically large and unnecessary from the view point of practical applications. Based on the opinion of AASHTO State Bridge Engineers, many load combinations are insignificant in their states. This paper describes the formulation of a criterion to include only the necessary load combinations to establish the design limit states. This criterion is established by examining the total failure probabilities for all possible time-invariant and time varying load combinations and breaking them down into partial terms. Then, important load combinations can be readily determined quantitatively,展开更多
The effect of controlling strata movement in solid filling mining depends on the filling rate of the goal. However, the mechanical property of the overburden in the backfill stope and the designed size of the backfill...The effect of controlling strata movement in solid filling mining depends on the filling rate of the goal. However, the mechanical property of the overburden in the backfill stope and the designed size of the backfill mining workface should also be considered. In this study, we established a main roof strata model with loads in accordance with the theory of key strata to investigate the stability of the overburden in solid dense filling mining. We analyzed the stress distribution law of the main roof strata based on elastic thin plate theory. The results show that the position of the long side midpoint of the main roof strata failed more easily because of tensile yield, indicating that this position is the area where failure is likely to occur more easily. We also deduced the stability mechanics criterion of the main roof strata based on tensile yield criterion. The factors affecting the stability of the overburden in solid dense filling mining were also analyzed, including the thickness and elasticity modulus of the main roof strata, overlying strata loads, advanced distance and length of workface, and elastic foundation coefficient of backfill body. The research achievements can provide an important theoretical basis for determining the designed size of the solid dense filling mining workface.展开更多
The polyacrylamide which is directly added into concrete shows strong water absorption property.Thus the construction of underwater constructure would demand high amount of water,resulting in poor workability of concr...The polyacrylamide which is directly added into concrete shows strong water absorption property.Thus the construction of underwater constructure would demand high amount of water,resulting in poor workability of concrete and strength shrinkage after hardening.Herein,a kind of anionic polyacrylamide(APAM)grafted with water reducing functional group(-COOH)was synthesized at low temperatures by partial factor design and response surface design.The structure and morphology of APAM were characterized by UV,FTIR and SEM methods.The experimental results show that the molecular weight of the synthesized APAM could reach 11 million,under the condition that the temperature was 35℃,the pH value was 8,the monomer concentration was 27wt%,the initiator dosage was 0.6wt%,and the monomer ratio(n(AM):n(AA))was 3.When the APAM was applied into the underwater slurry,it presented good flocculation and low water demand.When the dosage was 1%of the mass of the cement,the water demand increased by 12%,which could meet the self-leveling and anti-dispersity of the underwater slurry at the same time.This technology provides technical guidance for the large-scale industrial production of polyacrylamide for underwater concrete construction while achieving environmental protection during production.展开更多
An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surf...An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.展开更多
In many regions of the world, a bridge will experience multiple extreme hazards during its expected service life. The current American Association of State Highway and Transportation Officials (AASHTO) load and resi...In many regions of the world, a bridge will experience multiple extreme hazards during its expected service life. The current American Association of State Highway and Transportation Officials (AASHTO) load and resistance factor design (LRFD) specifications are formulated based on failure probabilities, which are fully calibrated for dead load and nonextreme live loads. Design against earthquake loads is established separately. Design against scour effect is also formulated separately by using the concept of capacity reduction (or increased scour depth). Furthermore, scour effect cannot be linked directly to an LRFD limit state equation, because the latter is formulated using force-based analysis. This paper (in two parts) presents a probability-based procedure to estimate the combined hazard effects on bridges due to truck, earthquake and scour, by treating the effect of scour as an equivalent load effect so that it can be included in reliability-based bridge failure calculations. In Part I of this series, the general principle of treating the scour depth as an equivalent load effect is presented. The individual and combined partial failure probabilities due to truck, earthquake and scour effects are described. To explain the method of including non-force-based natural hazards effects, two types of common scour failures are considered. In Part 11, the corresponding bridge failure probability, the occurrence of scour as well as simultaneously having both truck load and equivalent scour load are quantitatively discussed.展开更多
In many regions of the world, a bridge will experience multiple extreme hazards during its expected service life. The current American Association of State Highway and Transportation Officials (AASHTO) load and resi...In many regions of the world, a bridge will experience multiple extreme hazards during its expected service life. The current American Association of State Highway and Transportation Officials (AASHTO) load and resistance factor design (LRFD) specifications are formulated based on failure probabilities, which are fully calibrated for dead load and non-extreme live loads. Design against earthquake load effect is established separately. Design against scour effect is also formulated separately by using the concept of capacity reduction (or increased scour depth). Furthermore, scour effect cannot be linked directly to an LRFD limit state equation because the latter is formulated using force-based analysis. This paper (in two parts) presents a probability-based procedure to estimate the combined hazard effects on bridges due to truck, earthquake and scour, by treating the effect of scour as an equivalent load effect so that it can be included in reliability-based failure calculations. In Part I of this series, the general principle for treating the scour depth as an equivalent load effect is presented. In Part II, the corresponding bridge failure probability, the occurrence of scour as well as simultaneously having both truck load and equivalent scour load effect are quantitatively discussed. The key formulae of the conditional partial failure probabilities and the necessary conditions are established. In order to illustrate the methodology, an example of dead, truck, earthquake and scour effects on a simple bridge pile foundation is represented.展开更多
According to the dimensional tolerances on hydrodynamic journal bearing system, a nonlinear oil film force model was established,and the Reynolds' equation was solved by adopting finite difference method. In order...According to the dimensional tolerances on hydrodynamic journal bearing system, a nonlinear oil film force model was established,and the Reynolds' equation was solved by adopting finite difference method. In order to fulfill different dimensional tolerances in the system,adopting 2kfactor design and using the eccentricity ratio corresponding to the stability critical curve,the effects of the friction power loss brought by the dimensional tolerances of the dynamic viscosity,bearing width,bearing diameter and journal diameter were analyzed. The effect on dynamic characteristics of the hydrodynamic journal bearing system was quantitatively analyzed,and the nonlinear dynamic analysis, modeling and calculation methods were studied while considering the manufacturing tolerances. The results show that in contrast to the impacts of the tolerances in journal diameter,dynamic viscosity and bearing width,the bearing diameter tolerance would lead to the rise in the power loss, and the dimensional tolerances have different degrees of impacts on the journal bearing system. The friction power loss decreased as the eccentricity ratio increased, and when the eccentricity ratio was 0. 695 the power loss came to the minimum.The investigation would find the best solution and reduce energy consumption,then control varieties of nonlinear dynamical behavior effectively,and provide a theoretical basis for hydrodynamic journal bearing system in parameter design.展开更多
In this paper, a total criterion on elastic and fatigue failure in complex stress, that is. octahedral stress strength theory on dynamic and static states on the basis of studying modern and classic strength theories....In this paper, a total criterion on elastic and fatigue failure in complex stress, that is. octahedral stress strength theory on dynamic and static states on the basis of studying modern and classic strength theories. At the same time, an analysis of an independent and fairly comprehensive theoretical system is set up. It gives generalized failure factor by 36 materials and computative theory of the 11 states of complex stresses on a point, and derives the operator equation on generalized allowable strength and a computative method for a total equation can be applied to dynamic and static states. It is illustrated that the method has a good exactness through computation of eight examples of engineering. Therefore, the author suggests applying it to engineering widely.展开更多
Geotechnical design codes and guidelines are all switching from traditional factor of safety design to modern load and resistance factor design(LRFD)or partial factor design(PFD),in the belief that the latter two brin...Geotechnical design codes and guidelines are all switching from traditional factor of safety design to modern load and resistance factor design(LRFD)or partial factor design(PFD),in the belief that the latter two bring more flexibility and reliability consistency across various design scenarios,thus produce safe and cost-effective design outcomes.This paper first reviews the LRFD and PFD developed for geotechnical applications.A total of seven methods to calibrate the load and resistance factors are also introduced.The ability of the LRFD and PFD to produce designs with consistent reliability is examined and compared to that of a traditional factor of safety method using two examples of the bearing capacity of strip footings and the global stability of soil nail walls.Results showed that the framework of LRFD offers no apparent advantages over working stress design(WSD)in achieving more consistent reliability for geotechnical structures;the dispersion in design probabilities of failure could be five to seven orders of magnitude difference.The variation will be reduced to three orders if using the PFD.Neither reducing the variability in soil shear strength parameters nor allocating partial resistance factors with respect to soil types would efficiently harmonize the reliability levels when dealing with multiple soil layer conditions.In addition,the uniformity of reliability levels is insensitive to calibrations with or without presetting the load factors.This study provides insights into the LRFD and PFD frameworks currently developed for geotechnical applications.展开更多
Based on the obtained data of half-lives(t1/2) for 31 polychlorinated biphenyl congeners(PCBs), 3D quantitative structure-activity relationship(QSAR) pharmacophore was used to establish a 3D QSAR model to predic...Based on the obtained data of half-lives(t1/2) for 31 polychlorinated biphenyl congeners(PCBs), 3D quantitative structure-activity relationship(QSAR) pharmacophore was used to establish a 3D QSAR model to predict the t1/2 values of the remaining 178 PCBs, using the structural parameters as independent variables and lgt1/2 values as the dependent variable. Among this process, the whole data set(31 compounds) was divided into a training set(24 compounds) for model generation and a test set(7 compounds) for model validation. Then, the full factor experimental design was used to research the potential second-order interactional effect between different substituent positions, obtaining the final regulation scheme for PCB. At last, a 3D QSAR pharmacophore model was established to validate the reasonable regulation targeting typical PCB with respect to half-lives and thermostability. As a result, the cross-validation correlation coefficient(q2) obtained by the 3D QSAR model was 0.845(〉0.5) and the coefficient of determination(r2) obtained was 0.936(〉0.9), indicating that the models were robust and predictive. CoMSIA analyses upon steric, electrostatic and hydrophobic fields were 0.7%, 85.9%, and 13.4%, respectively. The electrostatic field was determined to be a primary factor governing the tt/2. From CoMSIA contour maps, tl/2 increased when substi- tuents possessed electropositive groups at the 2'-, 3-, Y-, 5- and 5'- positions and electronegative groups at the 3-, 3'-, 5-, 6- and 6'- positions, which could increase the PCB stability in transformer insulation oil. Modification of two typical PCB congeners(PCB-77 and PCB-81) showed that the lgtl/2 for three selected modified compounds increased by 13%(average ratio) compared with that of each congener and the thermostability of them were higher, validating the reasonability of the regulatory scheme obtained from the 3D QSAR model. These results are expected to be beneficial in predicting tl/2 values of PCB homologues and derivatives and in providing a theoretical foundation for further elucidation of the stability of PCBs.展开更多
Flow characteristics inside a cyclone filter were investigated by the use of computational fluid dynamics(CFD). For computations, SST model was adopted. Parametric study was carried out considering the filtering perfo...Flow characteristics inside a cyclone filter were investigated by the use of computational fluid dynamics(CFD). For computations, SST model was adopted. Parametric study was carried out considering the filtering performance. Revolution speeds were changed from 100 to 550 with 50 increments. A skirt is the driving source for cyclone operation. The influence of several design factors, such as the skirt length, the skirt gap and the return length to filtering performance was investigated under the particle diameter 100μm of debris material(Al, s.g.=2.7). The filtering performance was also investigated with the skirt length 28 mm changing the debris diameters from 1μm to 50μm. The flow rate of the working fluid was maintained at 0.55kg/s. It has been verified that the most influential factors to the filtering efficiencies was the skirt gap between the cyclone generator and the cyclone vessel.展开更多
文摘This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to the response spectrum procedure defined in the 2009 International Building Code (IBC'09). Two ensembles of ground motion records with 10% and 2% probability of exceedance in 50 years (10/50 and 2/50, respectively) are used. The nonlinear dynamic resPonses to the earthquake records are computed using IDARC-2D. Key seismic design parameters are evaluated; namely, response modification factor (R), deflection amplification factor (Cd), system overstrength factor (Ωo), and response modification factor for ductility (Rd) in addition to inelastic interstory drift. The evaluated seismic design factors are found to significantly depend on the considered ground motion (10/50 versus 2/50). Consequently, resolution to the controversy of Dubai seismicity is urged. The seismic design factors for the 2/50 records show an increase over their counterparts for the 10/50 records in the range of 200%-400%, except for the D~ factor, which shows a mere 30% increase. Based on the observed trends, perioddependent R and Cd factors are recommended if consistent collapse probability (or collapse prevention performance) in moment frames with varying heights is to be expected.
基金jointly supported by the Stable Supporting Fund of Science and Technology on Underwater Vehicle Technology (No. JCKYS2019604SXJQR-06)the National Natural Science Foundation of China-Marine Science Research Center of Shandong Provincial Government Joint Funding Project (No. U1606401)+3 种基金the National Natural Science Foundation of China (No. 61603108)the Taishan Scholar Project Funding (No. tspd20161007)the National Key Research and Development Plan (Nos. 2016YFC03007042017YFC030660)。
文摘The hadal zone(ocean depths of 6 – 11 km) is one of the least-understood habitats on Earth because of its extreme conditions such as high pressure, darkness, and low temperature. With the development of deep-sea vehicles such as China's 7000 m manned submersible Jiaolong, abyssal science has received greater attention. For decades, gravity-piston corers have been widely used to collect loose subsea-sediment long-core samples. However, the weight and length of the gravity sampler cables and the operating environment limit sampling capacity at full ocean depths. Therefore, a new self-floating sediment sampler with a spring-loaded auto-trigger release and that incorporates characteristics from traditional gravity-driven samplers is designed. This study analyzes the process by which a gravity-piston corer penetrates the sediment and the factors that affect it. A formula for obtaining the penetration depth is deduced. A method of optimizing the sampling depth is then developed based on structure design and parametric factor modeling. The parameters considered in the modeling include the sampling depth, balance weight, ultimate stress friction coefficient, dimensions of the sampler, and material properties. Thus, a new deep-sea floating parametric sampler designed based on virtual prototyping is proposed. Accurate values for all the design factors are derived from calculations based on the conservation of energy with penetration depth, analyses of the factors affecting the penetration depth, and analyses of the pressure bar stability. Finally, experimental data are used to verify the penetration-depth function and to provide theoretical guidance for the design of sediment samplers.
基金the National Natural Science Foundation of China (19832020)National Outstanding Youth Science Foundation of China(10125208)
文摘Fourteen SAE standards related to accommodation and occupant' packaging for vehicle interior are studied. The influencing factors, key reference accommodation points and major design dimensions and their relationships of occupant packaging and ergonomics during the vehicle interior layout design and development are analyzed. Prototypes are presented to verify the results and how to achieve the packaging is shown. Auto- mobile designers can achieve significant practical guidance for human safety, efficiency accommodation and occupant packaging of all passengers during the vehicle design process.
文摘S<span>everal challenges are associated </span></span><span style="font-family:"">with</span><span style="font-family:""> the development, adoption and de</span><span style="font-family:"">ployment of biogas digesters in developing countries. Amongst these challenges is a comprehensive and systematic procedure for the design of digesters suitable for rural communities. This paper proposes the Flexible Biogas Digester System (FBDS) as a viable option for rural communities in developing countries and provide</span><span style="font-family:"">s</span><span style="font-family:""> a detailed step-by-step procedure for it</span><span style="font-family:"">s</span><span style="font-family:""> design. The biogas production process is a function of the digester operating factors which may be grouped into physical, process and performance parameters. The physical design parameters include</span><span style="font-family:""> </span><span style="font-family:"">the digester volume, the volume of the biogas storage tank, and the volume of the installation pit. The process parameters include total solid content of the slurry (TS), organic loading rate (OLR), digester operating temperatures, pH of the slurry inside the digester. The performance parameters include</span><span style="font-family:""> </span><span style="font-family:"">biogas production rate, biogas productivity and biogas quality. The Net Present Value and the Levelised Cost of Energy are presented for simple economic evaluation of the FBDS.
基金supported by China National Petroleum Corporation Application Fundamental Research Foundation (Grant No. 07A40401)
文摘Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress levels over 72% SMYS have not presented problems in USA and Canada, and design factor does not control incidents or the safety of pipelines. Enhancing pipeline safety management level is most important for decreasing incident rate. The application history of higher design factors in the U.S and Canada was reviewed. And the effect of higher factors to the critical flaw size, puncture resistance, change of reliability with time, risk level and the arrest toughness requirements of pipeline were analyzed here. The comparison of pipeline failure rates and risk levels between two design factors (0.72 and 0.8) has shown that a change in design factor from 0.72 to 0.8 would bring little effect on failure rates and risk levels. On the basis of the analysis result, the application feasibility of design factor of 0.8 in China was discussed and the related suggestions were proposed. When an operator wishes to apply design factor 0.8 to gas pipeline, the following process is recommended: stress level of line pipe hydro test should be up to 100% SMYS, reliability and risk assessment at the design feasibility or conceptual stage should be conducted, Charpy impact energy should meet the need of pipeline crack arrest; and establish and execute risk based integrity management plan. The technology of pipeline steel metallurgy, line pipe fabrication and pipeline construction, and line pipe quality control level in China achieved tremendous progresses, and line pipe product standards and property indexes have come up to international advanced level. Furthermore, pipeline safety management has improved greatly in China. Consequently, the research for the feasibility of application of design factor of 0.8 in China has fundamental basis.
基金Federal Highway Administration at the University at Buffalo under Contract No.DTFH61-08-C-00012
文摘In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of typical dead load and frequent vehicular loads. Various extreme load effects, such as earthquake and vessel collision, are on the same reliability-based platform. Since these extreme loads are time variables, combining them with not considered frequent. non- extreme loads is a significant challenge. The number of design limit state equations based on these failure probabilities can be unrealistically large and unnecessary from the view point of practical applications. Based on the opinion of AASHTO State Bridge Engineers, many load combinations are insignificant in their states. This paper describes the formulation of a criterion to include only the necessary load combinations to establish the design limit states. This criterion is established by examining the total failure probabilities for all possible time-invariant and time varying load combinations and breaking them down into partial terms. Then, important load combinations can be readily determined quantitatively,
基金Financial support for this work, provided by the National Natural Science Foundation of China (No.51404013)the Natural Science Foundation of Anhui Province (Nos.1508085ME77 and 1508085QE89)the Open Projects of State Key Laboratory for Geomechanics & Deep Underground Engineering at the China University of Mining and Technology (No.SKLGDUEK1212)
文摘The effect of controlling strata movement in solid filling mining depends on the filling rate of the goal. However, the mechanical property of the overburden in the backfill stope and the designed size of the backfill mining workface should also be considered. In this study, we established a main roof strata model with loads in accordance with the theory of key strata to investigate the stability of the overburden in solid dense filling mining. We analyzed the stress distribution law of the main roof strata based on elastic thin plate theory. The results show that the position of the long side midpoint of the main roof strata failed more easily because of tensile yield, indicating that this position is the area where failure is likely to occur more easily. We also deduced the stability mechanics criterion of the main roof strata based on tensile yield criterion. The factors affecting the stability of the overburden in solid dense filling mining were also analyzed, including the thickness and elasticity modulus of the main roof strata, overlying strata loads, advanced distance and length of workface, and elastic foundation coefficient of backfill body. The research achievements can provide an important theoretical basis for determining the designed size of the solid dense filling mining workface.
基金Funded by the National Natural Science Foundation of China(No.51778378)the Natural Science Foundation of Hebei Province(No.E2022210103)。
文摘The polyacrylamide which is directly added into concrete shows strong water absorption property.Thus the construction of underwater constructure would demand high amount of water,resulting in poor workability of concrete and strength shrinkage after hardening.Herein,a kind of anionic polyacrylamide(APAM)grafted with water reducing functional group(-COOH)was synthesized at low temperatures by partial factor design and response surface design.The structure and morphology of APAM were characterized by UV,FTIR and SEM methods.The experimental results show that the molecular weight of the synthesized APAM could reach 11 million,under the condition that the temperature was 35℃,the pH value was 8,the monomer concentration was 27wt%,the initiator dosage was 0.6wt%,and the monomer ratio(n(AM):n(AA))was 3.When the APAM was applied into the underwater slurry,it presented good flocculation and low water demand.When the dosage was 1%of the mass of the cement,the water demand increased by 12%,which could meet the self-leveling and anti-dispersity of the underwater slurry at the same time.This technology provides technical guidance for the large-scale industrial production of polyacrylamide for underwater concrete construction while achieving environmental protection during production.
基金supported by the marine research center of Amirkabir University of Technology
文摘An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.
基金Federal Highway Administration at the University at Buffalo under Contract No. DTFH61-08-C-00012
文摘In many regions of the world, a bridge will experience multiple extreme hazards during its expected service life. The current American Association of State Highway and Transportation Officials (AASHTO) load and resistance factor design (LRFD) specifications are formulated based on failure probabilities, which are fully calibrated for dead load and nonextreme live loads. Design against earthquake loads is established separately. Design against scour effect is also formulated separately by using the concept of capacity reduction (or increased scour depth). Furthermore, scour effect cannot be linked directly to an LRFD limit state equation, because the latter is formulated using force-based analysis. This paper (in two parts) presents a probability-based procedure to estimate the combined hazard effects on bridges due to truck, earthquake and scour, by treating the effect of scour as an equivalent load effect so that it can be included in reliability-based bridge failure calculations. In Part I of this series, the general principle of treating the scour depth as an equivalent load effect is presented. The individual and combined partial failure probabilities due to truck, earthquake and scour effects are described. To explain the method of including non-force-based natural hazards effects, two types of common scour failures are considered. In Part 11, the corresponding bridge failure probability, the occurrence of scour as well as simultaneously having both truck load and equivalent scour load are quantitatively discussed.
基金Federal Highway Administration at the University at Buffalo under Contract Number DTFH61-08-C-00012
文摘In many regions of the world, a bridge will experience multiple extreme hazards during its expected service life. The current American Association of State Highway and Transportation Officials (AASHTO) load and resistance factor design (LRFD) specifications are formulated based on failure probabilities, which are fully calibrated for dead load and non-extreme live loads. Design against earthquake load effect is established separately. Design against scour effect is also formulated separately by using the concept of capacity reduction (or increased scour depth). Furthermore, scour effect cannot be linked directly to an LRFD limit state equation because the latter is formulated using force-based analysis. This paper (in two parts) presents a probability-based procedure to estimate the combined hazard effects on bridges due to truck, earthquake and scour, by treating the effect of scour as an equivalent load effect so that it can be included in reliability-based failure calculations. In Part I of this series, the general principle for treating the scour depth as an equivalent load effect is presented. In Part II, the corresponding bridge failure probability, the occurrence of scour as well as simultaneously having both truck load and equivalent scour load effect are quantitatively discussed. The key formulae of the conditional partial failure probabilities and the necessary conditions are established. In order to illustrate the methodology, an example of dead, truck, earthquake and scour effects on a simple bridge pile foundation is represented.
基金National Natural Science Foundations of China(No.11272100,No.50865001)
文摘According to the dimensional tolerances on hydrodynamic journal bearing system, a nonlinear oil film force model was established,and the Reynolds' equation was solved by adopting finite difference method. In order to fulfill different dimensional tolerances in the system,adopting 2kfactor design and using the eccentricity ratio corresponding to the stability critical curve,the effects of the friction power loss brought by the dimensional tolerances of the dynamic viscosity,bearing width,bearing diameter and journal diameter were analyzed. The effect on dynamic characteristics of the hydrodynamic journal bearing system was quantitatively analyzed,and the nonlinear dynamic analysis, modeling and calculation methods were studied while considering the manufacturing tolerances. The results show that in contrast to the impacts of the tolerances in journal diameter,dynamic viscosity and bearing width,the bearing diameter tolerance would lead to the rise in the power loss, and the dimensional tolerances have different degrees of impacts on the journal bearing system. The friction power loss decreased as the eccentricity ratio increased, and when the eccentricity ratio was 0. 695 the power loss came to the minimum.The investigation would find the best solution and reduce energy consumption,then control varieties of nonlinear dynamical behavior effectively,and provide a theoretical basis for hydrodynamic journal bearing system in parameter design.
文摘In this paper, a total criterion on elastic and fatigue failure in complex stress, that is. octahedral stress strength theory on dynamic and static states on the basis of studying modern and classic strength theories. At the same time, an analysis of an independent and fairly comprehensive theoretical system is set up. It gives generalized failure factor by 36 materials and computative theory of the 11 states of complex stresses on a point, and derives the operator equation on generalized allowable strength and a computative method for a total equation can be applied to dynamic and static states. It is illustrated that the method has a good exactness through computation of eight examples of engineering. Therefore, the author suggests applying it to engineering widely.
基金financial support from the National Natural Science Foundation of China(52008408)the Guangdong Basic and Applied Basic Research Foundation(2021A1515012088)+1 种基金Science and Technology Program of Guangzhou,China(202102021017)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(22hytd06).
文摘Geotechnical design codes and guidelines are all switching from traditional factor of safety design to modern load and resistance factor design(LRFD)or partial factor design(PFD),in the belief that the latter two bring more flexibility and reliability consistency across various design scenarios,thus produce safe and cost-effective design outcomes.This paper first reviews the LRFD and PFD developed for geotechnical applications.A total of seven methods to calibrate the load and resistance factors are also introduced.The ability of the LRFD and PFD to produce designs with consistent reliability is examined and compared to that of a traditional factor of safety method using two examples of the bearing capacity of strip footings and the global stability of soil nail walls.Results showed that the framework of LRFD offers no apparent advantages over working stress design(WSD)in achieving more consistent reliability for geotechnical structures;the dispersion in design probabilities of failure could be five to seven orders of magnitude difference.The variation will be reduced to three orders if using the PFD.Neither reducing the variability in soil shear strength parameters nor allocating partial resistance factors with respect to soil types would efficiently harmonize the reliability levels when dealing with multiple soil layer conditions.In addition,the uniformity of reliability levels is insensitive to calibrations with or without presetting the load factors.This study provides insights into the LRFD and PFD frameworks currently developed for geotechnical applications.
文摘Based on the obtained data of half-lives(t1/2) for 31 polychlorinated biphenyl congeners(PCBs), 3D quantitative structure-activity relationship(QSAR) pharmacophore was used to establish a 3D QSAR model to predict the t1/2 values of the remaining 178 PCBs, using the structural parameters as independent variables and lgt1/2 values as the dependent variable. Among this process, the whole data set(31 compounds) was divided into a training set(24 compounds) for model generation and a test set(7 compounds) for model validation. Then, the full factor experimental design was used to research the potential second-order interactional effect between different substituent positions, obtaining the final regulation scheme for PCB. At last, a 3D QSAR pharmacophore model was established to validate the reasonable regulation targeting typical PCB with respect to half-lives and thermostability. As a result, the cross-validation correlation coefficient(q2) obtained by the 3D QSAR model was 0.845(〉0.5) and the coefficient of determination(r2) obtained was 0.936(〉0.9), indicating that the models were robust and predictive. CoMSIA analyses upon steric, electrostatic and hydrophobic fields were 0.7%, 85.9%, and 13.4%, respectively. The electrostatic field was determined to be a primary factor governing the tt/2. From CoMSIA contour maps, tl/2 increased when substi- tuents possessed electropositive groups at the 2'-, 3-, Y-, 5- and 5'- positions and electronegative groups at the 3-, 3'-, 5-, 6- and 6'- positions, which could increase the PCB stability in transformer insulation oil. Modification of two typical PCB congeners(PCB-77 and PCB-81) showed that the lgtl/2 for three selected modified compounds increased by 13%(average ratio) compared with that of each congener and the thermostability of them were higher, validating the reasonability of the regulatory scheme obtained from the 3D QSAR model. These results are expected to be beneficial in predicting tl/2 values of PCB homologues and derivatives and in providing a theoretical foundation for further elucidation of the stability of PCBs.
基金supported by the Production Technology Commercialization Support Program through Ministry of Industry Ordinary(10-04)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2014R1A1A4A01005191)
文摘Flow characteristics inside a cyclone filter were investigated by the use of computational fluid dynamics(CFD). For computations, SST model was adopted. Parametric study was carried out considering the filtering performance. Revolution speeds were changed from 100 to 550 with 50 increments. A skirt is the driving source for cyclone operation. The influence of several design factors, such as the skirt length, the skirt gap and the return length to filtering performance was investigated under the particle diameter 100μm of debris material(Al, s.g.=2.7). The filtering performance was also investigated with the skirt length 28 mm changing the debris diameters from 1μm to 50μm. The flow rate of the working fluid was maintained at 0.55kg/s. It has been verified that the most influential factors to the filtering efficiencies was the skirt gap between the cyclone generator and the cyclone vessel.