期刊文献+
共找到8,718篇文章
< 1 2 250 >
每页显示 20 50 100
Detecting Malicious Uniform Resource Locators Using an Applied Intelligence Framework
1
作者 Simona-Vasilica Oprea Adela Bara 《Computers, Materials & Continua》 SCIE EI 2024年第6期3827-3853,共27页
The potential of text analytics is revealed by Machine Learning(ML)and Natural Language Processing(NLP)techniques.In this paper,we propose an NLP framework that is applied to multiple datasets to detect malicious Unif... The potential of text analytics is revealed by Machine Learning(ML)and Natural Language Processing(NLP)techniques.In this paper,we propose an NLP framework that is applied to multiple datasets to detect malicious Uniform Resource Locators(URLs).Three categories of features,both ML and Deep Learning(DL)algorithms and a ranking schema are included in the proposed framework.We apply frequency and prediction-based embeddings,such as hash vectorizer,Term Frequency-Inverse Dense Frequency(TF-IDF)and predictors,word to vector-word2vec(continuous bag of words,skip-gram)from Google,to extract features from text.Further,we apply more state-of-the-art methods to create vectorized features,such as GloVe.Additionally,feature engineering that is specific to URL structure is deployed to detect scams and other threats.For framework assessment,four ranking indicators are weighted:computational time and performance as accuracy,F1 score and type error II.For the computational time,we propose a new metric-Feature Building Time(FBT)as the cutting-edge feature builders(like doc2vec or GloVe)require more time.By applying the proposed assessment step,the skip-gram algorithm of word2vec surpasses other feature builders in performance.Additionally,eXtreme Gradient Boost(XGB)outperforms other classifiers.With this setup,we attain an accuracy of 99.5%and an F1 score of 0.99. 展开更多
关键词 detecting malicious URL CLASSIFIERS text to feature deep learning ranking algorithms feature building time
下载PDF
Improved YOLOv8n Model for Detecting Helmets and License Plates on Electric Bicycles
2
作者 Qunyue Mu Qiancheng Yu +2 位作者 Chengchen Zhou Lei Liu Xulong Yu 《Computers, Materials & Continua》 SCIE EI 2024年第7期449-466,共18页
Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cam... Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cameras plays a vital role in identifying helmet usage by electric bicycle riders and recognizing license plates on electric bicycles.However,manual enforcement by traffic police is time-consuming and labor-intensive.Traditional methods face challenges in accurately identifying small targets such as helmets and license plates using deep learning techniques.This paper proposes an enhanced model for detecting helmets and license plates on electric bicycles,addressing these challenges.The proposedmodel improves uponYOLOv8n by deepening the network structure,incorporating weighted connections,and introducing lightweight convolutional modules.These modifications aim to enhance the precision of small target recognition while reducing the model’s parameters,making it suitable for deployment on low-performance devices in real traffic scenarios.Experimental results demonstrate that the model achieves an mAP@0.5 of 91.8%,showing an 11.5%improvement over the baselinemodel,with a 16.2%reduction in parameters.Additionally,themodel achieves a frames per second(FPS)rate of 58,meeting the accuracy and speed requirements for detection in actual traffic scenarios. 展开更多
关键词 YOLOv8 object detection electric bicycle helmet detection electric bicycle license plate detection
下载PDF
Privacy Preservation in IoT Devices by Detecting Obfuscated Malware Using Wide Residual Network
3
作者 Deema Alsekait Mohammed Zakariah +2 位作者 Syed Umar Amin Zafar Iqbal Khan Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2024年第11期2395-2436,共42页
The widespread adoption of Internet of Things(IoT)devices has resulted in notable progress in different fields,improving operational effectiveness while also raising concerns about privacy due to their vulnerability t... The widespread adoption of Internet of Things(IoT)devices has resulted in notable progress in different fields,improving operational effectiveness while also raising concerns about privacy due to their vulnerability to virus attacks.Further,the study suggests using an advanced approach that utilizes machine learning,specifically the Wide Residual Network(WRN),to identify hidden malware in IoT systems.The research intends to improve privacy protection by accurately identifying malicious software that undermines the security of IoT devices,using the MalMemAnalysis dataset.Moreover,thorough experimentation provides evidence for the effectiveness of the WRN-based strategy,resulting in exceptional performance measures such as accuracy,precision,F1-score,and recall.The study of the test data demonstrates highly impressive results,with a multiclass accuracy surpassing 99.97%and a binary class accuracy beyond 99.98%.The results emphasize the strength and dependability of using advanced deep learning methods such as WRN for identifying hidden malware risks in IoT environments.Furthermore,a comparison examination with the current body of literature emphasizes the originality and efficacy of the suggested methodology.This research builds upon previous studies that have investigated several machine learning methods for detecting malware on IoT devices.However,it distinguishes itself by showcasing exceptional performance metrics and validating its findings through thorough experimentation with real-world datasets.Utilizing WRN offers benefits in managing the intricacies of malware detection,emphasizing its capacity to enhance the security of IoT ecosystems.To summarize,this work proposes an effective way to address privacy concerns on IoT devices by utilizing advanced machine learning methods.The research provides useful insights into the changing landscape of IoT cybersecurity by emphasizing methodological rigor and conducting comparative performance analysis.Future research could focus on enhancing the recommended approach by adding more datasets and leveraging real-time monitoring capabilities to strengthen IoT devices’defenses against new cybersecurity threats. 展开更多
关键词 Obfuscated malware detection IoT devices Wide Residual Network(WRN) malware detection machine learning
下载PDF
Securing Cloud-Encrypted Data:Detecting Ransomware-as-a-Service(RaaS)Attacks through Deep Learning Ensemble
4
作者 Amardeep Singh Hamad Ali Abosaq +5 位作者 Saad Arif Zohaib Mushtaq Muhammad Irfan Ghulam Abbas Arshad Ali Alanoud Al Mazroa 《Computers, Materials & Continua》 SCIE EI 2024年第4期857-873,共17页
Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and ... Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and everpresent threat is Ransomware-as-a-Service(RaaS)assaults,which enable even individuals with minimal technical knowledge to conduct ransomware operations.This study provides a new approach for RaaS attack detection which uses an ensemble of deep learning models.For this purpose,the network intrusion detection dataset“UNSWNB15”from the Intelligent Security Group of the University of New South Wales,Australia is analyzed.In the initial phase,the rectified linear unit-,scaled exponential linear unit-,and exponential linear unit-based three separate Multi-Layer Perceptron(MLP)models are developed.Later,using the combined predictive power of these three MLPs,the RansoDetect Fusion ensemble model is introduced in the suggested methodology.The proposed ensemble technique outperforms previous studieswith impressive performance metrics results,including 98.79%accuracy and recall,98.85%precision,and 98.80%F1-score.The empirical results of this study validate the ensemble model’s ability to improve cybersecurity defenses by showing that it outperforms individual MLPmodels.In expanding the field of cybersecurity strategy,this research highlights the significance of combined deep learning models in strengthening intrusion detection systems against sophisticated cyber threats. 展开更多
关键词 Cloud encryption RAAS ENSEMBLE threat detection deep learning CYBERSECURITY
下载PDF
Detecting XSS with Random Forest and Multi-Channel Feature Extraction
5
作者 Qiurong Qin Yueqin Li +3 位作者 Yajie Mi Jinhui Shen Kexin Wu Zhenzhao Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期843-874,共32页
In the era of the Internet,widely used web applications have become the target of hacker attacks because they contain a large amount of personal information.Among these vulnerabilities,stealing private data through cr... In the era of the Internet,widely used web applications have become the target of hacker attacks because they contain a large amount of personal information.Among these vulnerabilities,stealing private data through crosssite scripting(XSS)attacks is one of the most commonly used attacks by hackers.Currently,deep learning-based XSS attack detection methods have good application prospects;however,they suffer from problems such as being prone to overfitting,a high false alarm rate,and low accuracy.To address these issues,we propose a multi-stage feature extraction and fusion model for XSS detection based on Random Forest feature enhancement.The model utilizes RandomForests to capture the intrinsic structure and patterns of the data by extracting leaf node indices as features,which are subsequentlymergedwith the original data features to forma feature setwith richer information content.Further feature extraction is conducted through three parallel channels.Channel I utilizes parallel onedimensional convolutional layers(1Dconvolutional layers)with different convolutional kernel sizes to extract local features at different scales and performmulti-scale feature fusion;Channel II employsmaximum one-dimensional pooling layers(max 1D pooling layers)of various sizes to extract key features from the data;and Channel III extracts global information bi-directionally using a Bi-Directional Long-Short TermMemory Network(Bi-LSTM)and incorporates a multi-head attention mechanism to enhance global features.Finally,effective classification and prediction of XSS are performed by fusing the features of the three channels.To test the effectiveness of the model,we conduct experiments on six datasets.We achieve an accuracy of 100%on the UNSW-NB15 dataset and 99.99%on the CICIDS2017 dataset,which is higher than that of the existing models. 展开更多
关键词 Random forest feature enhancement three-channel parallelism XSS detection
下载PDF
YOLO-VSI: An Improved YOLOv8 Model for Detecting Railway Turnouts Defects in Complex Environments
6
作者 Chenghai Yu Zhilong Lu 《Computers, Materials & Continua》 SCIE EI 2024年第11期3261-3280,共20页
Railway turnouts often develop defects such as chipping,cracks,and wear during use.If not detected and addressed promptly,these defects can pose significant risks to train operation safety and passenger security.Despi... Railway turnouts often develop defects such as chipping,cracks,and wear during use.If not detected and addressed promptly,these defects can pose significant risks to train operation safety and passenger security.Despite advances in defect detection technologies,research specifically targeting railway turnout defects remains limited.To address this gap,we collected images from railway inspectors and constructed a dataset of railway turnout defects in complex environments.To enhance detection accuracy,we propose an improved YOLOv8 model named YOLO-VSS-SOUP-Inner-CIoU(YOLO-VSI).The model employs a state-space model(SSM)to enhance the C2f module in the YOLOv8 backbone,proposed the C2f-VSS module to better capture long-range dependencies and contextual features,thus improving feature extraction in complex environments.In the network’s neck layer,we integrate SPDConv and Omni-Kernel Network(OKM)modules to improve the original PAFPN(Path Aggregation Feature Pyramid Network)structure,and proposed the Small Object Upgrade Pyramid(SOUP)structure to enhance small object detection capabilities.Additionally,the Inner-CIoU loss function with a scale factor is applied to further enhance the model’s detection capabilities.Compared to the baseline model,YOLO-VSI demonstrates a 3.5%improvement in average precision on our railway turnout dataset,showcasing increased accuracy and robustness.Experiments on the public NEU-DET dataset reveal a 2.3%increase in average precision over the baseline,indicating that YOLO-VSI has good generalization capabilities. 展开更多
关键词 YOLO railway turnouts defect detection mamba FPN(Feature Pyramid Network)
下载PDF
A Model for Detecting Fake News by Integrating Domain-Specific Emotional and Semantic Features
7
作者 Wen Jiang Mingshu Zhang +4 位作者 Xu’an Wang Wei Bin Xiong Zhang Kelan Ren Facheng Yan 《Computers, Materials & Continua》 SCIE EI 2024年第8期2161-2179,共19页
With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature t... With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature to identify fake news,but these methods have limitations when dealing with news in specific domains.In order to solve the problem of weak feature correlation between data from different domains,a model for detecting fake news by integrating domain-specific emotional and semantic features is proposed.This method makes full use of the attention mechanism,grasps the correlation between different features,and effectively improves the effect of feature fusion.The algorithm first extracts the semantic features of news text through the Bi-LSTM(Bidirectional Long Short-Term Memory)layer to capture the contextual relevance of news text.Senta-BiLSTM is then used to extract emotional features and predict the probability of positive and negative emotions in the text.It then uses domain features as an enhancement feature and attention mechanism to fully capture more fine-grained emotional features associated with that domain.Finally,the fusion features are taken as the input of the fake news detection classifier,combined with the multi-task representation of information,and the MLP and Softmax functions are used for classification.The experimental results show that on the Chinese dataset Weibo21,the F1 value of this model is 0.958,4.9% higher than that of the sub-optimal model;on the English dataset FakeNewsNet,the F1 value of the detection result of this model is 0.845,1.8% higher than that of the sub-optimal model,which is advanced and feasible. 展开更多
关键词 Fake news detection domain-related emotional features semantic features feature fusion
下载PDF
A Method for Detecting and Recognizing Yi Character Based on Deep Learning
8
作者 Haipeng Sun Xueyan Ding +2 位作者 Jian Sun HuaYu Jianxin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2721-2739,共19页
Aiming at the challenges associated with the absence of a labeled dataset for Yi characters and the complexity of Yi character detection and recognition,we present a deep learning-based approach for Yi character detec... Aiming at the challenges associated with the absence of a labeled dataset for Yi characters and the complexity of Yi character detection and recognition,we present a deep learning-based approach for Yi character detection and recognition.In the detection stage,an improved Differentiable Binarization Network(DBNet)framework is introduced to detect Yi characters,in which the Omni-dimensional Dynamic Convolution(ODConv)is combined with the ResNet-18 feature extraction module to obtain multi-dimensional complementary features,thereby improving the accuracy of Yi character detection.Then,the feature pyramid network fusion module is used to further extract Yi character image features,improving target recognition at different scales.Further,the previously generated feature map is passed through a head network to produce two maps:a probability map and an adaptive threshold map of the same size as the original map.These maps are then subjected to a differentiable binarization process,resulting in an approximate binarization map.This map helps to identify the boundaries of the text boxes.Finally,the text detection box is generated after the post-processing stage.In the recognition stage,an improved lightweight MobileNetV3 framework is used to recognize the detect character regions,where the original Squeeze-and-Excitation(SE)block is replaced by the efficient Shuffle Attention(SA)that integrates spatial and channel attention,improving the accuracy of Yi characters recognition.Meanwhile,the use of depth separable convolution and reversible residual structure can reduce the number of parameters and computation of the model,so that the model can better understand the contextual information and improve the accuracy of text recognition.The experimental results illustrate that the proposed method achieves good results in detecting and recognizing Yi characters,with detection and recognition accuracy rates of 97.5%and 96.8%,respectively.And also,we have compared the detection and recognition algorithms proposed in this paper with other typical algorithms.In these comparisons,the proposed model achieves better detection and recognition results with a certain reliability. 展开更多
关键词 Yi characters text detection text recognition attention mechanism deep neural network
下载PDF
Method for Detecting Industrial Defects in Intelligent Manufacturing Using Deep Learning
9
作者 Bowen Yu Chunli Xie 《Computers, Materials & Continua》 SCIE EI 2024年第1期1329-1343,共15页
With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivo... With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivotal for ensuring production safety,a critical factor in monitoring the health status of manufacturing apparatus.Conventional defect detection techniques,typically limited to specific scenarios,often require manual feature extraction,leading to inefficiencies and limited versatility in the overall process.Our research presents an intelligent defect detection methodology that leverages deep learning techniques to automate feature extraction and defect localization processes.Our proposed approach encompasses a suite of components:the high-level feature learning block(HLFLB),the multi-scale feature learning block(MSFLB),and a dynamic adaptive fusion block(DAFB),working in tandem to extract meticulously and synergistically aggregate defect-related characteristics across various scales and hierarchical levels.We have conducted validation of the proposed method using datasets derived from gearbox and bearing assessments.The empirical outcomes underscore the superior defect detection capability of our approach.It demonstrates consistently high performance across diverse datasets and possesses the accuracy required to categorize defects,taking into account their specific locations and the extent of damage,proving the method’s effectiveness and reliability in identifying defects in industrial components. 展开更多
关键词 Industrial defect detection deep learning intelligent manufacturing
下载PDF
A Novel YOLOv5s-Based Lightweight Model for Detecting Fish’s Unhealthy States in Aquaculture
10
作者 Bing Shi Jianhua Zhao +2 位作者 Bin Ma Juan Huan Yueping Sun 《Computers, Materials & Continua》 SCIE EI 2024年第11期2437-2456,共20页
Real-time detection of unhealthy fish remains a significant challenge in intensive recirculating aquaculture.Early recognition of unhealthy fish and the implementation of appropriate treatment measures are crucial for... Real-time detection of unhealthy fish remains a significant challenge in intensive recirculating aquaculture.Early recognition of unhealthy fish and the implementation of appropriate treatment measures are crucial for preventing the spread of diseases and minimizing economic losses.To address this issue,an improved algorithm based on the You Only Look Once v5s(YOLOv5s)lightweight model has been proposed.This enhanced model incorporates a faster lightweight structure and a new Convolutional Block Attention Module(CBAM)to achieve high recognition accuracy.Furthermore,the model introduces theα-SIoU loss function,which combines theα-Intersection over Union(α-IoU)and Shape Intersection over Union(SIoU)loss functions,thereby improving the accuracy of bounding box regression and object recognition.The average precision of the improved model reaches 94.2%for detecting unhealthy fish,representing increases of 11.3%,9.9%,9.7%,2.5%,and 2.1%compared to YOLOv3-tiny,YOLOv4,YOLOv5s,GhostNet-YOLOv5,and YOLOv7,respectively.Additionally,the improved model positively impacts hardware efficiency,reducing requirements for memory size by 59.0%,67.0%,63.0%,44.7%,and 55.6%in comparison to the five models mentioned above.The experimental results underscore the effectiveness of these approaches in addressing the challenges associated with fish health detection,and highlighting their significant practical implications and broad application prospects. 展开更多
关键词 Intensive recirculating aquaculture unhealthy fish detection improved YOLOv5s lightweight structure
下载PDF
Standard-definition White-light,High-definition White-light versus Narrow-band Imaging Endoscopy for Detecting Colorectal Adenomas:A Multicenter Randomized Controlled Trial
11
作者 Chang-wei DUAN Hui-hong ZHAI +10 位作者 Hui XIE Xian-zong MA Dong-liang YU Lang YANG Xin WANG Yu-fen TANG Jie ZHANG Hui SU Jian-qiu SHENG Jun-feng XU Peng JIN 《Current Medical Science》 SCIE CAS 2024年第3期554-560,共7页
Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colore... Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colorectal lesions in the Chinese population.Methods This was a multicenter,single-blind,randomized,controlled trial with a non-inferiority design.Patients undergoing endoscopy for physical examination,screening,and surveillance were enrolled from July 2017 to December 2020.The primary outcome measure was the adenoma detection rate(ADR),defined as the proportion of patients with at least one adenoma detected.The associated factors for detecting adenomas were assessed using univariate and multivariate logistic regression.Results Out of 653 eligible patients enrolled,data from 596 patients were analyzed.The ADRs were 34.5%in the SD-WL group,33.5%in the HD-WL group,and 37.5%in the HD-NBI group(P=0.72).The advanced neoplasm detection rates(ANDRs)in the three arms were 17.1%,15.5%,and 10.4%(P=0.17).No significant differences were found between the SD group and HD group regarding ADR or ANDR(ADR:34.5%vs.35.6%,P=0.79;ANDR:17.1%vs.13.0%,P=0.16,respectively).Similar results were observed between the HD-WL group and HD-NBI group(ADR:33.5%vs.37.7%,P=0.45;ANDR:15.5%vs.10.4%,P=0.18,respectively).In the univariate and multivariate logistic regression analyses,neither HD-WL nor HD-NBI led to a significant difference in overall adenoma detection compared to SD-WL(HD-WL:OR 0.91,P=0.69;HD-NBI:OR 1.15,P=0.80).Conclusion HD-NBI and HD-WL are comparable to SD-WL for overall adenoma detection among Chinese outpatients.It can be concluded that HD-NBI or HD-WL is not superior to SD-WL,but more effective instruction may be needed to guide the selection of different endoscopic methods in the future.Our study’s conclusions may aid in the efficient allocation and utilization of limited colonoscopy resources,especially advanced imaging technologies. 展开更多
关键词 standard-definition white-light endoscopy high-definition white-light endoscopy narrow-band imaging colonoscopy colorectal cancer screening adenoma detection rate
下载PDF
A proposal for detecting weak electromagnetic waves around 2.6μm wavelength with Sr optical clock
12
作者 韩弱水 王伟 汪涛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期452-457,共6页
Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external... Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external infrared electromagnetic wave disturbances can be responded to.Utilizing the ac Stark shift of the clock transition,we propose a new method to detect infrared signals.According to our calculations,the theoretical detection accuracy in the vicinity of its resonance band of 2.6μm can reach the order of 10-14W,while the minimum detectable signal of common detectors is on the order of 10^(-10)W. 展开更多
关键词 infrared signal detection ^(87)Sr optical lattice clock ac Stark shift ultra stability
原文传递
Improved Mechanism for Detecting Examinations Impersonations in Public Higher Learning Institutions: Case of the Mwalimu Nyerere Memorial Academy (MNMA)
13
作者 Jasson Lwangisa Domition Rogers Philip Bhalalusesa Selemani Ismail 《Journal of Computer and Communications》 2024年第9期160-187,共28页
Currently, most public higher learning institutions in Tanzania rely on traditional in-class examinations, requiring students to register and present identification documents for examinations eligibility verification.... Currently, most public higher learning institutions in Tanzania rely on traditional in-class examinations, requiring students to register and present identification documents for examinations eligibility verification. This system, however, is prone to impersonations due to security vulnerabilities in current students’ verification system. These vulnerabilities include weak authentication, lack of encryption, and inadequate anti-counterfeiting measures. Additionally, advanced printing technologies and online marketplaces which claim to produce convincing fake identification documents make it easy to create convincing fake identity documents. The Improved Mechanism for Detecting Impersonations (IMDIs) system detects impersonations in in-class exams by integrating QR codes and dynamic question generation based on student profiles. It consists of a mobile verification app, built with Flutter and communicating via RESTful APIs, and a web system, developed with Laravel using HTML, CSS, and JavaScript. The two components communicate through APIs, with MySQL managing the database. The mobile app and web server interact to ensure efficient verification and security during examinations. The implemented IMDIs system was validated by a mobile application which is integrated with a QR codes scanner for capturing codes embedded in student Identity Cards and linking them to a dynamic question generation model. The QG model uses natural language processing (NLP) algorithm and Question Generation (QG) techniques to create dynamic profile questions. Results show that the IMDIs system could generate four challenging profile-based questions within two seconds, allowing the verification of 200 students in 33 minutes by one operator. The IMDIs system also tracks exam-eligible students, aiding in exam attendance and integrates with a Short Message Service (SMS) to report impersonation incidents to a dedicated security officer in real-time. The IMDIs system was tested and found to be 98% secure, 100% convenient, with a 0% false rejection rate and a 2% false acceptance rate, demonstrating its security, reliability, and high performance. 展开更多
关键词 Natural Language Processing (NLP) Model Impersonations Detection Dynamic Challenging Questions Traditional-in-Class Examination and Impersonation Detection
下载PDF
Detecting the backfill pipeline blockage and leakage through an LSTM-based deep learning model 被引量:1
14
作者 Bolin Xiao Shengjun Miao +2 位作者 Daohong Xia Huatao Huang Jingyu Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1573-1583,共11页
Detecting a pipeline's abnormal status,which is typically a blockage and leakage accident,is important for the continuity and safety of mine backfill.The pipeline system for gravity-transport high-density backfill... Detecting a pipeline's abnormal status,which is typically a blockage and leakage accident,is important for the continuity and safety of mine backfill.The pipeline system for gravity-transport high-density backfill(GHB)is complex.Specifically designed,efficient,and accurate abnormal pipeline detection methods for GHB are rare.This work presents a long short-term memory-based deep learning(LSTM-DL)model for GHB pipeline blockage and leakage diagnosis.First,an industrial pipeline monitoring system was introduced using pressure and flow sensors.Second,blockage and leakage field experiments were designed to solve the problem of negative sample deficiency.The pipeline's statistical characteristics with different working statuses were analyzed to show their complexity.Third,the architecture of the LSTM-DL model was elaborated on and evaluated.Finally,the LSTM-DL model was compared with state-of-the-art(SOTA)learning algorithms.The results show that the backfilling cycle comprises multiple working phases and is intermittent.Although pressure and flow signals fluctuate stably in a normal cycle,their values are diverse in different cycles.Plugging causes a sudden change in interval signal features;leakage results in long variation duration and a wide fluctuation range.Among the SOTA models,the LSTM-DL model has the highest detection accuracy of98.31%for all states and the lowest misjudgment or false positive rate of 3.21%for blockage and leakage states.The proposed model can accurately recognize various pipeline statuses of complex GHB systems. 展开更多
关键词 mine backfill blockage and leakage pipeline detection long short-term memory networks deep learning
下载PDF
Detecting While Accessing:A Semi-Supervised Learning-Based Approach for Malicious Traffic Detection in Internet of Things 被引量:1
15
作者 Yantian Luo Hancun Sun +3 位作者 Xu Chen Ning Ge Wei Feng Jianhua Lu 《China Communications》 SCIE CSCD 2023年第4期302-314,共13页
In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In thi... In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In this paper,we propose a semi-supervised learning-based approach to detect malicious traffic at the access side.It overcomes the resource-bottleneck problem of traditional malicious traffic defenders which are deployed at the victim side,and also is free of labeled traffic data in model training.Specifically,we design a coarse-grained behavior model of Io T devices by self-supervised learning with unlabeled traffic data.Then,we fine-tune this model to improve its accuracy in malicious traffic detection by adopting a transfer learning method using a small amount of labeled data.Experimental results show that our method can achieve the accuracy of 99.52%and the F1-score of 99.52%with only 1%of the labeled training data based on the CICDDoS2019 dataset.Moreover,our method outperforms the stateof-the-art supervised learning-based methods in terms of accuracy,precision,recall and F1-score with 1%of the training data. 展开更多
关键词 malicious traffic detection semi-supervised learning Internet of Things(Io T) TRANSFORMER masked behavior model
下载PDF
An Efficient Unsupervised Learning Approach for Detecting Anomaly in Cloud 被引量:1
16
作者 P.Sherubha S.P.Sasirekha +4 位作者 A.Dinesh Kumar Anguraj J.Vakula Rani Raju Anitha S.Phani Praveen R.Hariharan Krishnan 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期149-166,共18页
The Cloud system shows its growing functionalities in various industrial applications.The safety towards data transfer seems to be a threat where Network Intrusion Detection System(NIDS)is measured as an essential ele... The Cloud system shows its growing functionalities in various industrial applications.The safety towards data transfer seems to be a threat where Network Intrusion Detection System(NIDS)is measured as an essential element to fulfill security.Recently,Machine Learning(ML)approaches have been used for the construction of intellectual IDS.Most IDS are based on ML techniques either as unsupervised or supervised.In supervised learning,NIDS is based on labeled data where it reduces the efficiency of the reduced model to identify attack patterns.Similarly,the unsupervised model fails to provide a satisfactory outcome.Hence,to boost the functionality of unsupervised learning,an effectual auto-encoder is applied for feature selection to select good features.Finally,the Naïve Bayes classifier is used for classification purposes.This approach exposes the finest generalization ability to train the data.The unlabelled data is also used for adoption towards data analysis.Here,redundant and noisy samples over the dataset are eliminated.To validate the robustness and efficiency of NIDS,the anticipated model is tested over the NSL-KDD dataset.The experimental outcomes demonstrate that the anticipated approach attains superior accuracy with 93%,which is higher compared to J48,AB tree,Random Forest(RF),Regression Tree(RT),Multi-Layer Perceptrons(MLP),Support Vector Machine(SVM),and Fuzzy.Similarly,False Alarm Rate(FAR)and True Positive Rate(TPR)of Naive Bayes(NB)is 0.3 and 0.99,respectively.When compared to prevailing techniques,the anticipated approach also delivers promising outcomes. 展开更多
关键词 Network intrusion detection system feature selection auto-encoder support vector machine(SVM) ANOMALY
下载PDF
A Fluorescent Probe based on a Carbazole Derivative for Detecting Brilliant Blue in Food
17
作者 YANG Yunqiong YANG Jiaxin +3 位作者 FEI Shaojun ZHANG Zhirui LIU Yang ZHANG Hao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期308-311,共4页
Here a fluorescent probe based on a carbazole derivative(CNS)was developed to increase the detection range and reduce the detection limit of brilliant blue.Characteristics of CNS are studied.Due to the quenching abili... Here a fluorescent probe based on a carbazole derivative(CNS)was developed to increase the detection range and reduce the detection limit of brilliant blue.Characteristics of CNS are studied.Due to the quenching ability of colorants,CNS shows an excellent current response to brilliant blue(from 1 to 10μM)with a detection limit of 2.7×10^(-8)mol/L(3σ/k)in the conditions of a 1:1 volume ratio of water to tetrahydrofuran.And the stability and reproducibility of CNS in the detection of actual samples indicate great potential for application. 展开更多
关键词 fluorescent probe carbazole derivative brilliant blue DETECTION
原文传递
The concept of sUAS/DL-based system for detecting and classifying abandoned small firearms
18
作者 Jungmok Ma Oleg A.Yakimenko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期23-31,共9页
Military object detection and identification is a key capability in surveillance and reconnaissance.It is a major factor in warfare effectiveness and warfighter survivability.Inexpensive,portable,and rapidly deployabl... Military object detection and identification is a key capability in surveillance and reconnaissance.It is a major factor in warfare effectiveness and warfighter survivability.Inexpensive,portable,and rapidly deployable small unmanned aerial systems(s UAS)in conjunction with powerful deep learning(DL)based object detection models are expected to play an important role for this application.To prove overall feasibility of this approach,this paper discusses some aspects of designing and testing of an automated detection system to locate and identify small firearms left at the training range or at the battlefield.Such a system is envisioned to involve an s UAS equipped with a modern electro-optical(EO)sensor and relying on a trained convolutional neural network(CNN).Previous study by the authors devoted to finding projectiles on the ground revealed certain challenges such as small object size,changes in aspect ratio and image scale,motion blur,occlusion,and camouflage.This study attempts to deal with these challenges in a realistic operational scenario and go further by not only detecting different types of firearms but also classifying them into different categories.This study used a YOLOv2CNN(Res Net-50 backbone network)to train the model with ground truth data and demonstrated a high mean average precision(m AP)of 0.97 to detect and identify not only small pistols but also partially occluded rifles. 展开更多
关键词 Small firearms Object detection Deep learning Small unmanned aerial systems
下载PDF
Blockchain‑oriented approach for detecting cyber‑attack transactions
19
作者 Zhiqi Feng Yongli Li Xiaochen Ma 《Financial Innovation》 2023年第1期2190-2227,共38页
With the high-speed development of decentralized applications,account-based blockchain platforms have become a hotbed of various financial scams and hacks due to their anonymity and high financial value.Financial secu... With the high-speed development of decentralized applications,account-based blockchain platforms have become a hotbed of various financial scams and hacks due to their anonymity and high financial value.Financial security has become a top priority with the sustainable development of blockchain-based platforms because of an increasing number of cyber attacks,which have resulted in a huge loss of crypto assets in recent years.Therefore,it is imperative to study the real-time detection of cyber attacks to facilitate effective supervision and regulation.To this end,this paper proposes the weighted and extended isolation forest algorithms and designs a novel framework for the real-time detection of cyber-attack transactions by thoroughly studying and summarizing real-world examples.Furthermore,this study develops a new detection approach for locating the compromised address of a cyber attack to resolve the data scarcity of hack addresses and reduce time consumption.Moreover,three experiments are carried out not only to apply on different types of cyber attacks but also to compare the proposed approach with the widely used existing methods.The results demonstrate the high efficiency and generality of the proposed approach.Finally,the lower time consumption and robustness of our method were validated through additional experiments.In conclusion,the proposed blockchain-oriented approach in this study can handle real-time detection of cyber attacks and has significant scope for applications. 展开更多
关键词 Blockchain Cyber-attack detection Extended isolation forest Decentralized application Financial security Fintech
下载PDF
The Possibility of Detecting our Solar System through Astrometry
20
作者 Dong-Hong Wu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第11期198-204,共7页
Searching for exoplanets with different methods has always been the focus of astronomers over the past few years.Among multiple planet detection techniques,astrometry stands out for its capability to accurately determ... Searching for exoplanets with different methods has always been the focus of astronomers over the past few years.Among multiple planet detection techniques,astrometry stands out for its capability to accurately determine the orbital parameters of exoplanets.In this study,we examine the likelihood of extraterrestrial intelligent civilizations detecting planets in our solar system using the astrometry method.By conducting injection-recovery simulations,we investigate the detectability of the four giant planets in our solar system under different observing baselines and observational errors.Our findings indicate that extraterrestrial intelligence could detect and characterize all four giant planets,provided they are observed for a minimum of 90 yr with signal-noise ratios exceeding 1.For individual planets such as Jupiter,Saturn,and Neptune,a baseline that surpasses half of their orbital periods is necessary for detection.However,Uranus requires longer observing baselines since its orbital period is roughly half of that of Neptune.If the astrometry precision is equal to or better than 10μas,all 8707 stars located within30 pc of our solar system possess the potential to detect the four giant planets within 100 yr.Additionally,our prediction suggests that over 300 stars positioned within 10 pc from our solar system could detect our Earth if they achieve an astrometry precision of 0.3μas. 展开更多
关键词 ASTROMETRY planets and satellites:detection Planetary Systems
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部