期刊文献+
共找到1,598篇文章
< 1 2 80 >
每页显示 20 50 100
Enhancing Early Detection of Lung Cancer through Advanced Image Processing Techniques and Deep Learning Architectures for CT Scans
1
作者 Nahed Tawfik Heba M.Emara +3 位作者 Walid El-Shafai Naglaa F.Soliman Abeer D.Algarni Fathi EAbd El-Samie 《Computers, Materials & Continua》 SCIE EI 2024年第10期271-307,共37页
Lung cancer remains a major concern in modern oncology due to its high mortality rates and multifaceted origins,including hereditary factors and various clinical changes.It stands as the deadliest type of cancer and a... Lung cancer remains a major concern in modern oncology due to its high mortality rates and multifaceted origins,including hereditary factors and various clinical changes.It stands as the deadliest type of cancer and a significant cause of cancer-related deaths globally.Early diagnosis enables healthcare providers to administer appropriate treatment measures promptly and accurately,leading to improved prognosis and higher survival rates.The significant increase in both the incidence and mortality rates of lung cancer,particularly its ranking as the second most prevalent cancer among women worldwide,underscores the need for comprehensive research into efficient screening methods.Advances in diagnostic techniques,particularly the use of computed tomography(CT)scans,have revolutionized the identification of lung cancer.CT scans are renowned for their ability to provide high-resolution images and are particularly effective in detecting small,calcified areas,crucial for identifying earlystage lung cancer.Consequently,there is growing interest in enhancing computer-aided detection(CAD)systems.These algorithms assist radiologists by reducing false-positive interpretations and improving the accuracy of early cancer diagnosis.This study aims to enhance the effectiveness of CAD systems through various methods.Initially,the Contrast Limited Adaptive Histogram Equalization(CLAHE)algorithm is employed to preprocess CT scan images,thereby improving their visual quality.Further refinement is achieved by integrating different optimization strategies with the CLAHE method.The CutMix data augmentation technique is applied to boost the performance of the proposed model.A comparative analysis is conducted using deep learning architectures such as InceptionV3,ResNet101,Xception,and EfficientNet.The study evaluates the performance of these architectures in image classification tasks,both with and without the implementation of the CLAHE algorithm.The empirical findings of the study demonstrate a significant reduction in the false positive rate(FPR)and an overall enhancement in diagnostic accuracy.This research not only contributes to the field of medical imaging but also holds significant implications for the early detection and treatment of lung cancer,ultimately aiming to reduce its mortality rates. 展开更多
关键词 Lung cancer detection CLAHE algorithm optimization deep learning CLASSIFICATION feature extraction healthcare applications
下载PDF
Gradient Optimizer Algorithm with Hybrid Deep Learning Based Failure Detection and Classification in the Industrial Environment
2
作者 Mohamed Zarouan Ibrahim M.Mehedi +1 位作者 Shaikh Abdul Latif Md.Masud Rana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1341-1364,共24页
Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Indu... Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects. 展开更多
关键词 Fault detection Industry 4.0 gradient optimizer algorithm deep learning rotating machineries artificial intelligence
下载PDF
Lightweight Underwater Target Detection Using YOLOv8 with Multi-Scale Cross-Channel Attention
3
作者 Xueyan Ding Xiyu Chen +1 位作者 Jiaxin Wang Jianxin Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期713-727,共15页
Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations ... Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations and promoting ocean exploration.Nevertheless,low imaging quality,harsh underwater environments,and obscured objects considerably increase the difficulty of detecting underwater targets,making it difficult for current detection methods to achieve optimal performance.In order to enhance underwater object perception and improve target detection precision,we propose a lightweight underwater target detection method using You Only Look Once(YOLO)v8 with multi-scale cross-channel attention(MSCCA),named YOLOv8-UOD.In the proposed multiscale cross-channel attention module,multi-scale attention(MSA)augments the variety of attentional perception by extracting information from innately diverse sensory fields.The cross-channel strategy utilizes RepVGGbased channel shuffling(RCS)and one-shot aggregation(OSA)to rearrange feature map channels according to specific rules.It aggregates all features only once in the final feature mapping,resulting in the extraction of more comprehensive and valuable feature information.The experimental results show that the proposed YOLOv8-UOD achieves a mAP50 of 95.67%and FLOPs of 23.8 G on the Underwater Robot Picking Contest 2017(URPC2017)dataset,outperforming other methods in terms of detection precision and computational cost-efficiency. 展开更多
关键词 deep learning underwater target detection attention mechanism
下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
4
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
下载PDF
Improvement of High-Speed Detection Algorithm for Nonwoven Material Defects Based on Machine Vision 被引量:2
5
作者 LI Chengzu WEI Kehan +4 位作者 ZHAO Yingbo TIAN Xuehui QIAN Yang ZHANG Lu WANG Rongwu 《Journal of Donghua University(English Edition)》 CAS 2024年第4期416-427,共12页
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki... Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production. 展开更多
关键词 defect detection nonwoven materials deep learning object detection algorithm transfer learning halfprecision quantization
下载PDF
Improved YOLOv8-based Marine Life Detection Algorithm
6
作者 Qiang Li Boyan Xu +3 位作者 Chong Hua Zhu Xiongjie Liang Ziying Weng Guiming Lin 《Journal of Electronic Research and Application》 2025年第1期7-13,共7页
Aiming at the problems of insufficient feature extraction ability for small targets,complex image background,and low detection accuracy in marine life detection,this paper proposes a marine life detection algorithm SG... Aiming at the problems of insufficient feature extraction ability for small targets,complex image background,and low detection accuracy in marine life detection,this paper proposes a marine life detection algorithm SGW-YOLOv8 based on the improvement of YOLOv8.First,the Adaptive Fine-Grained Channel Attention(FCA)module is fused with the backbone layer of the YOLOv8 network to improve the feature extraction ability of the model.This paper uses the YOLOv8 network backbone layer to improve the feature extraction capability of the model.Second,the Efficient Multi-Scale Attention(C2f_EMA)module is replaced with the C2f module in the Neck layer of the network to improve the detection performance of the model for small underwater targets.Finally,the loss function is optimized to Weighted Intersection over Union(WIoU)to replace the original loss function,so that the model is better adapted to the target detection task in the complex ocean background.The improved algorithm has been experimented with on the Underwater Robot Picking Contest(URPC)dataset,and the results show that the improved algorithm achieves a detection accuracy of 84.5,which is 2.3%higher than that before the improvement,and at the same time,it can accurately detect the small-target marine organisms and adapts to the task of detecting marine organisms in various complex environments. 展开更多
关键词 Yolov8 Marine organisms target detection deep learning Attention mechanisms
下载PDF
Extended Deep Learning Algorithm for Improved Brain Tumor Diagnosis System
7
作者 M.Adimoolam K.Maithili +7 位作者 N.M.Balamurugan R.Rajkumar S.Leelavathy Raju Kannadasan Mohd Anul Haq Ilyas Khan ElSayed M.Tag El Din Arfat Ahmad Khan 《Intelligent Automation & Soft Computing》 2024年第1期33-55,共23页
At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns st... At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns still need enhancement,particularly accuracy,sensitivity,false positive and false negative,to improve the brain tumor prediction system symmetrically.Therefore,this work proposed an Extended Deep Learning Algorithm(EDLA)to measure performance parameters such as accuracy,sensitivity,and false positive and false negative rates.In addition,these iterated measures were analyzed by comparing the EDLA method with the Convolutional Neural Network(CNN)way further using the SPSS tool,and respective graphical illustrations were shown.The results were that the mean performance measures for the proposed EDLA algorithm were calculated,and those measured were accuracy(97.665%),sensitivity(97.939%),false positive(3.012%),and false negative(3.182%)for ten iterations.Whereas in the case of the CNN,the algorithm means accuracy gained was 94.287%,mean sensitivity 95.612%,mean false positive 5.328%,and mean false negative 4.756%.These results show that the proposed EDLA method has outperformed existing algorithms,including CNN,and ensures symmetrically improved parameters.Thus EDLA algorithm introduces novelty concerning its performance and particular activation function.This proposed method will be utilized effectively in brain tumor detection in a precise and accurate manner.This algorithm would apply to brain tumor diagnosis and be involved in various medical diagnoses aftermodification.If the quantity of dataset records is enormous,then themethod’s computation power has to be updated. 展开更多
关键词 Brain tumor extended deep learning algorithm convolution neural network tumor detection deep learning
下载PDF
An Improved Algorithm for the Detection of Fastening Targets Based on Machine Vision 被引量:4
8
作者 Jian Yang Lang Xin +1 位作者 Haihui Huang Qiang He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期779-802,共24页
Object detection plays an important role in the sorting process of mechanical fasteners.Although object detection has been studied for many years,it has always been an industrial problem.Edge-based model matching is o... Object detection plays an important role in the sorting process of mechanical fasteners.Although object detection has been studied for many years,it has always been an industrial problem.Edge-based model matching is only suitable for a small range of illumination changes,and the matching accuracy is low.The optical flow method and the difference method are sensitive to noise and light,and camshift tracking is less effective in complex backgrounds.In this paper,an improved target detection method based on YOLOv3-tiny is proposed.The redundant regression box generated by the prediction network is filtered by soft nonmaximum suppression(NMS)instead of the hard decision NMS algorithm.This not only increases the size of the network structure by 52×52 and improves the detection accuracy of small targets but also uses the basic structure block MobileNetv2 in the feature extraction network,which enhances the feature extraction ability with the increased network layer and improves network performance.The experimental results show that the improved YOLOv3-tiny target detection algorithm improves the detection ability of bolts,nuts,screws and gaskets.The accuracy of a single type has been improved,which shows that the network greatly enhances the ability to learn objects with slightly complex features.The detection result of single shape features is slightly improved,which is higher than the recognition accuracy of other types.The average accuracy is increased from 0.813 to 0.839,an increase of two percentage points.The recall rate is increased from 0.804 to 0.821. 展开更多
关键词 deep learning target detection YOLOv3-tiny
下载PDF
Classification-Detection of Metal Surfaces under Lower Edge Sharpness Using a Deep Learning-Based Approach Combined with an Enhanced LoG Operator 被引量:1
9
作者 Hong Zhang Jiaming Zhou +2 位作者 Qi Wang Chengxi Zhu Haijian Shao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1551-1572,共22页
Metal flat surface in-line surface defect detection is notoriously difficult due to obstacles such as high surface reflectivity,pseudo-defect interference,and random elastic deformation.This study evaluates the approa... Metal flat surface in-line surface defect detection is notoriously difficult due to obstacles such as high surface reflectivity,pseudo-defect interference,and random elastic deformation.This study evaluates the approach for detecting scratches on a metal surface in order to address a problem in the detection process.This paper proposes an improved Gauss-Laplace(LoG)operator combined with a deep learning technique for metal surface scratch identification in order to solve the difficulties that it is challenging to reduce noise and that the edges are unclear when utilizing existing edge detection algorithms.In the process of scratch identification,it is challenging to differentiate between the scratch edge and the interference edge.Therefore,local texture screening is utilized by deep learning techniques that evaluate and identify scratch edges and interference edges based on the local texture characteristics of scratches.Experiments have proven that by combining the improved LoG operator with a deep learning strategy,it is able to effectively detect image edges,distinguish between scratch edges and interference edges,and identify clear scratch information.Experiments based on the six categories of meta scratches indicate that the proposedmethod has achieved rolled-in crazing(100%),inclusion(94.4%),patches(100%),pitted(100%),rolled(100%),and scratches(100%),respectively. 展开更多
关键词 deep learning gaussian-laplace algorithm texture feature scratch detection
下载PDF
Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection System 被引量:1
10
作者 Ala Saleh Alluhaidan Masoud Alajmi +3 位作者 Fahd N.Al-Wesabi Anwer Mustafa Hilal Manar Ahmed Hamza Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2022年第8期2713-2727,共15页
Human fall detection(FD)acts as an important part in creating sensor based alarm system,enabling physical therapists to minimize the effect of fall events and save human lives.Generally,elderly people suffer from seve... Human fall detection(FD)acts as an important part in creating sensor based alarm system,enabling physical therapists to minimize the effect of fall events and save human lives.Generally,elderly people suffer from several diseases,and fall action is a common situation which can occur at any time.In this view,this paper presents an Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection(IAOA-DLFD)model to identify the fall/non-fall events.The proposed IAOA-DLFD technique comprises different levels of pre-processing to improve the input image quality.Besides,the IAOA with Capsule Network based feature extractor is derived to produce an optimal set of feature vectors.In addition,the IAOA uses to significantly boost the overall FD performance by optimal choice of CapsNet hyperparameters.Lastly,radial basis function(RBF)network is applied for determining the proper class labels of the test images.To showcase the enhanced performance of the IAOA-DLFD technique,a wide range of experiments are executed and the outcomes stated the enhanced detection outcome of the IAOA-DLFD approach over the recent methods with the accuracy of 0.997. 展开更多
关键词 Fall detection intelligent model deep learning archimedes optimization algorithm capsule network
下载PDF
Deep Transfer Learning Driven Automated Fall Detection for Quality of Living of Disabled Persons
11
作者 Nabil Almalki Mrim M.Alnfiai +3 位作者 Fahd N.Al-Wesabi Mesfer Alduhayyem Anwer Mustafa Hilal Manar Ahmed Hamza 《Computers, Materials & Continua》 SCIE EI 2023年第3期6719-6736,共18页
Mobile communication and the Internet of Things(IoT)technologies have recently been established to collect data from human beings and the environment.The data collected can be leveraged to provide intelligent services... Mobile communication and the Internet of Things(IoT)technologies have recently been established to collect data from human beings and the environment.The data collected can be leveraged to provide intelligent services through different applications.It is an extreme challenge to monitor disabled people from remote locations.It is because day-to-day events like falls heavily result in accidents.For a person with disabilities,a fall event is an important cause of mortality and post-traumatic complications.Therefore,detecting the fall events of disabled persons in smart homes at early stages is essential to provide the necessary support and increase their survival rate.The current study introduces a Whale Optimization Algorithm Deep Transfer Learning-DrivenAutomated Fall Detection(WOADTL-AFD)technique to improve the Quality of Life for persons with disabilities.The primary aim of the presented WOADTL-AFD technique is to identify and classify the fall events to help disabled individuals.To attain this,the proposed WOADTL-AFDmodel initially uses amodified SqueezeNet feature extractor which proficiently extracts the feature vectors.In addition,the WOADTLAFD technique classifies the fall events using an extreme Gradient Boosting(XGBoost)classifier.In the presented WOADTL-AFD technique,the WOA approach is used to fine-tune the hyperparameters involved in the modified SqueezeNet model.The proposedWOADTL-AFD technique was experimentally validated using the benchmark datasets,and the results confirmed the superior performance of the proposedWOADTL-AFD method compared to other recent approaches. 展开更多
关键词 Quality of living disabled persons intelligent models deep learning fall detection whale optimization algorithm
下载PDF
Using deep learning to detect small targets in infrared oversampling images 被引量:15
12
作者 LIN Liangkui WANG Shaoyou TANG Zhongxing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期947-952,共6页
According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extrac... According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance. 展开更多
关键词 infrared small target detection OVERSAMPLING deep learning convolutional neural network(CNN)
下载PDF
Deep Learning Based Optimal Multimodal Fusion Framework for Intrusion Detection Systems for Healthcare Data 被引量:1
13
作者 Phong Thanh Nguyen Vy Dang Bich Huynh +3 位作者 Khoa Dang Vo Phuong Thanh Phan Mohamed Elhoseny Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2021年第3期2555-2571,共17页
Data fusion is a multidisciplinary research area that involves different domains.It is used to attain minimum detection error probability and maximum reliability with the help of data retrieved from multiple healthcar... Data fusion is a multidisciplinary research area that involves different domains.It is used to attain minimum detection error probability and maximum reliability with the help of data retrieved from multiple healthcare sources.The generation of huge quantity of data from medical devices resulted in the formation of big data during which data fusion techniques become essential.Securing medical data is a crucial issue of exponentially-pacing computing world and can be achieved by Intrusion Detection Systems(IDS).In this regard,since singularmodality is not adequate to attain high detection rate,there is a need exists to merge diverse techniques using decision-based multimodal fusion process.In this view,this research article presents a new multimodal fusion-based IDS to secure the healthcare data using Spark.The proposed model involves decision-based fusion model which has different processes such as initialization,pre-processing,Feature Selection(FS)and multimodal classification for effective detection of intrusions.In FS process,a chaotic Butterfly Optimization(BO)algorithmcalled CBOA is introduced.Though the classic BO algorithm offers effective exploration,it fails in achieving faster convergence.In order to overcome this,i.e.,to improve the convergence rate,this research work modifies the required parameters of BO algorithm using chaos theory.Finally,to detect intrusions,multimodal classifier is applied by incorporating three Deep Learning(DL)-based classification models.Besides,the concepts like Hadoop MapReduce and Spark were also utilized in this study to achieve faster computation of big data in parallel computation platform.To validate the outcome of the presented model,a series of experimentations was performed using the benchmark NSLKDDCup99 Dataset repository.The proposed model demonstrated its effective results on the applied dataset by offering the maximum accuracy of 99.21%,precision of 98.93%and detection rate of 99.59%.The results assured the betterment of the proposed model. 展开更多
关键词 Big data data fusion deep learning intrusion detection bio-inspired algorithm SPARK
下载PDF
Automated Pavement Crack Detection Using Deep Feature Selection and Whale Optimization Algorithm 被引量:1
14
作者 Shorouq Alshawabkeh Li Wu +3 位作者 Daojun Dong Yao Cheng Liping Li Mohammad Alanaqreh 《Computers, Materials & Continua》 SCIE EI 2023年第10期63-77,共15页
Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses.Recent advancements in deep learning(DL)techniques have shown promising results in detecting pavement cracks;howe... Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses.Recent advancements in deep learning(DL)techniques have shown promising results in detecting pavement cracks;however,the selection of relevant features for classification remains challenging.In this study,we propose a new approach for pavement crack detection that integrates deep learning for feature extraction,the whale optimization algorithm(WOA)for feature selection,and random forest(RF)for classification.The performance of the models was evaluated using accuracy,recall,precision,F1 score,and area under the receiver operating characteristic curve(AUC).Our findings reveal that Model 2,which incorporates RF into the ResNet-18 architecture,outperforms baseline Model 1 across all evaluation metrics.Nevertheless,our proposed model,which combines ResNet-18 with both WOA and RF,achieves significantly higher accuracy,recall,precision,and F1 score compared to the other two models.These results underscore the effectiveness of integrating RF and WOA into ResNet-18 for pavement crack detection applications.We applied the proposed approach to a dataset of pavement images,achieving an accuracy of 97.16%and an AUC of 0.984.Our results demonstrate that the proposed approach surpasses existing methods for pavement crack detection,offering a promising solution for the automatic identification of pavement cracks.By leveraging this approach,potential safety hazards can be identified more effectively,enabling timely repairs and maintenance measures.Lastly,the findings of this study also emphasize the potential of integrating RF and WOA with deep learning for pavement crack detection,providing road authorities with the necessary tools to make informed decisions regarding road infrastructure maintenance. 展开更多
关键词 Pavement crack detection deep learning feature selection whale optimization algorithm civil engineering
下载PDF
Enhanced Coyote Optimization with Deep Learning Based Cloud-Intrusion Detection System 被引量:1
15
作者 Abdullah M.Basahel Mohammad Yamin +1 位作者 Sulafah M.Basahel E.Laxmi Lydia 《Computers, Materials & Continua》 SCIE EI 2023年第2期4319-4336,共18页
Cloud Computing(CC)is the preference of all information technology(IT)organizations as it offers pay-per-use based and flexible services to its users.But the privacy and security become the main hindrances in its achi... Cloud Computing(CC)is the preference of all information technology(IT)organizations as it offers pay-per-use based and flexible services to its users.But the privacy and security become the main hindrances in its achievement due to distributed and open architecture that is prone to intruders.Intrusion Detection System(IDS)refers to one of the commonly utilized system for detecting attacks on cloud.IDS proves to be an effective and promising technique,that identifies malicious activities and known threats by observing traffic data in computers,and warnings are given when such threatswere identified.The current mainstream IDS are assisted with machine learning(ML)but have issues of low detection rates and demanded wide feature engineering.This article devises an Enhanced Coyote Optimization with Deep Learning based Intrusion Detection System for Cloud Security(ECODL-IDSCS)model.The ECODL-IDSCS model initially addresses the class imbalance data problem by the use of Adaptive Synthetic(ADASYN)technique.For detecting and classification of intrusions,long short term memory(LSTM)model is exploited.In addition,ECO algorithm is derived to optimally fine tune the hyperparameters related to the LSTM model to enhance its detection efficiency in the cloud environment.Once the presented ECODL-IDSCS model is tested on benchmark dataset,the experimental results show the promising performance of the ECODL-IDSCS model over the existing IDS models. 展开更多
关键词 Intrusion detection system cloud security coyote optimization algorithm class imbalance data deep learning
下载PDF
基于YOLOv5与DeepSort对天气雷达数据鸟杂波的识别与追踪
16
作者 姚文 李松书 +1 位作者 王海江 张晶 《气象》 北大核心 2025年第4期417-430,共14页
根据飞鸟回波在天气雷达反射率产品上呈现明显的圆环形态这一具体图像特征,提出一种基于轻量化卷积神经网络(YOLOv5)与多目标跟踪算法(DeepSort)相结合的改进算法,利用2020—2023年营口雷达体扫回波强度资料,构造模型训练数据集和测试... 根据飞鸟回波在天气雷达反射率产品上呈现明显的圆环形态这一具体图像特征,提出一种基于轻量化卷积神经网络(YOLOv5)与多目标跟踪算法(DeepSort)相结合的改进算法,利用2020—2023年营口雷达体扫回波强度资料,构造模型训练数据集和测试数据集,分别对鸟回波进行识别和追踪。首先,在YOLOv5算法中引入轻量级注意力机制以提高整体模型检测的准确性与有效性;其次,在DeepSort算法中将原有的交并比IOU匹配机制替换为一种改进的目标检测的损失函数DIOU匹配机制,DIOU在计算边界框重叠度的基础上,引入了边界框中心点之间的距离,从而提供更精确的定位,减少了因部分遮挡重叠等原因造成的追踪目标编号ID错误匹配和ID切换次数。试验结果表明,优化后的YOLOv5算法在精准度方面提升了2.6百分点,召回率提升了1.0百分点,阈值大于0.5的平均精准度提升了1.2百分点;改进后的DeepSort算法使得ID切换次数降低2次,多目标跟踪准确率提高了4.5百分点,实现对初始模型的轻量化;整体检测性能得到明显提高,满足对鸟回波识别与追踪的实际需求。 展开更多
关键词 深度学习 注意力机制 目标检测 目标追踪
下载PDF
Comparative Study of Four Classification Techniques for the Detection of Threats in Baggage from X-Ray Images
17
作者 Boka Trinité Konan Hyacinthe Kouassi Konan +1 位作者 Jules Allani Olivier Asseu 《Open Journal of Applied Sciences》 2024年第12期3490-3499,共10页
Baggage screening is crucial for airport security. This paper examines various algorithms for firearm detection in X-ray images of baggage. The focus is on identifying steel barrel bores, which are essential for deton... Baggage screening is crucial for airport security. This paper examines various algorithms for firearm detection in X-ray images of baggage. The focus is on identifying steel barrel bores, which are essential for detonation. For this, the study uses a set of 22,000 X-ray scanned images. After preprocessing with filtering techniques to improve image quality, deep learning methods, such as Convolutional Neural Networks (CNNs), are applied for classification. The results are also compared with Autoencoder and Random Forest algorithms. The results are validated on a second dataset, highlighting the advantages of the adopted approach. Baggage screening is a very important part of the risk assessment and security screening process at airports. Automating the detection of dangerous objects from passenger baggage X-ray scanners can speed up and increase the efficiency of the entire security procedure. 展开更多
关键词 deep learning Baggage Control Convolutional Neural Networks Image Filtering Object detection algorithms X-Ray Images Autoencoder Random Forests
下载PDF
Intelligent Detection Method of Substation Environmental Targets Based on MD-Yolov7
18
作者 Tao Zhou Qian Huang +1 位作者 Xiaolong Zhang Yong Zhang 《Journal of Intelligent Learning Systems and Applications》 2023年第3期76-88,共13页
The complex operating environment in substations, with different safety distances for live equipment, is a typical high-risk working area, and it is crucial to accurately identify the type of live equipment during aut... The complex operating environment in substations, with different safety distances for live equipment, is a typical high-risk working area, and it is crucial to accurately identify the type of live equipment during automated operations. This paper investigates the detection of live equipment under complex backgrounds and noise disturbances, designs a method for expanding lightweight disturbance data by fitting Gaussian stretched positional information with recurrent neural networks and iterative optimization, and proposes an intelligent detection method for MD-Yolov7 substation environmental targets based on fused multilayer feature fusion (MLFF) and detection transformer (DETR). Subsequently, to verify the performance of the proposed method, an experimental test platform was built to carry out performance validation experiments. The results show that the proposed method has significantly improved the performance of the detection accuracy of live devices compared to the pairwise comparison algorithm, with an average mean accuracy (mAP) of 99.2%, which verifies the feasibility and accuracy of the proposed method and has a high application value. 展开更多
关键词 SUBSTATION target detection deep learning Multi-Layer Feature Fusion Unmanned Vehicles
下载PDF
基于COF-YOLOv5s的油茶果识别定位 被引量:3
19
作者 王金鹏 何萌 +1 位作者 甄乾广 周宏平 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期179-188,共10页
针对自然环境下油茶果存在多种类、多遮挡及小目标等问题,该研究基于YOLOv5s提出COFYOLOv5s(camellia oleifera fruit-you only look once)油茶果识别模型,实现油茶果的高精度检测。通过添加小目标检测层、将FasterNet中的轻量化模块Fas... 针对自然环境下油茶果存在多种类、多遮挡及小目标等问题,该研究基于YOLOv5s提出COFYOLOv5s(camellia oleifera fruit-you only look once)油茶果识别模型,实现油茶果的高精度检测。通过添加小目标检测层、将FasterNet中的轻量化模块Faster Block嵌入到C3模块及添加Biformer注意力机制对YOLOv5s进行改进。试验结果表明,改进后网络在测试集上的精度、召回率、平均精度均值分别为97.6%、97.8%、99.1%,比YOLOv5s分别提高5.0、7.5、4.4个百分点,推理时间为10.3 ms。将模型部署到Jetson Xavier NX中,结合ZED mini相机进行油茶果识别与定位试验。室内试验得到COF-YOLOv5s的召回率为91.7%,室外绿油茶果的召回率为68.8%,小目标红油茶果在弱光条件下的召回率为64.3%。研究结果可为实现油茶产业的智能化和规模化提供理论支持。 展开更多
关键词 深度学习 目标检测 油茶果 采收 定位
下载PDF
Intelligent Antenna Attitude Parameters Measurement Based on Deep Learning SSD Model 被引量:2
20
作者 FAN Guotian WANG Zhibin 《ZTE Communications》 2022年第S01期36-43,共8页
Due to the consideration of safety,non-contact measurement methods are be-coming more acceptable.However,massive measurement will bring high labor-cost and low working efficiency.To address these limitations,this pape... Due to the consideration of safety,non-contact measurement methods are be-coming more acceptable.However,massive measurement will bring high labor-cost and low working efficiency.To address these limitations,this paper introduces a deep learning model for the antenna attitude parameter measurement,which can be divided into an an-tenna location phase and a calculation phase of the attitude parameter.In the first phase,a single shot multibox detector(SSD)is applied to automatically recognize and discover the antenna from pictures taken by drones.In the second phase,the located antennas’fea-ture lines are extracted and their attitude parameters are then calculated mathematically.Experiments show that the proposed algorithms outperform existing related works in effi-ciency and accuracy,and therefore can be effectively used in engineering applications. 展开更多
关键词 deep learning DRONE object detection SSD algorithm visual measurement antenna attitude parameters
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部