This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the ...This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the row space that can be used to approximately represent the unknown deterministic disturbances using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known.For closed-loop identification,CCF-N4SID is extended to the case with unknown deterministic disturbances using the oblique projection.In addition,a proper Bernstein polynomial order can be determined using the Akaike information criterion(AIC)or the Bayesian information criterion(BIC).Numerical simulation results demonstrate the effectiveness of the proposed identification method for both periodic and aperiodic deterministic disturbances.展开更多
Background:Combined knee valgus and tibial internal rotation(VL+IR)moments have been shown to stress the anterior cruciate ligament(ACL)in several in vitro cadaveric studies.To utilize this knowledge for non-contact A...Background:Combined knee valgus and tibial internal rotation(VL+IR)moments have been shown to stress the anterior cruciate ligament(ACL)in several in vitro cadaveric studies.To utilize this knowledge for non-contact ACL injury prevention in sports,it is necessary to elucidate how the ground reaction force(GRF)acting point(center of pressure(CoP))in the stance foot produces combined knee VL+IR moments in risky maneuvers,such as cuttings.However,the effects of the GRF acting point on the development of the combined knee VL+IR moment in cutting are still unknown.Methods:We first established the deterministic mechanical condition that the CoP position relative to the tibial rotational axis differentiates the GRF vector’s directional probability for developing the combined knee VL+IR moment,and theoretically predicted that when the CoP is posterior to the tibial rotational axis,the GRF vector is more likely to produce the combined knee VL+IR moment than when the CoP is anterior to the tibial rotational axis.Then,we tested a stochastic aspect of our theory in a lab-controlled in vivo experiment.Fourteen females performed 60˚cutting under forefoot/rearfoot strike conditions(10 trials each).The positions of lower limb markers and GRF data were measured,and the knee moment due to GRF vector was calculated.The trials were divided into anterior-and posterior-CoP groups depending on the CoP position relative to the tibial rotational axis at each 10 ms interval from 0 to 100 ms after foot strike,and the occurrence rate of the combined knee VL+IR moment was compared between trial groups.Results:The posterior-CoP group showed significantly higher occurrence rates of the combined knee VL+IR moment(maximum of 82.8%)at every time point than those of the anterior-CoP trials,as theoretically predicted by the deterministic mechanical condition.Conclusion:The rearfoot strikes inducing the posterior CoP should be avoided to reduce the risk of non-contact ACL injury associated with the combined knee VL+IR stress.展开更多
Autonomous driving has witnessed rapid advancement;however,ensuring safe and efficient driving in intricate scenarios remains a critical challenge.In particular,traffic roundabouts bring a set of challenges to autonom...Autonomous driving has witnessed rapid advancement;however,ensuring safe and efficient driving in intricate scenarios remains a critical challenge.In particular,traffic roundabouts bring a set of challenges to autonomous driving due to the unpredictable entry and exit of vehicles,susceptibility to traffic flow bottlenecks,and imperfect data in perceiving environmental information,rendering them a vital issue in the practical application of autonomous driving.To address the traffic challenges,this work focused on complex roundabouts with multi-lane and proposed a Perception EnhancedDeepDeterministic Policy Gradient(PE-DDPG)for AutonomousDriving in the Roundabouts.Specifically,themodel incorporates an enhanced variational autoencoder featuring an integrated spatial attention mechanism alongside the Deep Deterministic Policy Gradient framework,enhancing the vehicle’s capability to comprehend complex roundabout environments and make decisions.Furthermore,the PE-DDPG model combines a dynamic path optimization strategy for roundabout scenarios,effectively mitigating traffic bottlenecks and augmenting throughput efficiency.Extensive experiments were conducted with the collaborative simulation platform of CARLA and SUMO,and the experimental results show that the proposed PE-DDPG outperforms the baseline methods in terms of the convergence capacity of the training process,the smoothness of driving and the traffic efficiency with diverse traffic flow patterns and penetration rates of autonomous vehicles(AVs).Generally,the proposed PE-DDPGmodel could be employed for autonomous driving in complex scenarios with imperfect data.展开更多
For the linear deterministic system with unknown orders and coefficients adaptive controlsare given so that the closed-loop system is stabilized and the unknown parameters are consistentlyestimated. Moreover, if the p...For the linear deterministic system with unknown orders and coefficients adaptive controlsare given so that the closed-loop system is stabilized and the unknown parameters are consistentlyestimated. Moreover, if the parameter estimation is ignored, then the system input and outputcan be reduced to zero with an exponential rate.展开更多
Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditi...Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditions of the feedforward and feedback composite control (FFCC) laws for both infinite-time and finite-time are proposed, and the design approaches are given. A disturbance observer is introduced to make the FFCC laws realizable physically. Simulation results indicate that the FFCC laws are robust with respect to external disturbances.展开更多
Glaucoma is a group of ocular atrophy diseases that cause progressive vision loss by affecting the optic nerve.Because of its asymptomatic nature,glaucoma has become the leading cause of human blindness worldwide.In t...Glaucoma is a group of ocular atrophy diseases that cause progressive vision loss by affecting the optic nerve.Because of its asymptomatic nature,glaucoma has become the leading cause of human blindness worldwide.In this paper,a novel computer-aided diagnosis(CAD)approach for glaucomatous retinal image classification has been introduced.It extracts graph-based texture features from structurally improved fundus images using discrete wavelet-transformation(DWT)and deterministic tree-walk(DTW)procedures.Retinal images are considered from both public repositories and eye hospitals.Images are enhanced with image-specific luminance and gradient transitions for both contrast and texture improvement.The enhanced images are mapped into undirected graphs using DTW trajectories formed by the image’s wavelet coefficients.Graph-based features are extracted fromthese graphs to capture image texture patterns.Machine learning(ML)classifiers use these features to label retinal images.This approach has attained an accuracy range of 93.5%to 100%,82.1%to 99.3%,95.4%to 100%,83.3%to 96.6%,77.7%to 88.8%,and 91.4%to 100%on the ACRIMA,ORIGA,RIM-ONE,Drishti,HRF,and HOSPITAL datasets,respectively.The major strength of this approach is texture pattern identification using various topological graphs.It has achieved optimal performance with SVM and RF classifiers using biorthogonal DWT combinations on both public and patients’fundus datasets.The classification performance of the DWT-DTW approach is on par with the contemporary state-of-the-art methods,which can be helpful for ophthalmologists in glaucoma screening.展开更多
In previous works, the theoretical and experimental deterministic scalar kinematic structures, the theoretical and experimental deterministic vector kinematic structures, the theoretical and experimental deterministic...In previous works, the theoretical and experimental deterministic scalar kinematic structures, the theoretical and experimental deterministic vector kinematic structures, the theoretical and experimental deterministic scalar dynamic structures, and the theoretical and experimental deterministic vector dynamic structures have been developed to compute the exact solution for deterministic chaos of the exponential pulsons and oscillons that is governed by the nonstationary three-dimensional Navier-Stokes equations. To explore properties of the kinetic energy, rectangular, diagonal, and triangular summations of a matrix of the kinetic energy and general terms of various sums have been used in the current paper to develop quantization of the kinetic energy of deterministic chaos. Nested structures of a cumulative energy pulson, an energy pulson of propagation, an internal energy oscillon, a diagonal energy oscillon, and an external energy oscillon have been established. In turn, the energy pulsons and oscillons include group pulsons of propagation, internal group oscillons, diagonal group oscillons, and external group oscillons. Sequentially, the group pulsons and oscillons contain wave pulsons of propagation, internal wave oscillons, diagonal wave oscillons, and external wave oscillons. Consecutively, the wave pulsons and oscillons are composed of elementary pulsons of propagation, internal elementary oscillons, diagonal elementary oscillons, and external elementary oscillons. Topology, periodicity, and integral properties of the exponential pulsons and oscillons have been studied using the novel method of the inhomogeneous Fourier expansions via eigenfunctions in coordinates and time. Symbolic computations of the exact expansions have been performed using the experimental and theoretical programming in Maple. Results of the symbolic computations have been justified by probe visualizations.展开更多
In mountainous areas,snow avalanches could be triggered by the shaking produced by earthquakes.The forces induced by the earthquake can cause an irregular increase of shear strength load down the slope,for the presenc...In mountainous areas,snow avalanches could be triggered by the shaking produced by earthquakes.The forces induced by the earthquake can cause an irregular increase of shear strength load down the slope,for the presence of complex surface and buried morphologies.Topographic irregularities generate maximum effects of waves amplification linked to wavelengths comparable to the horizontal dimension of the topographic feature.For this reason,the selected time-histories represent an appropriate input for the two-dimensional numerical response analyses when a dynamic phenomenon produce the resonant motion of a whole mountain.This represents an important earthquake-induced hazard in snow-covered mountain areas with high probability of seismic events.Some valleys are located in regions with scare ground motion data and investments on infrastructures are not always accompanied by adequate protection against earthquake-induced avalanches.The paper points out a simple deterministic approach for selecting a set of real accelerograms applied to a real case of Siella Mountain(Central Italy)where a large avalanche destroying a tourist facility of Rigopiano resort on 18 January 2017.The selected time histories were used as input for the two-dimensional numerical model of the subsoil to evaluate the topographic seismic amplification in ridge and compare it with the results of other authors.These methods suggest that morphology-related inertial effects should be considered as an overload action on snow layers when controlling multi-hazard studies and spatial planning.展开更多
The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex buil...The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex building obstacles,and the aircraft's high dynamics,traditional algorithms cannot find the optimal collision-free flying path between the UAV station and the destination.Accordingly,in this paper,we study the fast UAV path planning problem in a 3D urban environment from a source point to a target point and propose a Three-Step Experience Buffer Deep Deterministic Policy Gradient(TSEB-DDPG)algorithm.We first build the 3D model of a complex urban environment with buildings and project the 3D building surface into many 2D geometric shapes.After transformation,we propose the Hierarchical Learning Particle Swarm Optimization(HL-PSO)to obtain the empirical path.Then,to ensure the accuracy of the obtained paths,the empirical path,the collision information and fast transition information are stored in the three experience buffers of the TSEB-DDPG algorithm as dynamic guidance information.The sampling ratio of each buffer is dynamically adapted to the training stages.Moreover,we designed a reward mechanism to improve the convergence speed of the DDPG algorithm for UAV path planning.The proposed TSEB-DDPG algorithm has also been compared to three widely used competitors experimentally,and the results show that the TSEB-DDPG algorithm can archive the fastest convergence speed and the highest accuracy.We also conduct experiments in real scenarios and compare the real path planning obtained by the HL-PSO algorithm,DDPG algorithm,and TSEB-DDPG algorithm.The results show that the TSEBDDPG algorithm can archive almost the best in terms of accuracy,the average time of actual path planning,and the success rate.展开更多
Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different ...Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption.展开更多
Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary a...Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency.展开更多
We investigate decomposition of codes and finite languages. A prime decomposition is a decomposition of a code or languages into a concatenation of nontrivial prime codes or languages. A code is prime if it cannot be ...We investigate decomposition of codes and finite languages. A prime decomposition is a decomposition of a code or languages into a concatenation of nontrivial prime codes or languages. A code is prime if it cannot be decomposed into at least two nontrivial codes as the same for the languages. In the paper, a linear time algorithm is designed, which finds the prime decomposition. If codes or finite languages are presented as given by its minimal deterministic automaton, then from the point of view of abstract algebra and graph theory, this automaton has special properties. The study was conducted using system for computational Discrete Algebra GAP. .展开更多
The uncertainty principle is a fundamental principle of quantum mechanics, but its exact mathematical expression cannot obtain correct results when used to solve theoretical problems such as the energy levels of hydro...The uncertainty principle is a fundamental principle of quantum mechanics, but its exact mathematical expression cannot obtain correct results when used to solve theoretical problems such as the energy levels of hydrogen atoms, one-dimensional deep potential wells, one-dimensional harmonic oscillators, and double-slit experiments. Even after approximate treatment, the results obtained are not completely consistent with those obtained by solving Schrödinger’s equation. This indicates that further research on the uncertainty principle is necessary. Therefore, using the de Broglie matter wave hypothesis, we quantize the action of an elementary particle in natural coordinates and obtain the quantization condition and a new deterministic relation. Using this quantization condition, we obtain the energy level formulas of an elementary particle in different conditions in a classical way that is completely consistent with the results obtained by solving Schrödinger’s equation. A new physical interpretation is given for the particle eigenfunction independence of probability for an elementary particle: an elementary particle is in a particle state at the space-time point where the action is quantized, and in a wave state in the rest of the space-time region. The space-time points of particle nature and the wave regions of particle motion constitute the continuous trajectory of particle motion. When an elementary particle is in a particle state, it is localized, whereas in the wave state region, it is nonlocalized.展开更多
A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit tw...A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.展开更多
The separation and detection of particles in suspension are essential for a wide spectrum of applications including medical diagnostics.In this field,microfluidic deterministic lateral displacement(DLD)holds a promise...The separation and detection of particles in suspension are essential for a wide spectrum of applications including medical diagnostics.In this field,microfluidic deterministic lateral displacement(DLD)holds a promise due to the ability of continuous separation of particles by size,shape,deformability,and electrical properties with high resolution.DLD is a passive microfluidic separation technique that has been widely implemented for various bioparticle separations from blood cells to exosomes.DLD techniques have been previously reviewed in 2014.Since then,the field has matured as several physics of DLD have been updated,new phenomena have been discovered,and various designs have been presented to achieve a higher separation performance and throughput.Furthermore,some recent progress has shown new clinical applications and ability to use the DLD arrays as a platform for biomolecules detection.This review provides a thorough discussion on the recent progress in DLD with the topics based on the fundamental studies on DLD models and applications for particle separation and detection.Furthermore,current challenges and potential solutions of DLD are also discussed.We believe that a comprehensive understanding on DLD techniques could significantly contribute toward the advancements in the field for various applications.In particular,the rapid,low-cost,and high-throughput particle separation and detection with DLD have a tremendous impact for point-of-care diagnostics.展开更多
This paper analyzes PROFIBUS-DP network delay in detail and presents the calculational formula of its maximum time-delay, which is significant to the research of PROFIBUS-DP. At the same time, the paper puts forward a...This paper analyzes PROFIBUS-DP network delay in detail and presents the calculational formula of its maximum time-delay, which is significant to the research of PROFIBUS-DP. At the same time, the paper puts forward a method of simplifying the network induced time-varying indeterminate system according to the features of the network. Through the analysis of a pump-control-motor system which is composed of PROFIBUS-DP network, it illustrates the network's influence on the performance of control systems. This method helps to design and analyze the network's influence on the performance of control systems, which is of considerable practical value in a time when network control systern is widely used.展开更多
Community resilience is becoming a growing concern for authorities and decision makers.This paper introduces two indicator-based methods to evaluate the resilience of communities based on the PEOPLES framework.PEOPLES...Community resilience is becoming a growing concern for authorities and decision makers.This paper introduces two indicator-based methods to evaluate the resilience of communities based on the PEOPLES framework.PEOPLES is a multi-layered framework that defines community resilience using seven dimensions.Each of the dimensions is described through a set of resilience indicators collected from literature and they are linked to a measure allowing the analytical computation of the indicator’s performance.The first method proposed in this paper requires data on previous disasters as an input and returns as output a performance function for each indicator and a performance function for the whole community.The second method exploits a knowledge-based fuzzy modeling for its implementation.This method allows a quantitative evaluation of the PEOPLES indicators using descriptive knowledge rather than deterministic data including the uncertainty involved in the analysis.The output of the fuzzy-based method is a resilience index for each indicator as well as a resilience index for the community.The paper also introduces an open source online tool in which the first method is implemented.A case study illustrating the application of the first method and the usage of the tool is also provided in the paper.展开更多
The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multistage compressors in steady state environment by introducing...The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multistage compressors in steady state environment by introducing de- terministic correlations (DC) that need to be modeled to close the equation system. The primary purpose of this study was to provide insight into the DC characteristics and the in- fluence of DC on the time-averaged flow field of the APES. In Part 2 of this two-part paper, the influence of DC on the time-averaged flow field was systematically studied; Several time-averaging computations boundary conditions and DC were conducted with various for the downstream stator in a transonic compressor stage, by employing the CFD solver developed in Part 1 of this two-part paper. These results were compared with the time-averaged unsteady flow field and the steady one. The study indicat;d that the circumferential- averaged DC can take into account major part of the unsteady effects on spanwise redistribution of flow fields in compres- sors. Furthermore, it demonstrated that both deterministic stresses and deterministic enthalpy fluxes are necessary to reproduce the time-averaged flow field.展开更多
The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multi- stage compressors in steady state environment by introduc-...The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multi- stage compressors in steady state environment by introduc- ing deterministic correlations (DC) that need to be modeled to close the equation system. The primary purpose of this study is to provide insight into the DC characteristics and the influence of DC on the time-averaged flow field of the APES. In Part 1 of this two-part paper, firstly a 3D viscous unsteady and time-averaging flow CFD solver is developed to investi- gate the APES technique. Then steady and unsteady simu- lations are conducted in a transonic compressor stage. The results from both simulations are compared to highlight the significance of the unsteady interactions. Furthermore, the distribution characteristics of DC are studied and the DC at the rotor/stator interface are compared with their spatial cor- relations (SC). Lastly, steady and time-averaging (employing APES with DC) simulations for the downstream stator alone are conducted employing DC derived from the unsteady re- suits. The results from steady and time-averaging simula- tions are compared with the time-averaged unsteady results. The comparisons demonstrate that the simulation employing APES with DC can reproduce the time-averaged field and the 3D viscous time-averaging flow solver is validated.展开更多
基金partially supported by National Key Research and Development Program of China(2019YFC1510902)National Natural Science Foundation of China(62073104)+1 种基金Natural Science Foundation of Heilongjiang Province(LH2022F024)China Postdoctoral Science Foundation(2022M710965)。
文摘This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the row space that can be used to approximately represent the unknown deterministic disturbances using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known.For closed-loop identification,CCF-N4SID is extended to the case with unknown deterministic disturbances using the oblique projection.In addition,a proper Bernstein polynomial order can be determined using the Akaike information criterion(AIC)or the Bayesian information criterion(BIC).Numerical simulation results demonstrate the effectiveness of the proposed identification method for both periodic and aperiodic deterministic disturbances.
基金supported by the Grant-in-Aid for Young Scientists(B)Project(Grant No.24700716)funded by the Ministry of Education,Culture,Sports,Science and Technology,Japan.
文摘Background:Combined knee valgus and tibial internal rotation(VL+IR)moments have been shown to stress the anterior cruciate ligament(ACL)in several in vitro cadaveric studies.To utilize this knowledge for non-contact ACL injury prevention in sports,it is necessary to elucidate how the ground reaction force(GRF)acting point(center of pressure(CoP))in the stance foot produces combined knee VL+IR moments in risky maneuvers,such as cuttings.However,the effects of the GRF acting point on the development of the combined knee VL+IR moment in cutting are still unknown.Methods:We first established the deterministic mechanical condition that the CoP position relative to the tibial rotational axis differentiates the GRF vector’s directional probability for developing the combined knee VL+IR moment,and theoretically predicted that when the CoP is posterior to the tibial rotational axis,the GRF vector is more likely to produce the combined knee VL+IR moment than when the CoP is anterior to the tibial rotational axis.Then,we tested a stochastic aspect of our theory in a lab-controlled in vivo experiment.Fourteen females performed 60˚cutting under forefoot/rearfoot strike conditions(10 trials each).The positions of lower limb markers and GRF data were measured,and the knee moment due to GRF vector was calculated.The trials were divided into anterior-and posterior-CoP groups depending on the CoP position relative to the tibial rotational axis at each 10 ms interval from 0 to 100 ms after foot strike,and the occurrence rate of the combined knee VL+IR moment was compared between trial groups.Results:The posterior-CoP group showed significantly higher occurrence rates of the combined knee VL+IR moment(maximum of 82.8%)at every time point than those of the anterior-CoP trials,as theoretically predicted by the deterministic mechanical condition.Conclusion:The rearfoot strikes inducing the posterior CoP should be avoided to reduce the risk of non-contact ACL injury associated with the combined knee VL+IR stress.
基金supported in part by the projects of the National Natural Science Foundation of China(62376059,41971340)Fujian Provincial Department of Science and Technology(2023XQ008,2023I0024,2021Y4019),Fujian Provincial Department of Finance(GY-Z230007,GYZ23012)Fujian Key Laboratory of Automotive Electronics and Electric Drive(KF-19-22001).
文摘Autonomous driving has witnessed rapid advancement;however,ensuring safe and efficient driving in intricate scenarios remains a critical challenge.In particular,traffic roundabouts bring a set of challenges to autonomous driving due to the unpredictable entry and exit of vehicles,susceptibility to traffic flow bottlenecks,and imperfect data in perceiving environmental information,rendering them a vital issue in the practical application of autonomous driving.To address the traffic challenges,this work focused on complex roundabouts with multi-lane and proposed a Perception EnhancedDeepDeterministic Policy Gradient(PE-DDPG)for AutonomousDriving in the Roundabouts.Specifically,themodel incorporates an enhanced variational autoencoder featuring an integrated spatial attention mechanism alongside the Deep Deterministic Policy Gradient framework,enhancing the vehicle’s capability to comprehend complex roundabout environments and make decisions.Furthermore,the PE-DDPG model combines a dynamic path optimization strategy for roundabout scenarios,effectively mitigating traffic bottlenecks and augmenting throughput efficiency.Extensive experiments were conducted with the collaborative simulation platform of CARLA and SUMO,and the experimental results show that the proposed PE-DDPG outperforms the baseline methods in terms of the convergence capacity of the training process,the smoothness of driving and the traffic efficiency with diverse traffic flow patterns and penetration rates of autonomous vehicles(AVs).Generally,the proposed PE-DDPGmodel could be employed for autonomous driving in complex scenarios with imperfect data.
基金This project is supported by the National Natural Science Foundation of China
文摘For the linear deterministic system with unknown orders and coefficients adaptive controlsare given so that the closed-loop system is stabilized and the unknown parameters are consistentlyestimated. Moreover, if the parameter estimation is ignored, then the system input and outputcan be reduced to zero with an exponential rate.
基金This project was supported by the National Natural Science Foundation of China (60574023), the Natural Science Foundation of Shandong Province (Z2005G01), and the Natural Science Foundation of Qingdao City (05-1-JC-94).
文摘Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditions of the feedforward and feedback composite control (FFCC) laws for both infinite-time and finite-time are proposed, and the design approaches are given. A disturbance observer is introduced to make the FFCC laws realizable physically. Simulation results indicate that the FFCC laws are robust with respect to external disturbances.
文摘Glaucoma is a group of ocular atrophy diseases that cause progressive vision loss by affecting the optic nerve.Because of its asymptomatic nature,glaucoma has become the leading cause of human blindness worldwide.In this paper,a novel computer-aided diagnosis(CAD)approach for glaucomatous retinal image classification has been introduced.It extracts graph-based texture features from structurally improved fundus images using discrete wavelet-transformation(DWT)and deterministic tree-walk(DTW)procedures.Retinal images are considered from both public repositories and eye hospitals.Images are enhanced with image-specific luminance and gradient transitions for both contrast and texture improvement.The enhanced images are mapped into undirected graphs using DTW trajectories formed by the image’s wavelet coefficients.Graph-based features are extracted fromthese graphs to capture image texture patterns.Machine learning(ML)classifiers use these features to label retinal images.This approach has attained an accuracy range of 93.5%to 100%,82.1%to 99.3%,95.4%to 100%,83.3%to 96.6%,77.7%to 88.8%,and 91.4%to 100%on the ACRIMA,ORIGA,RIM-ONE,Drishti,HRF,and HOSPITAL datasets,respectively.The major strength of this approach is texture pattern identification using various topological graphs.It has achieved optimal performance with SVM and RF classifiers using biorthogonal DWT combinations on both public and patients’fundus datasets.The classification performance of the DWT-DTW approach is on par with the contemporary state-of-the-art methods,which can be helpful for ophthalmologists in glaucoma screening.
文摘In previous works, the theoretical and experimental deterministic scalar kinematic structures, the theoretical and experimental deterministic vector kinematic structures, the theoretical and experimental deterministic scalar dynamic structures, and the theoretical and experimental deterministic vector dynamic structures have been developed to compute the exact solution for deterministic chaos of the exponential pulsons and oscillons that is governed by the nonstationary three-dimensional Navier-Stokes equations. To explore properties of the kinetic energy, rectangular, diagonal, and triangular summations of a matrix of the kinetic energy and general terms of various sums have been used in the current paper to develop quantization of the kinetic energy of deterministic chaos. Nested structures of a cumulative energy pulson, an energy pulson of propagation, an internal energy oscillon, a diagonal energy oscillon, and an external energy oscillon have been established. In turn, the energy pulsons and oscillons include group pulsons of propagation, internal group oscillons, diagonal group oscillons, and external group oscillons. Sequentially, the group pulsons and oscillons contain wave pulsons of propagation, internal wave oscillons, diagonal wave oscillons, and external wave oscillons. Consecutively, the wave pulsons and oscillons are composed of elementary pulsons of propagation, internal elementary oscillons, diagonal elementary oscillons, and external elementary oscillons. Topology, periodicity, and integral properties of the exponential pulsons and oscillons have been studied using the novel method of the inhomogeneous Fourier expansions via eigenfunctions in coordinates and time. Symbolic computations of the exact expansions have been performed using the experimental and theoretical programming in Maple. Results of the symbolic computations have been justified by probe visualizations.
文摘In mountainous areas,snow avalanches could be triggered by the shaking produced by earthquakes.The forces induced by the earthquake can cause an irregular increase of shear strength load down the slope,for the presence of complex surface and buried morphologies.Topographic irregularities generate maximum effects of waves amplification linked to wavelengths comparable to the horizontal dimension of the topographic feature.For this reason,the selected time-histories represent an appropriate input for the two-dimensional numerical response analyses when a dynamic phenomenon produce the resonant motion of a whole mountain.This represents an important earthquake-induced hazard in snow-covered mountain areas with high probability of seismic events.Some valleys are located in regions with scare ground motion data and investments on infrastructures are not always accompanied by adequate protection against earthquake-induced avalanches.The paper points out a simple deterministic approach for selecting a set of real accelerograms applied to a real case of Siella Mountain(Central Italy)where a large avalanche destroying a tourist facility of Rigopiano resort on 18 January 2017.The selected time histories were used as input for the two-dimensional numerical model of the subsoil to evaluate the topographic seismic amplification in ridge and compare it with the results of other authors.These methods suggest that morphology-related inertial effects should be considered as an overload action on snow layers when controlling multi-hazard studies and spatial planning.
基金supported in part by the Hubei Provincial Science and Technology Major Project of China(Grant No.2020AEA011)in part by the National Ethnic Affairs Commission of the People’s Republic of China(Training Program for Young and Middle-aged Talents)(No:MZR20007)+4 种基金in part by the National Natural Science Foundation of China(Grant No.61902437)in part by the Hubei Provincial Natural Science Foundation of China(Grant No.2020CFB629)in part by the Application Foundation Frontier Project of Wuhan Science and Technology Program(Grant No.2020020601012267)in part by the Fundamental Research Funds for the Central Universities,South-Central MinZu University(No:CZQ21026)in part by the Special Project on Regional Collaborative Innovation of Xinjiang Uygur Autonomous Region(Plan to Aid Xinjiang with Science and Technology)(2022E02035)。
文摘The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex building obstacles,and the aircraft's high dynamics,traditional algorithms cannot find the optimal collision-free flying path between the UAV station and the destination.Accordingly,in this paper,we study the fast UAV path planning problem in a 3D urban environment from a source point to a target point and propose a Three-Step Experience Buffer Deep Deterministic Policy Gradient(TSEB-DDPG)algorithm.We first build the 3D model of a complex urban environment with buildings and project the 3D building surface into many 2D geometric shapes.After transformation,we propose the Hierarchical Learning Particle Swarm Optimization(HL-PSO)to obtain the empirical path.Then,to ensure the accuracy of the obtained paths,the empirical path,the collision information and fast transition information are stored in the three experience buffers of the TSEB-DDPG algorithm as dynamic guidance information.The sampling ratio of each buffer is dynamically adapted to the training stages.Moreover,we designed a reward mechanism to improve the convergence speed of the DDPG algorithm for UAV path planning.The proposed TSEB-DDPG algorithm has also been compared to three widely used competitors experimentally,and the results show that the TSEB-DDPG algorithm can archive the fastest convergence speed and the highest accuracy.We also conduct experiments in real scenarios and compare the real path planning obtained by the HL-PSO algorithm,DDPG algorithm,and TSEB-DDPG algorithm.The results show that the TSEBDDPG algorithm can archive almost the best in terms of accuracy,the average time of actual path planning,and the success rate.
文摘Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption.
文摘Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency.
文摘We investigate decomposition of codes and finite languages. A prime decomposition is a decomposition of a code or languages into a concatenation of nontrivial prime codes or languages. A code is prime if it cannot be decomposed into at least two nontrivial codes as the same for the languages. In the paper, a linear time algorithm is designed, which finds the prime decomposition. If codes or finite languages are presented as given by its minimal deterministic automaton, then from the point of view of abstract algebra and graph theory, this automaton has special properties. The study was conducted using system for computational Discrete Algebra GAP. .
文摘The uncertainty principle is a fundamental principle of quantum mechanics, but its exact mathematical expression cannot obtain correct results when used to solve theoretical problems such as the energy levels of hydrogen atoms, one-dimensional deep potential wells, one-dimensional harmonic oscillators, and double-slit experiments. Even after approximate treatment, the results obtained are not completely consistent with those obtained by solving Schrödinger’s equation. This indicates that further research on the uncertainty principle is necessary. Therefore, using the de Broglie matter wave hypothesis, we quantize the action of an elementary particle in natural coordinates and obtain the quantization condition and a new deterministic relation. Using this quantization condition, we obtain the energy level formulas of an elementary particle in different conditions in a classical way that is completely consistent with the results obtained by solving Schrödinger’s equation. A new physical interpretation is given for the particle eigenfunction independence of probability for an elementary particle: an elementary particle is in a particle state at the space-time point where the action is quantized, and in a wave state in the rest of the space-time region. The space-time points of particle nature and the wave regions of particle motion constitute the continuous trajectory of particle motion. When an elementary particle is in a particle state, it is localized, whereas in the wave state region, it is nonlocalized.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60572071 and 60873101)Natural Science Foundation of Jiangsu Province (Grant Nos BM2006504, BK2007104 and BK2008209)College Natural Science Foundation of Jiangsu Province (Grant No 06KJB520137)
文摘A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.
基金the scholarship from NUS Graduate School for integrative science and engineering and funding support from Ministry of Education Academic Research Fund,Singapore(AcRF:R-397-000-270-114,R-397-000-183-112).
文摘The separation and detection of particles in suspension are essential for a wide spectrum of applications including medical diagnostics.In this field,microfluidic deterministic lateral displacement(DLD)holds a promise due to the ability of continuous separation of particles by size,shape,deformability,and electrical properties with high resolution.DLD is a passive microfluidic separation technique that has been widely implemented for various bioparticle separations from blood cells to exosomes.DLD techniques have been previously reviewed in 2014.Since then,the field has matured as several physics of DLD have been updated,new phenomena have been discovered,and various designs have been presented to achieve a higher separation performance and throughput.Furthermore,some recent progress has shown new clinical applications and ability to use the DLD arrays as a platform for biomolecules detection.This review provides a thorough discussion on the recent progress in DLD with the topics based on the fundamental studies on DLD models and applications for particle separation and detection.Furthermore,current challenges and potential solutions of DLD are also discussed.We believe that a comprehensive understanding on DLD techniques could significantly contribute toward the advancements in the field for various applications.In particular,the rapid,low-cost,and high-throughput particle separation and detection with DLD have a tremendous impact for point-of-care diagnostics.
文摘This paper analyzes PROFIBUS-DP network delay in detail and presents the calculational formula of its maximum time-delay, which is significant to the research of PROFIBUS-DP. At the same time, the paper puts forward a method of simplifying the network induced time-varying indeterminate system according to the features of the network. Through the analysis of a pump-control-motor system which is composed of PROFIBUS-DP network, it illustrates the network's influence on the performance of control systems. This method helps to design and analyze the network's influence on the performance of control systems, which is of considerable practical value in a time when network control systern is widely used.
基金European Research Council under Grant Agreement No.ERC_IDEAL RESCUE_637842 of the project IDEAL RESCUE-Integrated Design and Control of Sustainable Communities during Emergencies
文摘Community resilience is becoming a growing concern for authorities and decision makers.This paper introduces two indicator-based methods to evaluate the resilience of communities based on the PEOPLES framework.PEOPLES is a multi-layered framework that defines community resilience using seven dimensions.Each of the dimensions is described through a set of resilience indicators collected from literature and they are linked to a measure allowing the analytical computation of the indicator’s performance.The first method proposed in this paper requires data on previous disasters as an input and returns as output a performance function for each indicator and a performance function for the whole community.The second method exploits a knowledge-based fuzzy modeling for its implementation.This method allows a quantitative evaluation of the PEOPLES indicators using descriptive knowledge rather than deterministic data including the uncertainty involved in the analysis.The output of the fuzzy-based method is a resilience index for each indicator as well as a resilience index for the community.The paper also introduces an open source online tool in which the first method is implemented.A case study illustrating the application of the first method and the usage of the tool is also provided in the paper.
基金supported by the National Natural Science Foundation of China (51006006,51136003,50976010,50976009)the National Basic Research Program of China (2012CB72 0205)+2 种基金the Aeronautical Science Foundation of China (2010ZB51)the 111 Project (B08009)the National Science Special Foundation for Post-doctoral Scientists of China (201104049)
文摘The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multistage compressors in steady state environment by introducing de- terministic correlations (DC) that need to be modeled to close the equation system. The primary purpose of this study was to provide insight into the DC characteristics and the in- fluence of DC on the time-averaged flow field of the APES. In Part 2 of this two-part paper, the influence of DC on the time-averaged flow field was systematically studied; Several time-averaging computations boundary conditions and DC were conducted with various for the downstream stator in a transonic compressor stage, by employing the CFD solver developed in Part 1 of this two-part paper. These results were compared with the time-averaged unsteady flow field and the steady one. The study indicat;d that the circumferential- averaged DC can take into account major part of the unsteady effects on spanwise redistribution of flow fields in compres- sors. Furthermore, it demonstrated that both deterministic stresses and deterministic enthalpy fluxes are necessary to reproduce the time-averaged flow field.
基金supported by the National Natural Science Foundation of China (51006006,51136003,50976010,50976009)the National Basic Research Program of China (2012CB720205)+2 种基金the Aeronautical Science Foundation of China (2010ZB51)the 111 Project (B08009)the National Science Special Foundation for Post-doctoral Scientists of China (201104049)
文摘The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multi- stage compressors in steady state environment by introduc- ing deterministic correlations (DC) that need to be modeled to close the equation system. The primary purpose of this study is to provide insight into the DC characteristics and the influence of DC on the time-averaged flow field of the APES. In Part 1 of this two-part paper, firstly a 3D viscous unsteady and time-averaging flow CFD solver is developed to investi- gate the APES technique. Then steady and unsteady simu- lations are conducted in a transonic compressor stage. The results from both simulations are compared to highlight the significance of the unsteady interactions. Furthermore, the distribution characteristics of DC are studied and the DC at the rotor/stator interface are compared with their spatial cor- relations (SC). Lastly, steady and time-averaging (employing APES with DC) simulations for the downstream stator alone are conducted employing DC derived from the unsteady re- suits. The results from steady and time-averaging simula- tions are compared with the time-averaged unsteady results. The comparisons demonstrate that the simulation employing APES with DC can reproduce the time-averaged field and the 3D viscous time-averaging flow solver is validated.