Paleogenomics is a discipline in which the extraction and analysis of DNA from ancient biological remains are studied to understand the evolutionary history of past organisms.Research on this topic has revealed the ev...Paleogenomics is a discipline in which the extraction and analysis of DNA from ancient biological remains are studied to understand the evolutionary history of past organisms.Research on this topic has revealed the evolutionary history of humans and other species,traced human migrations and genetic changes,and investigated ancient diseases and environmental influences due to its uniqueness.This paper reviews the scientific and technological history of the development of paleogenomics,including the molecular cloning era,the polymerase chain reaction(PCR)technique era,the genomics era,and the bio-data analysis era.This field explores the key technological development processes and effects of significant scientific discoveries,ranging from gene cloning technology and sequencing technology to breakthroughs and applications in big data analysis,addressing challenges such as sample contamination and trace collection analysis in paleogenomics research.展开更多
The Qilian Mountains,located in the northeastern Qinghai-Tibet Plateau,is a sensitive zone of both East Asian summer monsoon(EASM)and westerly winds(WW).The evolution history and driving mechanism of the ecosystem and...The Qilian Mountains,located in the northeastern Qinghai-Tibet Plateau,is a sensitive zone of both East Asian summer monsoon(EASM)and westerly winds(WW).The evolution history and driving mechanism of the ecosystem and hydrologic cycle in this region on long-term timescales have not yet been clarified.In this study,we comprehensively study the hydrologic and ecological evolution history in the sensitive zone since the Last Glacial Maximum(LGM)by integrating surface sediments,paleoclimate records,TraCE-21ka transient simulations,and PMIP3-CMIP5 multi-model simulation.Results show that hydrologic and ecological proxies from surface sediments are significantly different from west to east and mainly divided into three sections:the monsoonaffected region in the eastern Qilian Mountains,the intersection region in the central Qilian Mountains,and the westerly-affected region in the western Qilian Mountains.Meanwhile,paleo-ecological and paleohydrologic reconstructions from the surroundings uncover a synchronous climate evolution that the EASM mainly controls the eastern Qilian Mountains and penetrates the central Qilian Mountains in monsoon intensity maximum,while the WW dominates the central and western Qilian Mountains on both glacial-interglacial and millennial timescales.The simulation results further bear out the glacial humid climate in the central and western Qilian Mountains caused by the enhanced WW,and the humidity maximum in the eastern Qilian Mountains controlled by the strong mid-Holocene monsoon.In general,east-west differences in climate pattern and response for the EASM and the WW are integrally stable on both short-term and long-term timescales.展开更多
Through the development and calibration of a reference material which is 209.8 Ma old using a newly-developed Laser Ablation(LA)Multi-Collector Inductively Coupled Plasma Mass Spectrometry(MC-ICP-MS)technique,we succe...Through the development and calibration of a reference material which is 209.8 Ma old using a newly-developed Laser Ablation(LA)Multi-Collector Inductively Coupled Plasma Mass Spectrometry(MC-ICP-MS)technique,we successfully overcome the difficulty in sampling and dating ultra-low U-Pb ancient marine carbonates,which was previously untenable by isotope dilution(ID)methods.We developed the LA-MC-ICP-MS in situ U-Pb dating technique for ancient marine carbonates for the study of diagenesis-porosity evolution history in Sinian Dengying Formation,Sichuan Basin.By systematically dating of dolomitic cements from vugs,matrix pores and fractures,we found that the burial and diagenetic process of dolomite reservoirs in Sinian Dengying Formation was characterized by progressive filling-up of primary pores and epigenic dissolution vugs.The filling of vugs happened in three stages,early Caledonian,late Hercynian-Indosinian and Yanshanian-Himalayan,while the filling of matrix pores mainly took place in early Caledonian.The unfilled residual vugs,pores and fractures constitute the main reservoir sapce.Based on the above knowledge,we established the diagenesis-porosity evolution history of the dolomite reservoir in Sinian Dengying Formation,Sichuan Basin.These findings are highly consistent with the tectonic-burial and basin thermal histories of the study area.Our study confirmed the reliability of this in situ U-Pb dating technique,which provides an effective way for the investigation of diagenesis-porosity evolution history and evaluation of porosity in ancient marine carbonate reservoirs before hydrocarbon migration.展开更多
Solid bitumens were found throughout the carbonate reservoirs in the Puguang gas field, the largest gas field so far found in marine carbonates in China, confirming that the Puguang gas field evolved from a paleo-oil ...Solid bitumens were found throughout the carbonate reservoirs in the Puguang gas field, the largest gas field so far found in marine carbonates in China, confirming that the Puguang gas field evolved from a paleo-oil reservoir. The fluid conduit system at the time of intensive oil accumulation in the field was reconstructed, and petroleum migration pathways were modeled using a 3-D model and traced by geochemical parameters. The forward modeling and inversion tracing coincided with each other and both indicated that oils accumulated in the Puguang-Dongyuezhai structure originated from a generative kitchen to the northwest of the Puguang gas field. The deposition of organic-rich Upper Permian source rocks dominated by sapropelic organic matter in the Northeast Sichuan Basin, the development of fluid conduit system that was vertically near-source rock and laterally near-generative kitchen, and the focusing of oils originated from a large area of the generative kitchen, were the three requirements for the formation of the giant paleo-oil reservoir from which the giant Puguang gas field evolved. The Puguang gas field had experienced a three-stage evolution. The post-accumulation processes, especially the organic-inorganic interaction in the hydrocarbon-water-rock system, had not only profoundly altered the composition and characteristics of the petroleum fluids, but also obviously changed the physicochemical conditions in the reservoir and resulted in complicated precipitation and solution of carbonate minerals.展开更多
1 Introduction The Weibei Uplift is located in the southwest of the North China Plate,where is the stable block(the Ordos Block)in the north and the active belt(the QinlingOrogenic Belt)in the south(Ren et al,2014,201...1 Introduction The Weibei Uplift is located in the southwest of the North China Plate,where is the stable block(the Ordos Block)in the north and the active belt(the QinlingOrogenic Belt)in the south(Ren et al,2014,2015).And the belt is separated from the Weihe basin.The Weibei uplift has a uniform crystalline basement with the North展开更多
Evolution history of the volcano is essential not only to characterize the volcano, but also consider magma genesis beneath the volcano. Most of the stratovolcanoes in northeast Japan follow a general evolutional cour...Evolution history of the volcano is essential not only to characterize the volcano, but also consider magma genesis beneath the volcano. Most of the stratovolcanoes in northeast Japan follow a general evolutional course: cone building, horse-shoe shaped caldera forming collapse, and post-caldera stages. However, the detailed history of each stage is not well investigated. We investigated evolution history of young edifice of Gassan volcano, representative stratovolcano in rear side of northeast Japan arc. Most of the products are lavas, which are divided into two groups by geomorphologic and geologic features. The former (Gassan lower lavas) is composed of relatively thin and fluidal lavas, whose original geomorphology remains a little, while the latter (Gassan upper lavas) is composed of relatively thick and viscous lavas, whose original geomorphology is moderately preserved. Based on geologic features, the upper lavas can be further divided into Gassan upper north lavas and upper summit lavas in ascending order. After the formation of the thick lavas, horse-shoe shaped caldera was formed by the instability of the edifice, probably triggered by fault activity. No evidence of post caldera activity inner part of it is observed. Based on K-Ar data, estimated age of Gassan lower lavas is ca. 0.75 to ca. 0.6 Ma, those of Gassan upper north and upper summit lavas are ca. 0.60 to ca. 0.55 Ma and ca. 0.55 to ca. 0.45 Ma. The eruption rate is estimated to be ca. 0.0004 km3/1000 years in Gassan lower lavas and ca. 0.02 km3/1000 years in Gassan upper summit lavas. These values are lower than the eruption rate of representative Japanese stratovolcanoes.展开更多
Ophiolites along the E-W trending Yarlung-Tsangpo Suture(YTS),which separates the Indian plate from the Eurasian plate,have been regarded as relics of the NeoTethyan Ocean.The Xigaze ophiolite in the central YTS
This work restored the erosion thickness of the top surface of each Cretaceous formations penetrated by the typical well in the Hari sag, and simulated the subsidence burial history of this well with software BasinMod...This work restored the erosion thickness of the top surface of each Cretaceous formations penetrated by the typical well in the Hari sag, and simulated the subsidence burial history of this well with software BasinMod. It is firstly pointed out that the tectonic subsidence evolution of the Hari sag since the Cretaceous can be divided into four phases: initial subsidence phase, rapid subsidence phase,uplift and erosion phase, and stable slow subsidence phase. A detailed reconstruction of the tectonothermal evolution and hydrocarbon generation histories of typical well was undertaken using the EASY R% model, which is constrained by vitrinite reflectance(R) and homogenization temperatures of fluid inclusions. In the rapid subsidence phase, the peak period of hydrocarbon generation was reached at c.a.105.59 Ma with the increasing thermal evolution degree. A concomitant rapid increase in paleotemperatures occurred and reached a maximum geothermal gradient of about 43-45℃/km. The main hydrocarbon generation period ensued around 105.59-80.00 Ma and the greatest buried depth of the Hari sag was reached at c.a. 80.00 Ma, when the maximum paleo-temperature was over 180℃.Subsequently, the sag entered an uplift and erosion phase followed by a stable slow subsidence phase during which the temperature gradient, thermal evolution, and hydrocarbon generation decreased gradually. The hydrocarbon accumulation period was discussed based on homogenization temperatures of inclusions and it is believed that two periods of rapid hydrocarbon accumulation events occurred during the Cretaceous rapid subsidence phase. The first accumulation period observed in the Bayingebi Formation(Kb) occurred primarily around 105.59-103.50 Ma with temperatures of 125-150℃. The second accumulation period observed in the Suhongtu Formation(Ks) occurred primarily around84.00-80.00 Ma with temperatures of 120-130℃. The second is the major accumulation period, and the accumulation mainly occurred in the Late Cretaceous. The hydrocarbon accumulation process was comprehensively controlled by tectono-thermal evolution and hydrocarbon generation history. During the rapid subsidence phase, the paleo temperature and geothermal gradient increased rapidly and resulted in increasing thermal evolution extending into the peak period of hydrocarbon generation,which is the key reason for hydrocarbon filling and accumulation.展开更多
The Pamir Plateau can be divided into three secondary tectonic units from north to south:the North,the Middle and the South Pamir Blocks.The North Pamir Block belonged to the southern margin of Tarim-Karakum,thermochr...The Pamir Plateau can be divided into three secondary tectonic units from north to south:the North,the Middle and the South Pamir Blocks.The North Pamir Block belonged to the southern margin of Tarim-Karakum,thermochronological study of the Pamir structural intersection indicates that accretion of the Middle Pamir Block to the Eurasian Continental Margin and its subduction and collision with the North Pamir Block occurred in the Middle–Late Jurassic.Due to the Neo-Tethys closure in the Early Cretaceous,the South Pamir Block began to collide with the accretion(the Middle Pamir Block)of the Eurasian Continental Margin.Affected by the collision and continuous convergence between the Indian Plate and the Eurasian Plate since the Cenozoic,Pamir is in a multi-stage differential uplift process.During 56.1–48.5 Ma,North Pamir took the lead in uplifting,that is,the first rapid uplift in the Pamir region began there.The continuous compression and contraction of the Indian and Eurasian plates during 22.0–15.1 Ma forced the Pamir tectonic syntaxis to begin its overall uplift,i.e.Pamir began to enter the second rapid uplift stage in the Early Oligocene,which lasted until the Middle Miocene.During 14.6–8.5Ma,South Pamir was in a rapid uplift stage,while North Pamir was in a relatively stable state,showing asymmetry of tectonic deformation in the Pamir region in space.Since 6.5 Ma,Pamir began to rapidly uplift again.展开更多
Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow...Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow Sea basin are quantitatively studied. The results show that the tectonic evolution of the north depression of the south Yellow Sea basin since late Cretaceous can be divided into a rifting phase (late Cretaceous to Paleogene) and a post-rifting phase (Neogene to Quaternary). The rifting phase can be further subdivided into an initial rifting stage (late Cretaceous), an intensive rifting stage (Paleocene), a rifting termination stage (Eocene), and an inversion-uplifting stage (Oligocene). Together, this division shows the characteristics of an episodic-evolved intracontinental rift-depression basin. The deformation of the north depression of the south Yellow Sea basin since late Cretaceous was mainly fault-related. The horizontal extension and tectonic subsidence were controlled by the activity of faults. The differential evolution of faults also caused variations in local uplift/subsidence movements and the regional heterogeneity in extension. The late Cretaceous initial rifting of the north depression of the south Yellow Sea basin is related to the Pacific-Eurasia convergence. From the Paleocene intensive rifting stage to present, the Pacific-Eurasia convergence and India-Eurasia convergence have played important roles in the evolution of this region.展开更多
The Liwan Sag, with an area of 4 000 km-2, is one of the deepwater sags in the Zhujiang River(Pearl River) Mouth Basin, northern South China Sea. Inspired by the exploration success in oil and gas resources in the d...The Liwan Sag, with an area of 4 000 km-2, is one of the deepwater sags in the Zhujiang River(Pearl River) Mouth Basin, northern South China Sea. Inspired by the exploration success in oil and gas resources in the deepwater sags worldwide, we conducted the thermal modeling to investigate the tectono-thermal history of the Liwan Sag,which has been widely thought to be important to understand tectonic activities as well as hydrocarbon potential of a basin. Using the multi-stage finite stretching model, the tectonic subsidence history and the thermal history have been obtained for 12 artificial wells, which were constructed on basis of one seismic profile newly acquired in the study area. Two stages of rifting during the time periods of 49–33.9 Ma and 33.9–23 Ma can be recognized from the tectonic subsidence pattern, and there are two phases of heating processes corresponding to the rifting.The reconstructed average basal paleo-heat flow values at the end of the rifting events are -70.5 and -94.2 mW/m^2 respectively. Following the heating periods, the study area has undergone a persistent thermal attenuation phase since 23 Ma and the basal heat flow cooled down to -71.8–82.5 mW/m^2 at present.展开更多
The Olympic Games, as the global sports event, attract many countries in the world to participate in and they always take obtaining the right of holding it as the pride of the country. With the constant development of...The Olympic Games, as the global sports event, attract many countries in the world to participate in and they always take obtaining the right of holding it as the pride of the country. With the constant development of the Olympic Games, people have proposed higher requirements for it and the reformation is eagerly needed and the reformation is mainly concentrated on the item setting. According to a large amount of theoretical research to the item setting of Olympic Games in academia, there is big issue about the item setting for the current Summer Olympic Games which has sustained for a long time. Its practical representations are the contradiction between narrowing the scope of the Olympic Games and borrowing in the new items and the contradiction of gender equality in item setting and also the contradiction of balancing the business value and social value. Therefore, this thesis will mainly study on the evolution and value of the item setting of the Summer Olympic Games and propose reasonable improvement measures for the issue of the item setting, combining with the practical conditions, and thus to better promote the sustain development of the Summer Olympic Games.展开更多
The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evoluti...The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.展开更多
基金National Key Research and Development Program of Synthetic Biology(2018YFA0902400)Construction of a High-quality Data Pool and Data Product Service System of the Chinese Academy of Sciences(2019WQZX012)University of Science and Technology of China Quality Project History of Medicine(2023YCZX02).
文摘Paleogenomics is a discipline in which the extraction and analysis of DNA from ancient biological remains are studied to understand the evolutionary history of past organisms.Research on this topic has revealed the evolutionary history of humans and other species,traced human migrations and genetic changes,and investigated ancient diseases and environmental influences due to its uniqueness.This paper reviews the scientific and technological history of the development of paleogenomics,including the molecular cloning era,the polymerase chain reaction(PCR)technique era,the genomics era,and the bio-data analysis era.This field explores the key technological development processes and effects of significant scientific discoveries,ranging from gene cloning technology and sequencing technology to breakthroughs and applications in big data analysis,addressing challenges such as sample contamination and trace collection analysis in paleogenomics research.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA20100102)the National Natural Science Foundation of China(Grant No.42077415)+1 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0202)the 111 Project(BP0618001)。
文摘The Qilian Mountains,located in the northeastern Qinghai-Tibet Plateau,is a sensitive zone of both East Asian summer monsoon(EASM)and westerly winds(WW).The evolution history and driving mechanism of the ecosystem and hydrologic cycle in this region on long-term timescales have not yet been clarified.In this study,we comprehensively study the hydrologic and ecological evolution history in the sensitive zone since the Last Glacial Maximum(LGM)by integrating surface sediments,paleoclimate records,TraCE-21ka transient simulations,and PMIP3-CMIP5 multi-model simulation.Results show that hydrologic and ecological proxies from surface sediments are significantly different from west to east and mainly divided into three sections:the monsoonaffected region in the eastern Qilian Mountains,the intersection region in the central Qilian Mountains,and the westerly-affected region in the western Qilian Mountains.Meanwhile,paleo-ecological and paleohydrologic reconstructions from the surroundings uncover a synchronous climate evolution that the EASM mainly controls the eastern Qilian Mountains and penetrates the central Qilian Mountains in monsoon intensity maximum,while the WW dominates the central and western Qilian Mountains on both glacial-interglacial and millennial timescales.The simulation results further bear out the glacial humid climate in the central and western Qilian Mountains caused by the enhanced WW,and the humidity maximum in the eastern Qilian Mountains controlled by the strong mid-Holocene monsoon.In general,east-west differences in climate pattern and response for the EASM and the WW are integrally stable on both short-term and long-term timescales.
基金Suppored by the China National Science and Technology Major Project(2016ZX05004-002).
文摘Through the development and calibration of a reference material which is 209.8 Ma old using a newly-developed Laser Ablation(LA)Multi-Collector Inductively Coupled Plasma Mass Spectrometry(MC-ICP-MS)technique,we successfully overcome the difficulty in sampling and dating ultra-low U-Pb ancient marine carbonates,which was previously untenable by isotope dilution(ID)methods.We developed the LA-MC-ICP-MS in situ U-Pb dating technique for ancient marine carbonates for the study of diagenesis-porosity evolution history in Sinian Dengying Formation,Sichuan Basin.By systematically dating of dolomitic cements from vugs,matrix pores and fractures,we found that the burial and diagenetic process of dolomite reservoirs in Sinian Dengying Formation was characterized by progressive filling-up of primary pores and epigenic dissolution vugs.The filling of vugs happened in three stages,early Caledonian,late Hercynian-Indosinian and Yanshanian-Himalayan,while the filling of matrix pores mainly took place in early Caledonian.The unfilled residual vugs,pores and fractures constitute the main reservoir sapce.Based on the above knowledge,we established the diagenesis-porosity evolution history of the dolomite reservoir in Sinian Dengying Formation,Sichuan Basin.These findings are highly consistent with the tectonic-burial and basin thermal histories of the study area.Our study confirmed the reliability of this in situ U-Pb dating technique,which provides an effective way for the investigation of diagenesis-porosity evolution history and evaluation of porosity in ancient marine carbonate reservoirs before hydrocarbon migration.
基金supported by the"973"Project (2005CB422105)the Program for Changjiang Scholars and Innovative Research Team at the University (PCSIRT IRT0658).
文摘Solid bitumens were found throughout the carbonate reservoirs in the Puguang gas field, the largest gas field so far found in marine carbonates in China, confirming that the Puguang gas field evolved from a paleo-oil reservoir. The fluid conduit system at the time of intensive oil accumulation in the field was reconstructed, and petroleum migration pathways were modeled using a 3-D model and traced by geochemical parameters. The forward modeling and inversion tracing coincided with each other and both indicated that oils accumulated in the Puguang-Dongyuezhai structure originated from a generative kitchen to the northwest of the Puguang gas field. The deposition of organic-rich Upper Permian source rocks dominated by sapropelic organic matter in the Northeast Sichuan Basin, the development of fluid conduit system that was vertically near-source rock and laterally near-generative kitchen, and the focusing of oils originated from a large area of the generative kitchen, were the three requirements for the formation of the giant paleo-oil reservoir from which the giant Puguang gas field evolved. The Puguang gas field had experienced a three-stage evolution. The post-accumulation processes, especially the organic-inorganic interaction in the hydrocarbon-water-rock system, had not only profoundly altered the composition and characteristics of the petroleum fluids, but also obviously changed the physicochemical conditions in the reservoir and resulted in complicated precipitation and solution of carbonate minerals.
基金supported by Natural Science Foundation of China (Project No. 41630312)The National Nature Science Foundation of China (Project No. 41372208 and 40534019)The Open Found of the State Key Laboratory of Ore Deposit Geochemistry, CAS(Project No. 201304)
文摘1 Introduction The Weibei Uplift is located in the southwest of the North China Plate,where is the stable block(the Ordos Block)in the north and the active belt(the QinlingOrogenic Belt)in the south(Ren et al,2014,2015).And the belt is separated from the Weihe basin.The Weibei uplift has a uniform crystalline basement with the North
文摘Evolution history of the volcano is essential not only to characterize the volcano, but also consider magma genesis beneath the volcano. Most of the stratovolcanoes in northeast Japan follow a general evolutional course: cone building, horse-shoe shaped caldera forming collapse, and post-caldera stages. However, the detailed history of each stage is not well investigated. We investigated evolution history of young edifice of Gassan volcano, representative stratovolcano in rear side of northeast Japan arc. Most of the products are lavas, which are divided into two groups by geomorphologic and geologic features. The former (Gassan lower lavas) is composed of relatively thin and fluidal lavas, whose original geomorphology remains a little, while the latter (Gassan upper lavas) is composed of relatively thick and viscous lavas, whose original geomorphology is moderately preserved. Based on geologic features, the upper lavas can be further divided into Gassan upper north lavas and upper summit lavas in ascending order. After the formation of the thick lavas, horse-shoe shaped caldera was formed by the instability of the edifice, probably triggered by fault activity. No evidence of post caldera activity inner part of it is observed. Based on K-Ar data, estimated age of Gassan lower lavas is ca. 0.75 to ca. 0.6 Ma, those of Gassan upper north and upper summit lavas are ca. 0.60 to ca. 0.55 Ma and ca. 0.55 to ca. 0.45 Ma. The eruption rate is estimated to be ca. 0.0004 km3/1000 years in Gassan lower lavas and ca. 0.02 km3/1000 years in Gassan upper summit lavas. These values are lower than the eruption rate of representative Japanese stratovolcanoes.
文摘Ophiolites along the E-W trending Yarlung-Tsangpo Suture(YTS),which separates the Indian plate from the Eurasian plate,have been regarded as relics of the NeoTethyan Ocean.The Xigaze ophiolite in the central YTS
基金supported by the project of "Constraints on Lithospheric Dynamic Evolution and Hydrocarbon Accumulation from Late Mesozoic Paleo-geothermal Field in Ordos and Qinshui Basins" (grant No. 41630312)the National Nature Science Foundation of China (grants No. 41372208 and 40534019)+1 种基金the Open Found of the State Key Laboratory of Ore Deposit Geochemistry, CAS (grant No. 201304)supported by international program for Ph.D. candidates, Sun Yat-Sen University
文摘This work restored the erosion thickness of the top surface of each Cretaceous formations penetrated by the typical well in the Hari sag, and simulated the subsidence burial history of this well with software BasinMod. It is firstly pointed out that the tectonic subsidence evolution of the Hari sag since the Cretaceous can be divided into four phases: initial subsidence phase, rapid subsidence phase,uplift and erosion phase, and stable slow subsidence phase. A detailed reconstruction of the tectonothermal evolution and hydrocarbon generation histories of typical well was undertaken using the EASY R% model, which is constrained by vitrinite reflectance(R) and homogenization temperatures of fluid inclusions. In the rapid subsidence phase, the peak period of hydrocarbon generation was reached at c.a.105.59 Ma with the increasing thermal evolution degree. A concomitant rapid increase in paleotemperatures occurred and reached a maximum geothermal gradient of about 43-45℃/km. The main hydrocarbon generation period ensued around 105.59-80.00 Ma and the greatest buried depth of the Hari sag was reached at c.a. 80.00 Ma, when the maximum paleo-temperature was over 180℃.Subsequently, the sag entered an uplift and erosion phase followed by a stable slow subsidence phase during which the temperature gradient, thermal evolution, and hydrocarbon generation decreased gradually. The hydrocarbon accumulation period was discussed based on homogenization temperatures of inclusions and it is believed that two periods of rapid hydrocarbon accumulation events occurred during the Cretaceous rapid subsidence phase. The first accumulation period observed in the Bayingebi Formation(Kb) occurred primarily around 105.59-103.50 Ma with temperatures of 125-150℃. The second accumulation period observed in the Suhongtu Formation(Ks) occurred primarily around84.00-80.00 Ma with temperatures of 120-130℃. The second is the major accumulation period, and the accumulation mainly occurred in the Late Cretaceous. The hydrocarbon accumulation process was comprehensively controlled by tectono-thermal evolution and hydrocarbon generation history. During the rapid subsidence phase, the paleo temperature and geothermal gradient increased rapidly and resulted in increasing thermal evolution extending into the peak period of hydrocarbon generation,which is the key reason for hydrocarbon filling and accumulation.
基金This work was supported by the Projects of the China Geological Survey(grant nos 12120114018601,121201011000150010).
文摘The Pamir Plateau can be divided into three secondary tectonic units from north to south:the North,the Middle and the South Pamir Blocks.The North Pamir Block belonged to the southern margin of Tarim-Karakum,thermochronological study of the Pamir structural intersection indicates that accretion of the Middle Pamir Block to the Eurasian Continental Margin and its subduction and collision with the North Pamir Block occurred in the Middle–Late Jurassic.Due to the Neo-Tethys closure in the Early Cretaceous,the South Pamir Block began to collide with the accretion(the Middle Pamir Block)of the Eurasian Continental Margin.Affected by the collision and continuous convergence between the Indian Plate and the Eurasian Plate since the Cenozoic,Pamir is in a multi-stage differential uplift process.During 56.1–48.5 Ma,North Pamir took the lead in uplifting,that is,the first rapid uplift in the Pamir region began there.The continuous compression and contraction of the Indian and Eurasian plates during 22.0–15.1 Ma forced the Pamir tectonic syntaxis to begin its overall uplift,i.e.Pamir began to enter the second rapid uplift stage in the Early Oligocene,which lasted until the Middle Miocene.During 14.6–8.5Ma,South Pamir was in a rapid uplift stage,while North Pamir was in a relatively stable state,showing asymmetry of tectonic deformation in the Pamir region in space.Since 6.5 Ma,Pamir began to rapidly uplift again.
文摘Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow Sea basin are quantitatively studied. The results show that the tectonic evolution of the north depression of the south Yellow Sea basin since late Cretaceous can be divided into a rifting phase (late Cretaceous to Paleogene) and a post-rifting phase (Neogene to Quaternary). The rifting phase can be further subdivided into an initial rifting stage (late Cretaceous), an intensive rifting stage (Paleocene), a rifting termination stage (Eocene), and an inversion-uplifting stage (Oligocene). Together, this division shows the characteristics of an episodic-evolved intracontinental rift-depression basin. The deformation of the north depression of the south Yellow Sea basin since late Cretaceous was mainly fault-related. The horizontal extension and tectonic subsidence were controlled by the activity of faults. The differential evolution of faults also caused variations in local uplift/subsidence movements and the regional heterogeneity in extension. The late Cretaceous initial rifting of the north depression of the south Yellow Sea basin is related to the Pacific-Eurasia convergence. From the Paleocene intensive rifting stage to present, the Pacific-Eurasia convergence and India-Eurasia convergence have played important roles in the evolution of this region.
基金The Program of the Key Technologies for Petroleum Exploration in Deep Oceanic Areas under contract No.2011ZX05025-006-05the Chinese Postdoc Fund,No.58 General Fund,2015 under contract No.2015M582636the National Natural Science Foundation of China under contract No.41602251
文摘The Liwan Sag, with an area of 4 000 km-2, is one of the deepwater sags in the Zhujiang River(Pearl River) Mouth Basin, northern South China Sea. Inspired by the exploration success in oil and gas resources in the deepwater sags worldwide, we conducted the thermal modeling to investigate the tectono-thermal history of the Liwan Sag,which has been widely thought to be important to understand tectonic activities as well as hydrocarbon potential of a basin. Using the multi-stage finite stretching model, the tectonic subsidence history and the thermal history have been obtained for 12 artificial wells, which were constructed on basis of one seismic profile newly acquired in the study area. Two stages of rifting during the time periods of 49–33.9 Ma and 33.9–23 Ma can be recognized from the tectonic subsidence pattern, and there are two phases of heating processes corresponding to the rifting.The reconstructed average basal paleo-heat flow values at the end of the rifting events are -70.5 and -94.2 mW/m^2 respectively. Following the heating periods, the study area has undergone a persistent thermal attenuation phase since 23 Ma and the basal heat flow cooled down to -71.8–82.5 mW/m^2 at present.
文摘The Olympic Games, as the global sports event, attract many countries in the world to participate in and they always take obtaining the right of holding it as the pride of the country. With the constant development of the Olympic Games, people have proposed higher requirements for it and the reformation is eagerly needed and the reformation is mainly concentrated on the item setting. According to a large amount of theoretical research to the item setting of Olympic Games in academia, there is big issue about the item setting for the current Summer Olympic Games which has sustained for a long time. Its practical representations are the contradiction between narrowing the scope of the Olympic Games and borrowing in the new items and the contradiction of gender equality in item setting and also the contradiction of balancing the business value and social value. Therefore, this thesis will mainly study on the evolution and value of the item setting of the Summer Olympic Games and propose reasonable improvement measures for the issue of the item setting, combining with the practical conditions, and thus to better promote the sustain development of the Summer Olympic Games.
基金This study is financially supported by the National Natural Science Foundation of China(42072181).
文摘The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.