期刊文献+
共找到13,334篇文章
< 1 2 250 >
每页显示 20 50 100
Shwachman-Diamond综合征7例患儿临床特点和基因变异分析
1
作者 王瑞芳 梁黎黎 +9 位作者 张开创 杨奕 孙宇宁 孙曼青 肖冰 韩连书 张惠文 顾学范 余永国 邱文娟 《临床儿科杂志》 CAS CSCD 北大核心 2024年第3期230-237,共8页
目的 探讨Shwachman-Diamond综合征(SDS)患儿的临床表型和基因变异特点。方法 选取2018年1月至2023年9月于儿内分泌遗传科长期随访的7例SDS患儿,收集其临床资料,采集外周血样进行外显子组测序(ES)分析,并通过Sanger测序对变异位点进行... 目的 探讨Shwachman-Diamond综合征(SDS)患儿的临床表型和基因变异特点。方法 选取2018年1月至2023年9月于儿内分泌遗传科长期随访的7例SDS患儿,收集其临床资料,采集外周血样进行外显子组测序(ES)分析,并通过Sanger测序对变异位点进行家系验证。结果 7例SDS患儿中男3例、女4例,初诊中位年龄为3.0(0.9~4.0)岁,6例为SBDS基因缺陷,1例为EFL1基因缺陷。6例SBDS缺陷的患儿中,5例携带复合杂合突变,2例为c.258+2T>C/c. 183_184 delinsCT,1例为c. 258+2 T>C/c. 40 A>G,1例为c. 258+2 T>C/c. 184 A>T,1例为c. 258+2 T>C/第3外显子杂合缺失;余1例携带c.258+2T>C纯合突变。SBDS缺陷患儿以矮小(6/6,100%)伴慢性腹泻(3/6,50%)和反复呼吸道感染(1/6,16.7%)就诊,经检查发现6例(100%)均存在中性粒细胞减少和肝酶升高,4例有骨骼发育异常表现,3例有胰腺外分泌功能不全表现。1例EFL 1缺陷患儿携带复合杂合突变(c. 2260 C>T/c. 316 G>A),表现为矮小和骨骼发育异常,但无胰腺和血液系统受累。结论 SBDS缺陷患儿具有异质性的临床表型,以上发现丰富了中国SDS的表型谱和变异谱,并首次在中国人群中报道了1例EFL1变异患儿的临床特征。对矮小合并中性粒细胞减少、胰腺外分泌功能障碍、骨骼畸形等症状的患儿,应完善基因检测以免漏诊SDS。 展开更多
关键词 Shwachman-diamond综合征 SBDS基因 EFL1基因 基因变异
下载PDF
Revealing the atomic mechanism of diamond–iron interfacial reaction
2
作者 Yalun Ku Kun Xu +6 位作者 Longbin Yan Kuikui Zhang Dongsheng Song Xing Li Shunfang Li Shaobo Cheng Chongxin Shan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期255-263,共9页
Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous ... Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous materials,which significantly affects the performance of diamond-based devices.Herein,combing experiments and theoretical calculations,taking diamond–iron(Fe)interface as a prototype,the counter-diffusion mechanism of Fe/carbon atoms has been established.Surprisingly,it is identified that Fe and diamond first form a coherent interface,and then Fe atoms diffuse into diamond and prefer the carbon vacancies sites.Meanwhile,the relaxed carbon atoms diffuse into the Fe lattice,forming Fe_(3)C.Moreover,graphite is observed at the Fe_(3)C surface when Fe_(3)C is over-saturated by carbon atoms.The present findings are expected to offer new insights into the atomic mechanism for diamondferrous material's interfacial reactions,benefiting diamond-based device applications. 展开更多
关键词 coherent interface counter-diffusion diamond IRON phase transition
下载PDF
Precipitates Generation Mechanism and Surface Quality Improvement for Aluminum Alloy 6061 in Diamond Cutting
3
作者 王海龙 DENG Wenping 王素娟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期150-159,共10页
To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the p... To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the precipitates generation of Al6061 on surface integrity and surface roughness.Based on the Johnson-Mehl-Avrami solid phase transformation kinetics equation, theoretical and experimental studies were conducted to build the relationship between the aging condition and the type, size and number of the precipitates for Al6061. Diamond cutting experiments were conducted to machine Al6061 samples under different aging conditions. The experimental results show that, the protruding on the chip surface is mainly Mg_(2)Si and the scratches on the machined surface mostly come from the iron-containing phase(α-, β-AlFeSi).Moreover, the generated Mg_(2)Si and α-, β-AlFeSi affect the surface integrity and the diamond turned surface roughness. Especially, the achieved surface roughness in SPDT is consistent with the variation of the number of AlFeSi and Mg_(2)Si with the medium size(more than 1 μm and less than 2 μm) in Al6061. 展开更多
关键词 Al6061 PRECIPITATES aging treatment diamond cutting surface roughness
原文传递
Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms
4
作者 曾超 石悦然 +5 位作者 毛一屹 武菲菲 谢岩骏 苑涛 戴汉宁 陈宇翱 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期212-217,共6页
We investigated the one-dimensional diamond ladder in the momentum lattice platform. By inducing multiple twoand four-photon Bragg scatterings among specific momentum states, we achieved a flat band system based on th... We investigated the one-dimensional diamond ladder in the momentum lattice platform. By inducing multiple twoand four-photon Bragg scatterings among specific momentum states, we achieved a flat band system based on the diamond model, precisely controlling the coupling strength and phase between individual lattice sites. Utilizing two lattice sites couplings, we generated a compact localized state associated with the flat band, which remained localized throughout the entire time evolution. We successfully realized the continuous shift of flat bands by adjusting the corresponding nearest neighbor hopping strength, enabling us to observe the complete localization process. This opens avenues for further exploration of more complex properties within flat-band systems, including investigating the robustness of flat-band localized states in disordered flat-band systems and exploring many-body localization in interacting flat-band systems. 展开更多
关键词 diamond lattice flat band momentum lattice localized state
原文传递
Effect of surface modification on the radiation stability of diamond ohmic contacts
5
作者 牟恋希 赵上熳 +7 位作者 王鹏 原晓芦 刘金龙 朱志甫 陈良贤 魏俊俊 欧阳晓平 李成明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期444-448,共5页
The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarizatio... The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarization effect.However,the radiation stability of a diamond detector is also sensitive to surface modification.In this work,the influence of surface modification technology on a diamond ohmic contact under high-energy radiation was investigated.Before radiation,the specific contact resistivities(ρc)between Ti/Pt/Au-hydrogen-terminated diamond(H-diamond)and Ti/Pt/Au-oxygenterminated diamond(O-diamond)were 2.0×10^(-4)W·cm^(2) and 4.3×10^(-3)Wcm^(2),respectively.After 10 MeV electron radiation,the ρc of Ti/Pt/Au H-diamond and Ti/Pt/Au O-diamond were 5.3×10^(-3)W·cm^(2)and 9.1×10^(-3)W·cm^(2),respectively.The rates of change of ρc of H-diamond and O-diamond after radiation were 2550%and 112%,respectively.The electron radiation promotes bond reconstruction of the diamond surface,resulting in an increase in ρc. 展开更多
关键词 single crystal diamond ohmic contact surface modification electron radiation
原文传递
Investigation on photonic crystal nanobeam cavity based on mixed diamond–circular holes
6
作者 Jingtong Bin Kerui Feng +4 位作者 Shang Ma Ke Liu Yong Cheng Jing Chen Qifa Liu 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期63-70,共8页
A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefin... A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefinite-difference time-domain method,the parameters of the M-PCNC,including cavity thickness and width,lattice constant,and radii and numbers of holes,are optimized,with the quality factor Q and mode volume Vm as performance indicators.Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance.The optimized cavity possesses a high quality factor Q 1.45105 and an ultra-small mode=×volume Vm 0.01(λ/n)[Zeng et al.,Opt Lett 2023:48;3981–3984]in the telecommunications wavelength range.Light can be progres-=sively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure.Thereby,the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio. 展开更多
关键词 Photonic crystal nanobeam cavity Mixed diamond–circular holes Slots and anti-slots FDTD simulation Quality factor Mode volume
下载PDF
Diamond软件在单形教学中的应用
7
作者 吴平伟 《大学化学》 CAS 2024年第3期118-121,共4页
介绍了用Diamond软件构造47种晶体单形模型的方法及其在教学中的应用。
关键词 单形 晶体学 diamond软件
下载PDF
Cu-Diamond复合材料的多次电弧烧蚀性能研究
8
作者 王飞 凤仪 +1 位作者 李新朝 刘铸汉 《中国机械工程》 EI CAS CSCD 北大核心 2023年第13期1599-1604,共6页
采用真空热压烧结法制得金刚石分布均匀,且与铜基结合良好的Cu-Diamond复合材料(金刚石体积分数为5%)。在空气气氛中对Cu-5vol.%Diamond复合材料进行多次电弧烧蚀,通过场发射扫描电子显微镜(SEM)和三维激光共聚焦显微镜(3D LSCM)对烧蚀... 采用真空热压烧结法制得金刚石分布均匀,且与铜基结合良好的Cu-Diamond复合材料(金刚石体积分数为5%)。在空气气氛中对Cu-5vol.%Diamond复合材料进行多次电弧烧蚀,通过场发射扫描电子显微镜(SEM)和三维激光共聚焦显微镜(3D LSCM)对烧蚀表面进行观察分析,利用能谱仪(EDS)和X射线光电子能谱仪(XPS)对烧蚀后的成分进行分析,结果表明,经过100次9 kV高电压电弧烧蚀后,复合材料烧蚀区域中的铜基体出现熔化和溅射,并被氧化成了CuO和Cu_(2)O,同时金刚石颗粒较大幅度提高了该复合材料的抗电弧烧蚀能力。 展开更多
关键词 Cu-diamond复合材料 电弧烧蚀 形貌 性能
下载PDF
沉积温度对不同Co含量WC-Co/SiC/Diamond界面结合性能的影响
9
作者 杨俊茹 岳艳萍 +2 位作者 吕浩 任保飞 陈公领 《人工晶体学报》 CAS 北大核心 2023年第11期1997-2006,共10页
本文构建了Co质量分数分别为6%、8%、10%和12%的WC-Co/SiC/Diamond金刚石涂层硬质合金界面模型,利用分子动力学方法模拟了不同沉积温度对其界面结合强度的影响,从黏附功及键长分布两个方面进行具体分析。黏附功分析结果表明,与其他三种C... 本文构建了Co质量分数分别为6%、8%、10%和12%的WC-Co/SiC/Diamond金刚石涂层硬质合金界面模型,利用分子动力学方法模拟了不同沉积温度对其界面结合强度的影响,从黏附功及键长分布两个方面进行具体分析。黏附功分析结果表明,与其他三种Co含量界面模型相比,WC-6%Co/SiC/Diamond界面模型在七个沉积温度下所包含的两种界面的黏附功值均为最高值,并且在不同沉积温度下,WC-6%Co/SiC/Diamond界面模型所包含的WC-6%Co/SiC界面、SiC/Diamond界面的黏附功分别在1123、1173 K时最大,为2.468、5.394 J/m^(2)。键长分布概率分析结果表明,与其他三种Co含量界面模型相比,在任一沉积温度下,WC-6%Co/SiC/Diamond界面模型各界面处键长分布范围的最大值较小,且在1123 K时在WC-6%Co基体上沉积SiC中间层,在1173 K时在SiC中间层上沉积Diamond涂层后,该界面模型界面处的键长最短,键能最大,界面结合性能最好。 展开更多
关键词 金刚石涂层硬质合金 WC-Co/SiC/diamond 沉积温度 CO含量 界面黏附功 界面结合性能 键长
下载PDF
Shwachman-Diamond综合征6例并文献复习
10
作者 田凤艳 李嘉 +6 位作者 董萧 侯晓寒 陈娇 王叨 魏琳琳 张蕾 刘玉峰 《河南医学研究》 CAS 2023年第7期1181-1185,共5页
目的总结儿童Shwachman-Diamond综合征(SDS)的相关基因突变及临床特点。方法回顾性分析郑州大学第一附属医院收治的6例SDS患儿临床资料,检索中国知网、万方数据库及PubMed数据库建库至2022年7月的相关文献,总结SDS相关基因突变、肿瘤易... 目的总结儿童Shwachman-Diamond综合征(SDS)的相关基因突变及临床特点。方法回顾性分析郑州大学第一附属医院收治的6例SDS患儿临床资料,检索中国知网、万方数据库及PubMed数据库建库至2022年7月的相关文献,总结SDS相关基因突变、肿瘤易感性机制、SBDS基因突变的临床特点。结果6例患儿于生后1~10 d发病,确诊年龄为1月余至13岁,明显生长落后4例,粪便可见脂肪滴3例,肝功能异常3例,血细胞减少3例,反复呼吸道感染3例,既往腹泻/腹胀病史3例,尿路感染病史2例。6例患儿均为SBDS基因突变。检索到SBDS、SRP54、DNAJC21、EFL1基因突变导致的SDS分别为487、30、19、10例,男性较女性多见,以血细胞减少、肝功能异常、反复感染病史为常见临床表现,为多系统受累疾病。结论我国SDS患者几乎均为SBDS基因突变,SDS发病主要与核糖体成熟的破坏有关,SBDS突变影响p53发挥肿瘤抑制作用且常伴有TP53突变导致肿瘤易感性增加。本病起病较早,首发临床表现多样,缺乏特异性,症状不典型者应尽早行遗传学检查以免延误诊治,恶性转化前需及早行造血干细胞移植。 展开更多
关键词 Shwachman-diamond综合征 遗传性骨髓衰竭综合征 核糖体疾病 基因突变
下载PDF
Numerical simulation of materials-oriented ultra-precision diamond cutting:review and outlook 被引量:1
11
作者 Liang Zhao Junjie Zhang +3 位作者 Jianguo Zhang Houfu Dai Alexander Hartmaier Tao Sun 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期1-21,共21页
Ultra-precision diamond cutting is a promising machining technique for realizing ultra-smooth surface of different kinds of materials.While fundamental understanding of the impact of workpiece material properties on c... Ultra-precision diamond cutting is a promising machining technique for realizing ultra-smooth surface of different kinds of materials.While fundamental understanding of the impact of workpiece material properties on cutting mechanisms is crucial for promoting the capability of the machining technique,numerical simulation methods at different length and time scales act as important supplements to experimental investigations.In this work,we present a compact review on recent advancements in the numerical simulations of material-oriented diamond cutting,in which representative machining phenomena are systematically summarized and discussed by multiscale simulations such as molecular dynamics simulation and finite element simulation:the anisotropy cutting behavior of polycrystalline material,the thermo-mechanical coupling tool-chip friction states,the synergetic cutting responses of individual phase in composite materials,and the impact of various external energetic fields on cutting processes.In particular,the novel physics-based numerical models,which involve the high precision constitutive law associated with heterogeneous deformation behavior,the thermo-mechanical coupling algorithm associated with tool-chip friction,the configurations of individual phases in line with real microstructural characteristics of composite materials,and the integration of external energetic fields into cutting models,are highlighted.Finally,insights into the future development of advanced numerical simulation techniques for diamond cutting of advanced structured materials are also provided.The aspects reported in this review present guidelines for the numerical simulations of ultra-precision mechanical machining responses for a variety of materials. 展开更多
关键词 diamond cutting ultra-smooth surface material-oriented physics-based simulation model molecular dynamics finite element
下载PDF
Research on Fe-based impregnated diamond drill bits strengthened by Nano-NbC and Nano-WC 被引量:1
12
作者 Ekene Matthew Egwuonwu Uzodigwe Emmanuel Nnanwuba +3 位作者 CHANG Si DUAN Longchen NING Fulong LIU Baochang 《Global Geology》 2023年第1期21-30,共10页
In order to improve the matrix performance of impregnated diamond drill bit to better meet the drilling needs,the effects of the addition of nano-WC and nano-NbC particles on the matrix material together with the mech... In order to improve the matrix performance of impregnated diamond drill bit to better meet the drilling needs,the effects of the addition of nano-WC and nano-NbC particles on the matrix material together with the mechanical properties and microstructure of the diamond-matrix composite material of the Fe-based diamond drill bit were studied by using the method of uniform formula design,regression analysis and solution finding.An indoor drilling test was also carried out using the fabricated impregnated diamond drill bit.The results showed that after the addition of nano-NbC and nano-WC,the hardness and flexural strength of the matrix material got improved,as the flexural strength of the diamond composite material increased to 4.29%,the wear-resistance ratio increased to 8.75%,and the tighter the chemical bonding between the diamond and the matrix.This,indicates that the addition of nanoparticles has a positive significance in improving the performance of the diamond composite.The results of the drilling test showed that the mechanical drilling speed of the impregnated diamond drill bit after nanoparticle strengthening is 25.85%higher than that of the conventional drill bit,and the matrix wear was increased by 17.5%.It proves that nanoparticles can improve the drilling performance and efficiency of drill bit. 展开更多
关键词 Nanoparticles uniform formulation design diffusion strengthening impregnated diamond drill bits
下载PDF
Molecular dynamics study of thermal conductivities of cubic diamond,lonsdaleite,and nanotwinned diamond via machine-learned potential
13
作者 熊佳豪 戚梓俊 +6 位作者 梁康 孙祥 孙展鹏 汪启军 陈黎玮 吴改 沈威 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期594-601,共8页
Diamond is a wide-bandgap semiconductor with a variety of crystal configurations,and has the potential applications in the field of high-frequency,radiation-hardened,and high-power devices.There are several important ... Diamond is a wide-bandgap semiconductor with a variety of crystal configurations,and has the potential applications in the field of high-frequency,radiation-hardened,and high-power devices.There are several important polytypes of diamonds,such as cubic diamond,lonsdaleite,and nanotwinned diamond(NTD).The thermal conductivities of semiconductors in high-power devices at different temperatures should be calculated.However,there has been no reports about thermal conductivities of cubic diamond and its polytypes both efficiently and accurately based on molecular dynamics(MD).Here,using interatomic potential of neural networks can provide obvious advantages.For example,comparing with the use of density functional theory(DFT),the calculation time is reduced,while maintaining high accuracy in predicting the thermal conductivities of the above-mentioned three diamond polytypes.Based on the neuroevolution potential(NEP),the thermal conductivities of cubic diamond,lonsdaleite,and NTD at 300 K are respectively 2507.3 W·m^(-1)·K^(-1),1557.2 W·m^(-1)·K^(-1),and 985.6 W·m^(-1)·K^(-1),which are higher than the calculation results based on Tersoff-1989 potential(1508 W·m^(-1)·K^(-1),1178 W·m^(-1)·K^(-1),and 794 W·m^(-1)·K^(-1),respectively).The thermal conductivities of cubic diamond and lonsdaleite,obtained by using the NEP,are closer to the experimental data or DFT data than those from Tersoff-potential.The molecular dynamics simulations are performed by using NEP to calculate the phonon dispersions,in order to explain the possible reasons for discrepancies among the cubic diamond,lonsdaleite,and NTD.In this work,we propose a scheme to predict the thermal conductivity of cubic diamond,lonsdaleite,and NTD precisely and efficiently,and explain the differences in thermal conductivity among cubic diamond,lonsdaleite,and NTD. 展开更多
关键词 diamond neuroevolution potential molecular dynamics thermal conductivity phonon transport
原文传递
Lightweight diamond/Cu interface tuning for outstanding heat conduction
14
作者 Wenjie Dou Congxu Zhu +6 位作者 Xiwang Wu Xun Yang Wenjun Fa Yange Zhang Junfeng Tong Guangshan Zhu Zhi Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期229-240,共12页
With rapid developments in the field of very large-scale integrated circuits,heat dissipation has emerged as a significant factor that restricts the high-density integration of chips.Due to their high thermal conducti... With rapid developments in the field of very large-scale integrated circuits,heat dissipation has emerged as a significant factor that restricts the high-density integration of chips.Due to their high thermal conductivity and low thermal expansion coefficient,diamond/Cu composites have attracted considerable attention as a promising thermal management material.In this study,a surface tungsten carbide gradient layer coating of diamond particles has been realized using comprehensive magnetron sputtering technology and a heat treatment process.Diamond/Cu composites were prepared using high-temperature and high-pressure technology.The results show that,by adjusting the heat treatment process,tungsten carbide and di-tungsten carbide are generated by an in situ reaction at the tungsten–diamond interface,and W–WC–W_(2)C gradient layer-coated diamond particles were obtained.The diamond/Cu composites were sintered by high-temperature and high-pressure technology,and the density of surface-modified diamond/Cu composites was less than 4 g cm^(-3).The W–WC–W_(2)C@diamond/Cu composites have a thermal diffusivity as high as 331 mm^(2)s^(-1),and their thermal expansion coefficient is as low as 1.76×10^(-6)K^(-1).The interface coherent structure of the gradient layer-coated diamond/copper composite can effectively improve the interface heat transport efficiency. 展开更多
关键词 coherent interface diamond composite heat conduction surface modification
下载PDF
Diamond growth in a high temperature and high pressure Fe–Ni–C–Si system:Effect of synthesis pressure
15
作者 刘杨 王志文 +5 位作者 李博维 赵洪宇 王胜学 陈良超 马红安 贾晓鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期602-608,共7页
Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work re... Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work reports the morphology,impurity content and crystal quality characteristics of silicon-doped diamond crystals synthesized under different pressures.Fourier transform infrared spectroscopy shows that with the increase of pressure,the nitrogen content in the C-center inside the diamond crystal decreases.X-ray photoelectron spectroscopy test results show the presence of silicon in the diamond crystals synthesized by adding silicon powder.Raman spectroscopy data shows that the increase in pressure in the Fe-Ni-C-Si system shifts the Raman peak of diamonds from 1331.18 cm^(-1)to 1331.25 cm^(-1),resulting in a decrease in internal stress in the crystal.The half-peak width decreased from 5.41 cm^(-1)to 5.26 cm^(-1),and the crystallinity of the silicon-doped diamond crystals improved,resulting in improved quality.This work provides valuable data that can provide a reference for the synthesis of high-quality silicon-doped diamonds. 展开更多
关键词 silicon-doped diamond crystal quality pressure effect nitrogen content
原文传递
Diamond/c-BN van der Waals heterostructure with modulated electronic structures
16
作者 贾素娜 李高贤 +2 位作者 高楠 成绍恒 李红东 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期495-499,共5页
The structural and electronic properties of(100),(110), and(111) diamond/cubic boron nitride(c-BN) heterostructures are systematically investigated by first principles calculation. The interface between diamond and c-... The structural and electronic properties of(100),(110), and(111) diamond/cubic boron nitride(c-BN) heterostructures are systematically investigated by first principles calculation. The interface between diamond and c-BN shows the weak van der Waals interactions, which is confirmed by the interface distance and interface binding energy. The diamond/cBN structures are the direct bandgap semiconductors with moderate bandgap values ranging from 0.647 e V to 2.948 e V.This work helps to promote the application of diamond in electronic and optoelectronic devices. 展开更多
关键词 diamond cubic boron nitride HETEROINTERFACE first principles calculation
原文传递
High performance trench diamond junction barrier Schottky diode with a sidewall-enhanced structure
17
作者 朱盈 林旺 +4 位作者 李东帅 李柳暗 吕宪义 王启亮 邹广田 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期479-485,共7页
The trench diamond junction barrier Schottky(JBS)diode with a sidewall enhanced structure is designed by Silvaco simulation.Comparing with the conventional trench JBS diode,Schottky contact areas are introduced on the... The trench diamond junction barrier Schottky(JBS)diode with a sidewall enhanced structure is designed by Silvaco simulation.Comparing with the conventional trench JBS diode,Schottky contact areas are introduced on the sidewall of the trench beside the top cathode.The sidewall Schottky contact weakens the junction field-effect transistor effect between the trenches to realize a low on-resistance and a high Baliga's figure of merit(FOM)value.In addition,the existence of the n-type diamond helps to suppress the electric field crowding effect and enhance the reverse breakdown voltage.With the optimal parameters of device structure,a high Baliga's FOM value of 2.28 GW/cm^(2) is designed.Therefore,the proposed sidewall-enhanced trench JBS diode is a promising component for the applications in diamond power electronics. 展开更多
关键词 diamond Schottky barrier diode junction terminal extension simulation
原文传递
Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
18
作者 郝礼才 陈子昂 +8 位作者 刘东阳 赵伟康 张鸣 汤琨 朱顺明 叶建东 张荣 郑有炓 顾书林 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期554-560,共7页
This work investigates the suppression and compensation effect of oxygen on the behaviors and characteristics of heavily boron-doped microwave plasma chemical vapor deposition(MPCVD)diamond films.The suppression effec... This work investigates the suppression and compensation effect of oxygen on the behaviors and characteristics of heavily boron-doped microwave plasma chemical vapor deposition(MPCVD)diamond films.The suppression effect of oxygen on boron incorporation is observed by an improvement in crystal quality when oxygen is added during the diamond doping process.A relatively low hole concentration is expected and verified by Hall effect measurements due to the compensation effect of oxygen as a deep donor in diamond.A low acceptor concentration,high compensation donor concentration and relatively larger acceptor ionization energy are then induced by the incorporation of oxygen;however,a heavily boron-doped diamond film with high crystal quality can also be expected.The formation of an oxygen–boron complex structure instead of oxygen substitution,as indicated by the results of x-ray photoelectron spectroscopy,is suggested to be more responsible for the observed enhanced compensation effect due to its predicted low formation energy.Meanwhile,density functional theory calculations show that the boron–oxygen complex structure is easily formed in diamond with a formation energy of-0.83 eV.This work provides a comprehensive understanding of oxygen compensation in heavily boron-doped diamond. 展开更多
关键词 diamond boron–oxygen co-doping incorporation efficiency ionization energy compensation boron–oxygen complex
原文传递
A theoretical and deep learning hybrid model for predicting surface roughness of diamond-turned polycrystalline materials
19
作者 Chunlei He Jiwang Yan +3 位作者 Shuqi Wang Shuo Zhang Guang Chen Chengzu Ren 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期620-644,共25页
Polycrystalline materials are extensively employed in industry.Its surface roughness significantly affects the working performance.Material defects,particularly grain boundaries,have a great impact on the achieved sur... Polycrystalline materials are extensively employed in industry.Its surface roughness significantly affects the working performance.Material defects,particularly grain boundaries,have a great impact on the achieved surface roughness of polycrystalline materials.However,it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods.In this work,a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed.The kinematic–dynamic roughness component in relation to the tool profile duplication effect,work material plastic side flow,relative vibration between the diamond tool and workpiece,etc,is theoretically calculated.The material-defect roughness component is modeled with a cascade forward neural network.In the neural network,the ratio of maximum undeformed chip thickness to cutting edge radius RT S,work material properties(misorientation angle θ_(g) and grain size d_(g)),and spindle rotation speed n s are configured as input variables.The material-defect roughness component is set as the output variable.To validate the developed model,polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools.Compared with the previously developed model,obvious improvement in the prediction accuracy is observed with this hybrid prediction model.Based on this model,the influences of different factors on the surface roughness of polycrystalline materials are discussed.The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed.Two fracture modes,including transcrystalline and intercrystalline fractures at different RTS values,are observed.Meanwhile,optimal processing parameters are obtained with a simulated annealing algorithm.Cutting experiments are performed with the optimal parameters,and a flat surface finish with Sa 1.314 nm is finally achieved.The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning. 展开更多
关键词 diamond turning material-defect roughness component polycrystalline copper neural network simulated annealing algorithm
下载PDF
Toughness enhancement of single-crystal diamond by the homoepitaxial growth of periodic nitrogen-doped nano-multilayers
20
作者 Yun Zhao Juping Tu +3 位作者 Liangxian Chen Junjun Wei Jinlong Liu Chengming Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期766-771,共6页
Periodic nitrogen-doped homoepitaxial nano-multilayers were grown by microwave plasma chemical vapor deposition. The residual time of gases(such as CH4and N2) in the chamber was determined by optical emission spectros... Periodic nitrogen-doped homoepitaxial nano-multilayers were grown by microwave plasma chemical vapor deposition. The residual time of gases(such as CH4and N2) in the chamber was determined by optical emission spectroscopy to determine the nano-multilayer growth process, and thin, nanoscale nitrogen-doped layers were obtained. The highest toughness of 18.2 MPa·m^(1/2)under a Young’s modulus of1000 GPa is obtained when the single-layer thickness of periodic nitrogen-doped nano-multilayers is about 96 nm. The fracture toughness of periodic nitrogen-doped CVD layer is about 2.1 times that of the HPHT seed substrate. Alternating tensile and compressive stresses are derived from periodic nitrogen doping;hence, the fracture toughness is significantly improved. Single-crystal diamond with a high toughness demonstrates wide application prospects for high-pressure anvils and single-point diamond cutting tools. 展开更多
关键词 microwave plasma chemical vapor deposition diamond fracture toughness nitrogen doping
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部